Effect of Heat Dissipation Rate on Microstructure and Mechanical Properties of Al0.5FeCoCrNi High-Entropy Alloy Wall Fabricated by Laser Melting Deposition
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Measurement of Thermal Cycling of LMD-Al0.5FeCoCrNi Walls
2.3. Microstructure Characterization and Mechanical Properties
3. Results and Discussion
3.1. Heat Dissipation Rates Analysis of LMD-Al0.5FeCoCrNi Walls
3.2. Effect of Heat Dissipation Rate on the Microstructure of LMD-Al0.5FeCoCrNi Wall
3.2.1. Phase Analysis of LMD-Al0.5FeCoCrNi Walls
3.2.2. Microstructures of LMD-Al0.5FeCoCrNi Walls
3.3. Effect of Heat Dissipation Rates on Mechanical Properties of LMD-Al0.5FeCoCrNi Walls
3.3.1. Microhardness Analysis of LMD-Al0.5FeCoCrNi Walls
3.3.2. Tensile Properties Analysis of LMD-Al0.5FeCoCrNi Walls
3.4. Strengthening Mechanism of LMD-Al0.5FeCoCrNi
3.4.1. Strength Evolution Mechanism
3.4.2. Ductility Evolution Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hemphill, M.B.; Yuan, T.; Wang, G.Y.; Yeh, J.W.; Tsai, C.W.; Chuang, A.; Liaw, P.K. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012, 60, 5723–5734. [Google Scholar] [CrossRef]
- Tang, Z.; Yuan, T.; Tsai, C.W.; Yeh, J.W.; Lundin, C.D.; Liaw, P.K. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 2015, 99, 247–258. [Google Scholar] [CrossRef]
- Thurston, K.V.S.; Gludovatz, B.; Hohenwarter, A.; Laplanche, G.; George, E.P.; Ritchie, R.O. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 2017, 88, 65–72. [Google Scholar] [CrossRef]
- Kim, J.K.; Bae, W.G.; Lim, K.T.; Jang, K.J.; Oh, S.J.; Jang, K.J.; Jeon, N.L.; Suh, K.Y.; Chung, J.H. Density of nanopatterned surfaces for designing bone tissue engineering scaffolds. Mater Lett. 2014, 130, 227–231. [Google Scholar] [CrossRef]
- Chuang, M.H.; Tsai, M.H.; Wang, W.R.; Lin, S.J.; Yeh, J.W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K.A.; Liaw, P.K. Corrosion of AlxCoCrFeNi high-entropy alloys Al-content. Corros. Sci. 2017, 119, 33–45. [Google Scholar] [CrossRef]
- Chioibasu, D.; Mihai, S.; Cotrut, C.M.; Voiculescu, L.; Popescu, A.C. Tribology and corrosion behavior of gray cast iron brake discs coated with Inconel 718 by direct energy deposition. Int. J. Adv. Manuf. Technol. 2022, 121, 5091–5170. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Popescu, A.C.; Oane, M.; Chioibasu, D.; Popescu-Pelin, G.; Ristoscu, C.; Mihailescu, I.N. Grain refinement and mechanical properties for AISI304 stainless steel single-tracks by laser melting deposition: Mathematical modelling versus experimental results. Results Phys. 2021, 22, 103880. [Google Scholar] [CrossRef]
- Joseph, J.; Jarvis, T.; Wu, X.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 2015, 633, 184–193. [Google Scholar] [CrossRef]
- Kao, Y.F.; Chen, T.J.; Chen, S.K.; Yeh, J.W. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 2009, 488, 57–64. [Google Scholar] [CrossRef]
- Lin, C.M.; Tsai, H.L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 2011, 19, 288–294. [Google Scholar] [CrossRef]
- Niu, S.; Kou, H.; Guo, T.; Zhang, Y.; Wang, J.; Li, J.S. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2016, 671, 82–86. [Google Scholar] [CrossRef]
- Sokkalingam, R.; Mishra, S.; Cheethirala, S.R.; Muthupandi, V.; Sivaprasad, K. Enhanced Relative Slip Distance in Gas-Tungsten-Arc-Welded Al0.5CoCrFeNi High-Entropy Alloy. Metall. Mater. Trans. A 2017, 48, 3630–3634. [Google Scholar] [CrossRef]
- Wang, J.; Niu, S.; Guo, T.; Kou, H.; Li, J.S. The FCC to BCC phase transformation kinetics in an Al0.5CoCrFeNi high entropy alloy. J. Alloys Compd. 2017, 710, 144–150. [Google Scholar] [CrossRef]
- Cai, Y.C.; Li, X.P.; Xia, H.B.; Cui, Y.; Manladan, S.M.; Zhu, L.S.; Shan, M.D.; Sun, D.; Wang, T.; Lv, X.; et al. Fabrication of laminated high entropy alloys using differences in laser melting deposition characteristics of FeCoCrNi and FeCoCrNiAl. J. Manuf. Process. 2021, 72, 294–308. [Google Scholar] [CrossRef]
- Xiong, J.; Li, R.; Lei, Y.Y.; Chen, H. Heat propagation of circular thin-walled parts fabricated in additive manufacturing using gas metal arc welding. J. Mater. Process. Technol. 2018, 251, 12–19. [Google Scholar] [CrossRef]
- Wu, B.T.; Ding, D.H.; Pan, Z.X.; Cuiuri, D.; Li, H.J.; Han, J.; Fei, Z.Y. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. J. Mater. Process. Tech. 2017, 250, 304–312. [Google Scholar] [CrossRef]
- Bai, X.W.; Colegrove, P.; Ding, J.L.; Zhou, X.M.; Diao, C.L.; Bridgeman, P.; roman Hönnige, J.; Zhang, H.; Williams, S. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int. J. Heat Mass Transf. 2018, 124, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Chen, S.J.; Shi, J.B.; Zhao, Y.; Tian, H.Y. Thermoelectric Cooling-Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures. Appl. Sci. 2018, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.F.; Xiao, D.H.; Wu, Z.; Ou, X.Q. Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders. Mater. Sci. Eng. A 2019, 739, 86–89. [Google Scholar] [CrossRef]
- Zhan, X.H.; Lin, X.; Gao, Z.N.; Qi, C.Q.; Zhou, J.J.; Gu, D.D. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of Invar alloy. J. Alloys Compd. 2018, 755, 123–134. [Google Scholar] [CrossRef]
- Johnsson, M. Influence of Si and Fe on the grain refinement of aluminium. Int. J. Mater. Res. 1994, 85, 781–785. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.P.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Lim, C.S. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scr. Mater. 2019, 168, 129–133. [Google Scholar] [CrossRef]
- Hou, J.X.; Wang, Z.; Shi, X.H.; Wang, Z.H.; Qiao, J.W.; Wu, Y.C. Strengthening of an Al0.45CoCrFeNi high-entropy alloy via in situ fabricated duplex-structured composites. J. Mater. Sci. 2020, 55, 7894–7909. [Google Scholar] [CrossRef]
- Cai, Y.C.; Shan, M.D.; Cui, Y.; Manladan, S.M.; Lv, X.; Zhu, L.S.; Sun, D.; Wang, T.; Han, J. Microstructure and properties of FeCoCrNi high entropy alloy produced by laser melting deposition. J. Alloys Compd. 2021, 887, 161323. [Google Scholar] [CrossRef]
- Li, H.G.; Huang, Y.J.; Jiang, S.S.; Lu, Y.Z.; Gao, X.Y.; Lu, X.; Ning, Z.L.; Sun, J.F. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy. Mater. Des. 2021, 197, 109262. [Google Scholar] [CrossRef]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Lu, Y.P.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.J.; Wang, T.M.; Wen, B.; Wang, Z.J.; Jie, J.C.; Cao, Z.Q.; et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Luo, S.C.; Wang, Z.M. Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi2 high entropy alloys via selective laser melting. J. Alloys Compd. 2020, 842, 155823. [Google Scholar] [CrossRef]
- Kamaya, M.; Wilkinson, A.J.; Titchmarsh, J.M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction. Nucl. Eng. Des. 2005, 235, 713–725. [Google Scholar] [CrossRef]
- Cai, Y.C.; Zhu, L.S.; Cui, Y.; Geng, K.P.; Manladan, S.M.; Luo, Z.; Han, J. Strengthening mechanisms in multi-phase FeCoCrNiAl1.0 high-entropy alloy cladding layer. Mater. Charact. 2020, 159, 110037. [Google Scholar] [CrossRef]
- Zheng, G.M.; Tang, B.; Zhou, Q.; Mao, X.N.; Dang, R. Development of a Flow Localization Band and Texture in a Forged Near-α Titanium Alloy. Metals 2020, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Han, C.J.; Fang, Q.H.; Shi, Y.S.; Tor, S.B.; Chua, C.K.; Zhou, K. Recent Advances on High-Entropy Alloys for 3D Printing. Adv. Mater. 2020, 32, 1903855. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.J.; Chen, L.; Lin, X.; Huang, H.S.; Tang, S.H.; Du, F.L. Wear and Corrosion Resistance of Al0.5CoCrCuFeNi High-Entropy Alloy Coating Deposited on AZ91D Magnesium Alloy by Laser Cladding. Entropy 2018, 20, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.Y.; Xu, L.Y.; Han, Y.D.; Zhang, Y.K.; Jing, H.Y.; Zhao, L.; Minami, F. Structure and mechanical properties of a FeCoCrNi high-entropy alloy fabricated via selective laser melting. Intermetallics 2020, 127, 106963. [Google Scholar] [CrossRef]
- Qiu, X.W. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. J. Alloys Compd. 2018, 735, 359–364. [Google Scholar] [CrossRef]
- Gussev, M.N.; Field, K.G.; Busby, J.T. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels. J. Nucl. Mater. 2015, 460, 139–152. [Google Scholar] [CrossRef]
Si | Mn | Cr | Ni | Mo | C | Fe |
---|---|---|---|---|---|---|
0.63 | 1.19 | 17.99 | 12.84 | 2.56 | 0.07 | Bal. |
Al | Fe | Co | Cr | Ni |
---|---|---|---|---|
5.81 | 23.17 | Bal. | 22.26 | 24.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Tian, Y.; Cai, Y.; Han, J.; Zhang, X. Effect of Heat Dissipation Rate on Microstructure and Mechanical Properties of Al0.5FeCoCrNi High-Entropy Alloy Wall Fabricated by Laser Melting Deposition. Metals 2022, 12, 1789. https://doi.org/10.3390/met12111789
Yan Y, Tian Y, Cai Y, Han J, Zhang X. Effect of Heat Dissipation Rate on Microstructure and Mechanical Properties of Al0.5FeCoCrNi High-Entropy Alloy Wall Fabricated by Laser Melting Deposition. Metals. 2022; 12(11):1789. https://doi.org/10.3390/met12111789
Chicago/Turabian StyleYan, Yanan, Yinbao Tian, Yangchuan Cai, Jian Han, and Xuesong Zhang. 2022. "Effect of Heat Dissipation Rate on Microstructure and Mechanical Properties of Al0.5FeCoCrNi High-Entropy Alloy Wall Fabricated by Laser Melting Deposition" Metals 12, no. 11: 1789. https://doi.org/10.3390/met12111789
APA StyleYan, Y., Tian, Y., Cai, Y., Han, J., & Zhang, X. (2022). Effect of Heat Dissipation Rate on Microstructure and Mechanical Properties of Al0.5FeCoCrNi High-Entropy Alloy Wall Fabricated by Laser Melting Deposition. Metals, 12(11), 1789. https://doi.org/10.3390/met12111789