Evolution of the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets during Multi-Pass Lowered-Temperature Rolling
Abstract
:1. Introduction
2. Materials and Methods
3. Results and discussion
3.1. Microstructure Characteristics
3.2. Texture Characteristics
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Zhang, J.; Leng, Z.; Liu, S.; Yang, Q.; Wu, R.; Zhang, M. Microstructure and mechanical properties of high-performance Mg-Y-Er-Zn extruded alloy. Mater. Des. 2014, 54, 256–263. [Google Scholar] [CrossRef]
- Da Huo, P.; Li, F.; Wang, Y.; Wu, R.Z.; Gao, R.H.; Zhang, A.X. Annealing coordinates the deformation of shear band to improve the microstructure difference and simultaneously promote the strength-plasticity of composite plate. Mater. Des. 2022, 219, 110696. [Google Scholar] [CrossRef]
- Suh, B.-C.; Shim, M.; Shin, K.S.; Kim, N.J. Current issues in magnesium sheet alloys: Where do we go from here? Scr. Mater. 2014, 84–85, 1–6. [Google Scholar] [CrossRef]
- Chino, Y.; Sassa, K.; Kamiya, A.; Mabuchi, M. Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes. Mater. Sci. Eng. A 2008, 473, 195–200. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; Wu, R.; Zhang, S.; Wang, Y.; Wu, H.; Zhang, J.; Hou, L. Synergistically improved damping, elastic modulus and mechanical properties of rolled Mg-8Li-4Y-2Er-2Zn-0.6Zr alloy with twins and longperiod stacking ordered phase. J. Alloy. Compd. 2021, 881, 160663. [Google Scholar] [CrossRef]
- Chen, W.Z.; Yu, Y.; Wang, X.; Wang, E.; Liu, Z. Optimization of rolling temperature for ZK61 alloy sheets via microstructure uniformity analysis. Mater. Sci. Eng. A 2013, 575, 136–143. [Google Scholar] [CrossRef]
- Huang, X.; Chino, Y.; Mabuchi, M.; Matsuda, M. Influences of grain size on mechanical properties and cold formability of Mg–3Al–1Zn alloy sheets with similar weak initial textures. Mater. Sci. Eng. A 2014, 611, 152–161. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Chino, Y.; Mabuchi, M. Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling. J. Alloy. Compd. 2015, 632, 94–102. [Google Scholar] [CrossRef]
- Huo, Q.; Yang, X.; Sun, H.; Li, B.; Qin, J.; Wang, J.; Ma, J. Enhancement of tensile ductility and stretch formability of AZ31 magnesium alloy sheet processed by cross-wavy bending. J. Alloy. Compd. 2013, 581, 230–235. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.; Zhang, W.; Cui, G.; Wang, E. Effect of deformation temperature on texture and mechanical properties of ZK60 magnesium alloy sheet rolled by multi-pass lowered-temperature rolling. Mater. Sci. Eng. A 2018, 712, 608–615. [Google Scholar] [CrossRef]
- Cho, J.-H.; Jeong, S.S.; Kang, S.-B. Deep drawing of ZK60 magnesium sheets fabricated using ingot and twin-roll casting methods. Mater. Des. 2016, 110, 214–224. [Google Scholar] [CrossRef]
- Kim, W.; Yoo, S.; Chen, Z.; Jeong, H. Grain size and texture control of Mg–3Al–1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes. Scr. Mater. 2009, 60, 897–900. [Google Scholar] [CrossRef]
- Suh, J.; Victoria-Hernández, J.; Letzig, D.; Golle, R.; Volk, W. Enhanced mechanical behavior and reduced mechanical anisotropy of AZ31 Mg alloy sheet processed by ECAP. Mater. Sci. Eng. A 2016, 650, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, W.; Zhang, W.; Wang, W.; Wang, E. Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi–pass rolling with lowered temperature. J. Mater. Process. Technol. 2016, 237, 65–74. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W.; Chen, W.; Yang, J.; Zhang, L.; Wang, E. Homogeneity improvement of friction stir welded ZK61 alloy sheets in microstructure and mechanical properties by multi-pass lowered-temperature rolling. Mater. Sci. Eng. A 2017, 703, 17–26. [Google Scholar] [CrossRef]
- Chen, W.Z.; Zhang, W.C.; Zhang, L.X.; Wang, E.D. Property improvements in fine-grained Mg-Zn-Zr alloy sheets produced by temperature-step-down multi-pass rolling. J. Alloy. Compd. 2015, 646, 195–203. [Google Scholar] [CrossRef]
- Prakash, P.; Toscano, D.; Shaha, S.K.; Wells, M.A.; Jahed, H.; Williams, B.W. Effect of temperature on the hot deformation behavior of AZ80 magnesium alloy. Mater. Sci. Eng. A 2020, 794, 139923. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, Z.; Hu, D.; Feng, T.; Yang, M.; Zhai, X. Effect of the final rolling speeds on the stretch formability of AZ31 alloy sheet rolled at a high temperature. J. Alloy. Compd. 2015, 650, 436–443. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Hu, L.; Wang, E. Fabrication of ZK60 magnesium alloy thin sheets with improved ductility by cold rolling and annealing treatment. Mater. Des. 2012, 40, 319–323. [Google Scholar] [CrossRef]
- Young, J.P.; Ayoub, G.; Mansoor, B.; Field, D.P. The effect of hot rolling on the microstructure, texture and mechanical properties of twin roll cast AZ31Mg. J. Mater. Process. Technol. 2015, 216, 315–327. [Google Scholar] [CrossRef]
- Meher, A.; Mahapatra, M.M.; Samal, P.; Vundavilli, P.R.; Shankar, K.V. Statistical Modeling of the Machinability of an In-Situ Synthesized RZ5/TiB2 Magnesium Matrix Composite in Dry Turning Condition. Crystals 2022, 12, 1353. [Google Scholar] [CrossRef]
- Wang, W.; Cui, G.; Zhang, W.; Chen, W.; Wang, E. Evolution of microstructure, texture and mechanical properties of ZK60 magnesium alloy in a single rolling pass. Mater. Sci. Eng. A 2018, 724, 486–492. [Google Scholar] [CrossRef]
- Imandoust, A.; Barrett, C.D.; Oppedal, A.L.; Whittington, W.R.; Paudel, Y.; El Kadiri, H. Nucleation and preferential growth mechanism of recrystallization texture in high purity binary magnesium-rare earth alloys. Acta Mater. 2017, 138, 27–41. [Google Scholar] [CrossRef]
- Chen, W.Z.; Wang, X.; Kyalo, M.N.; Wang, E.D.; Liu, Z. Yield strength behavior for rolled magnesium alloy sheets with texture variation. Mater. Sci. Eng. A 2013, 580, 77–82. [Google Scholar] [CrossRef]
- Trang, T.T.T.; Zhang, J.H.; Kim, J.H.; Zargaran, A.; Hwang, J.H.; Suh, B.-C.; Kim, N.J. Designing a magnesium alloy with high strength and high formability. Nat. Commun. 2018, 9, 2522. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.N.; Huang, J.C. Texture analysis in hexagonal materials. Mater. Chem. Phys. 2003, 81, 11–26. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Wu, R.; Feng, Y.; Liu, S.; Wang, X.; Jiao, Y.; Yang, Q.; Meng, J. Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment. J. Mater. Sci. Technol. 2017, 34, 1076–1084. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.; Zhang, W.; Cui, G.; Wang, E. Weakened anisotropy of mechanical properties in rolled ZK60 magnesium alloy sheets with elevated deformation temperature. J. Mater. Sci. Technol. 2018, 34, 2042–2050. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.; Wang, E. Effect of rolling reduction on microstructure, texture, mechanical properties and mechanical anisotropy of AZ31 magnesium alloys. Mater. Sci. Eng. A 2014, 612, 208–213. [Google Scholar] [CrossRef]
- Liu, D.; Bian, M.Z.; Zhu, S.; Chen, W.Z.; Liu, Z.; Wang, E.D.; Nie, J. Microstructure and tensile properties of Mg-3Al-1Zn sheets produced by hot-roller-cold-material rolling. Mater. Sci. Eng. A 2017, 706, 304–310. [Google Scholar] [CrossRef]
- Koike, J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Met. Mater. Trans. A 2005, 36, 1689–1696. [Google Scholar] [CrossRef]
- Yoshida, Y.; Arai, K.; Itoh, S.; Kamado, S.; Kojima, Y. Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Sci. Technol. Adv. Mater. 2005, 6, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Koike, J.; Ohyama, R.; Kobayashi, T.; Suzuki, M.; Maruyama, K. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K. Mater. Trans. 2003, 44, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Du, J.-P.; Gao, S.; Somekawa, H.; Ogata, S.; Tsuji, N. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer. Acta Mater. 2020, 198, 35–46. [Google Scholar] [CrossRef]
- Koike, J.; Kobayashi, T.; Mukai, T.; Watanabe, H.; Suzuki, M.; Maruyama, K.; Higashi, K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 2003, 51, 2055–2065. [Google Scholar] [CrossRef]
- Zhao, D.; Ma, X.; Srivastava, A.; Turner, G.; Karaman, I.; Xie, K.Y. Significant disparity of non-basal dislocation activities in hot-rolled highly-textured Mg and Mg-3Al-1Zn alloy under tension. Acta Mater. 2021, 207, 116691. [Google Scholar] [CrossRef]
- Mayama, T.; Noda, M.; Chiba, R.; Kuroda, M. Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plast. 2011, 27, 1916–1935. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, J.; Wang, W.; Liu, S.; Sun, B.; Xie, J.; Xiao, T. Unveiling the deformation mechanism of highly deformable magnesium alloy with heterogeneous grains. Scr. Mater. 2022, 221, 114963. [Google Scholar] [CrossRef]
Condition | Thickness Change, mm | Rolling Temperature, °C | Thickness Reduction, % |
---|---|---|---|
Pass 1 | 30 → 24 | 400 | 20 |
Pass 2 | 24 → 16.8 | 380 | 30 |
Pass 3 | 16.8 → 11.7 | 360 | 30 |
Pass 4 | 11.7 → 8.2 | 340 | 30 |
Pass 5 | 8.2 → 5.7 | 320 | 30 |
Pass 6 | 5.7 → 4 | 300 | 30 |
Pass 7 | 4 → 2.8 | 280 | 30 |
Pass 8 | 2.8 → 2 | 260 | 30 |
Condition | YS, MPa | UTS, MPa | FE, % | |||
---|---|---|---|---|---|---|
TD | RD | TD | RD | TD | RD | |
Initial | 40 | 160 | 7 | |||
Pass 1 | 90.7 | 81.6 | 171.6 | 169.2 | 14.7 | 17.1 |
Pass 2 | 115.3 | 105.2 | 211.4 | 193.5 | 17.7 | 23 |
Pass 3 | 131.9 | 122.8 | 230.2 | 222.6 | 23.4 | 24 |
Pass 4 | 152.7 | 138.5 | 243.5 | 239.4 | 23.5 | 24.5 |
Pass 5 | 163.2 | 153.6 | 248.9 | 243.7 | 28.4 | 27.4 |
Pass 6 | 179.1 | 171.4 | 251.8 | 255.1 | 31 | 28.4 |
Pass 7 | 188 | 181.6 | 264.8 | 257.9 | 30.7 | 33.3 |
Pass 8 | 202 | 189.8 | 274.3 | 272.6 | 38 | 39.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Q.; Zhu, L.; Wang, W.; Wang, Z.; Shao, B.; Chen, W.; Yu, Y.; Zhang, W. Evolution of the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets during Multi-Pass Lowered-Temperature Rolling. Metals 2022, 12, 1811. https://doi.org/10.3390/met12111811
Miao Q, Zhu L, Wang W, Wang Z, Shao B, Chen W, Yu Y, Zhang W. Evolution of the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets during Multi-Pass Lowered-Temperature Rolling. Metals. 2022; 12(11):1811. https://doi.org/10.3390/met12111811
Chicago/Turabian StyleMiao, Qing, Lantao Zhu, Wenke Wang, Zhihao Wang, Bin Shao, Wenzhen Chen, Yang Yu, and Wencong Zhang. 2022. "Evolution of the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets during Multi-Pass Lowered-Temperature Rolling" Metals 12, no. 11: 1811. https://doi.org/10.3390/met12111811
APA StyleMiao, Q., Zhu, L., Wang, W., Wang, Z., Shao, B., Chen, W., Yu, Y., & Zhang, W. (2022). Evolution of the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets during Multi-Pass Lowered-Temperature Rolling. Metals, 12(11), 1811. https://doi.org/10.3390/met12111811