Effect of Microstructure on the Mechanical Response of Hydrogen-Charged Pure Iron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characterization and Preparation
2.2. Hydrogen Charging
2.3. Mechanical Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, G.; Rostron, P.; Garg, R.; Panday, A. Hydrogen induced cracking of pipeline and pressure vessel steels: A review. Eng. Fract. Mech. 2018, 199, 609–618. [Google Scholar] [CrossRef]
- Martin, M.L.; Sofronis, P. Hydrogen-induced cracking and blistering in steels: A review. J. Nat. Gas Sci. Eng. 2022, 101, 104547. [Google Scholar] [CrossRef]
- De Assis, K.S.; Lage, M.A.; Guttemberg, G.; dos Santos, F.P.; Mattos, O.R. Influence of hydrogen on plasticity around the crack tip in high strength steels. Eng. Fract. Mech. 2017, 176, 116–125. [Google Scholar] [CrossRef]
- Birnbaum, H.K.; Sofronis, P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 1994, 176, 191–202. [Google Scholar] [CrossRef]
- Wang, S.; Hashimoto, N.; Wang, Y.; Ohnuki, S. Activation volume and density of mobile dislocations in hydrogen-charged iron. Acta Mater. 2013, 61, 4734–4742. [Google Scholar] [CrossRef]
- Katzarov, I.H.; Pashov, D.L.; Paxton, A.T. Hydrogen embrittlement I. Analysis of hydrogen-enhanced localized plasticity: Effect of hydrogen on the velocity of screw dislocations in α-Fe. Phys. Rev. Mater. 2017, 1, 033602. [Google Scholar] [CrossRef] [Green Version]
- Itakura, M.; Kaburaki, H.; Yamaguchi, M.; Okita, T. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study. Acta Mater. 2013, 61, 6857–6867. [Google Scholar] [CrossRef]
- Spätig, P.; Bonneville, J.; Martin, J.-L. A new method for activation volume measurements: Application to Ni3 (Al, Hf). Mater. Sci. Eng. A 1993, 167, 73–79. [Google Scholar] [CrossRef]
- Gong, P.; Katzarov, I.H.; Nutter, J.; Paxton, A.T.; Rainforth, W. The influence of hydrogen on plasticity in pure iron—theory and experiment. Sci. Rep. 2020, 10, 10209. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hashimoto, N.; Ohnuki, S. Effects of hydrogen on activation volume and density of mobile dislocations in iron-based alloy. Mater. Sci. Eng. A 2013, 562, 101–108. [Google Scholar] [CrossRef]
- Gong, P.; Katzarov, I.; Nutter, J.; Paxton, A.T.; Wynne, B.; Rainforth, W.M. Hydrogen suppression of dislocation cell formation in micro and nano indentation of pure iron single crystals. Scr. Mater. 2021, 194, 113683. [Google Scholar] [CrossRef]
- Rassweiler, G.M.; Grube, W.L. (Eds.) Internal Stresses and Fatigue in Metals: Proceedings; Elsevier Publishing Company: Amsterdam, The Netherlands, 1959. [Google Scholar]
- Holt, D.L. Dislocation cell formation in metals. J. Appl. Phys. 1970, 41, 3197–3201. [Google Scholar] [CrossRef]
- Kocks, U.F.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
Element | C | S | P | Si | Mn | Cr | Ni | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|
Average mass % | 0.0081 | 0.0053 | 0.0085 | 0.0133 | 0.0190 | 0.0300 | 0.0320 | 0.0155 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanachkov, B.; Lyutov, L.; Katzarov, I.; Drenchev, L.; Kolev, K. Effect of Microstructure on the Mechanical Response of Hydrogen-Charged Pure Iron. Metals 2022, 12, 2160. https://doi.org/10.3390/met12122160
Yanachkov B, Lyutov L, Katzarov I, Drenchev L, Kolev K. Effect of Microstructure on the Mechanical Response of Hydrogen-Charged Pure Iron. Metals. 2022; 12(12):2160. https://doi.org/10.3390/met12122160
Chicago/Turabian StyleYanachkov, Boris, Lyudmil Lyutov, Ivaylo Katzarov, Ludmil Drenchev, and Krasimir Kolev. 2022. "Effect of Microstructure on the Mechanical Response of Hydrogen-Charged Pure Iron" Metals 12, no. 12: 2160. https://doi.org/10.3390/met12122160
APA StyleYanachkov, B., Lyutov, L., Katzarov, I., Drenchev, L., & Kolev, K. (2022). Effect of Microstructure on the Mechanical Response of Hydrogen-Charged Pure Iron. Metals, 12(12), 2160. https://doi.org/10.3390/met12122160