A Study on the Wet Process Conditions That Affect the Selective Recovery of Si from Photovoltaic Cells by Using the Cavitation Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Acid Solution Concentration Experiment
3.2. Reaction Temperature Experiment
3.3. Reaction Time Experiment
3.4. Ultrasonic Intensity Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency (IEA). World Energy Outlook 2018. 2018. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 26 November 2021).
- Solar Power Europe. Global Market Outlook for Solar Power 2019–2023, May 2019. Available online: https://resources.solarbusinesshub.com/solar-industry-reports/item/global-market-outlook-for-solar-power-2019-2023 (accessed on 26 November 2021).
- Aanesen, K.; Heck, S.; Pinner, D. Solar power: Darkest before dawn. McKinsey Sustain. Resour. Product. 2012, 14, 3–15. [Google Scholar]
- Tao, J.; Yu, S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 2015, 141, 108–124. [Google Scholar] [CrossRef]
- Weckend, S.; Wade, A.; Heath, G. End-of-Life Management: Solar Photovoltaic Panels; NREL/TP-6A20-73852; National Renewable Energy Lab: Golden, CO, USA, 2016.
- Latunussa, C.E.L.; Ardente, F.; Blengini, G.A.; Mancini, L. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Sol. Energy Mater. Sol. Cells 2016, 156, 101–111. [Google Scholar] [CrossRef]
- Hsi, H.W.; Shin, W.J.; Wang, L.; Sun, W.-C.; Tao, M. Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 2017, 144, 22–31. [Google Scholar]
- Filho, G.L.T.; Rosa, C.A.; Barros, R.M.; Dos Santos, I.F.S.; Silva, F.D.G.B.D. Study of energy balance and environmental liabilities associated with the manufacture of crystalline Si photovoltaic modules and deployment in different regions. Sol. Energy Mater. Sol. Cells 2016, 144, 383–394. [Google Scholar] [CrossRef]
- Federzoni, L.; Pelletier, D.; Rakotoniaina, J. Cabriss: Developing a Circular Economy Based on Recycled, Reused and Recovered Indium, Silicon and Silver Materials for Photovoltaic and Other Applications; EUPVSEC: Hamburg, Germany, 2015. [Google Scholar]
- Kuczyńska-Łażewska, A.; Klugmann-Radziemska, E.; Sobczak, Z.; Klimczuk, T. Recovery of silver metallization from damaged silicon cells. Sol. Energy Mater. Sol. Cells 2018, 176, 190–195. [Google Scholar] [CrossRef]
- Eurostat. Renewable Energy Statistics. 2010. Available online: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Renewable_energy_statistics#Electricity (accessed on 26 November 2021).
- Ndiaye, A.; Charki, A.; Kobi, A.; Kébé, C.M.; Ndiaye, P.A.; Sambou, V. Degradations of silicon photovoltaic modules: A literature review. Sol. Energy 2013, 96, 140–151. [Google Scholar] [CrossRef]
- Hee-Sang, Y. A Study on Ultrasonic Cleaning Device. Proc. Ind. Technol. Res. Inst. 1997, 16, 177–192. [Google Scholar]
Element Analyzed | HNO3 | HCl | Total | |||
---|---|---|---|---|---|---|
Concentration (M) | Si | Al | Si | Al | ||
1 | 95.60 | 4.40 | 94.54 | 5.46 | 100 | |
2 | 99.77 | 0.23 | 99.66 | 0.34 | ||
3 | 100 | - | 99.85 | 0.15 |
Element Analyzed and Content (mg/L) | |||||||
---|---|---|---|---|---|---|---|
HNO3 | HCl | ||||||
Element | 1M | 2M | 3M | Element | 1M | 2M | 3M |
Al | 830 | 1000 | 1300 | Al | 1400 | 1400 | 1300 |
Ag | 0.013 | 280 | 410 | Ag | 0.4 | 0.5 | 4.8 |
Si | 54 | 58 | 89 | Si | 65 | 48 | 37 |
Fe | 2.7 | 3.5 | 4.2 | Fe | 6.4 | 4.0 | 4.1 |
Zn | 12 | 10 | 15 | Zn | 9.5 | 8.0 | 8.0 |
Pb | 2.3 | 19 | 27 | Pb | 4.2 | 3.5 | 6.8 |
Bi | N/D | 60 | 51 | Bi | 0.6 | 0.6 | 1.2 |
Ni | 0.38 | 1.8 | 8.1 | Ni | 0.4 | 0.4 | 0.5 |
In | 0.63 | 0.93 | 1.0 | In | 1.0 | 1.0 | 0.8 |
Sn | 1.3 | 1.6 | 6.2 | Sn | 1.5 | 1.0 | 9.7 |
Mg | 0.11 | 0.23 | 0.22 | Mg | 0.1 | 0.2 | 0.1 |
Mn | 0.033 | 0.068 | 0.37 | Mn | 0.2 | <0.1 | <0.1 |
Co | 0.038 | 0.10 | 0.52 | Co | <0.1 | <0.1 | <0.1 |
Cu | 0.11 | 2.6 | 0.98 | Cu | 0.2 | 0.2 | 7.7 |
Sample Name (M) | HNO3 | HCl | ||||
---|---|---|---|---|---|---|
Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | |
1 | 10.02 | 9.15 | 97.28 | 10.13 | 9.21 | 95.82 |
2 | 10.19 | 8.95 | 97.65 | 10.06 | 8.85 | 97.67 |
3 | 10.10 | 8.91 | 98.3 | 10.21 | 8.95 | 97.93 |
Element Analyzed | HNO3 | HCl | Total | |||
---|---|---|---|---|---|---|
Temperature (°C) | Si | Al | Si | Al | ||
30 | 99.84 | 0.16 | 99.91 | 0.09 | 100 | |
40 | 99.86 | 0.14 | 99.91 | 0.09 | ||
50 | 99.88 | 0.12 | 99.87 | 0.13 | ||
60 | 100 | - | 99.85 | 0.15 |
Element Analyzed and Content (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|
HNO3 | HCl | ||||||||
Element | 30 °C | 40 °C | 50 °C | 60 °C | Element | 30 °C | 40 °C | 50 °C | 60 °C |
Al | 620 | 860 | 1100 | 1300 | Al | 990 | 990 | 1100 | 1300 |
Ag | 210 | 215 | 235 | 410 | Ag | <0.1 | <0.1 | 0.1 | 4.8 |
Si | 36 | 55 | 51 | 89 | Si | 23 | 23 | 46 | 37 |
Fe | 2.5 | 2.9 | 3.2 | 4.2 | Fe | 5.8 | 5.8 | 4.9 | 4.1 |
Zn | 4.2 | 8.1 | 8.9 | 15 | Zn | 12 | 12 | 13 | 8.0 |
Pb | 59 | 11 | 7.5 | 27 | Pb | 4.8 | 4.8 | 6.9 | 6.8 |
Bi | 14 | 31 | 38 | 51 | Bi | 0.8 | 0.8 | 0.8 | 1.2 |
Ni | 1.0 | 2.2 | 0.3 | 8.1 | Ni | 0.5 | 0.5 | 0.5 | 0.5 |
In | 0.68 | 0.94 | 0.6 | 1.0 | In | 1.4 | 1.4 | 1.4 | 0.8 |
Sn | 4.7 | 1.6 | 0.9 | 6.2 | Sn | 0.7 | 0.7 | 1.0 | 9.7 |
Mg | 0.088 | 0.086 | 0.1 | 0.22 | Mg | 0.1 | 0.1 | 0.1 | 0.1 |
Mn | 0.088 | 0.15 | <0.1 | 0.37 | Mn | 0.1 | 0.1 | 0.1 | <0.1 |
Co | 0.065 | 0.20 | <0.1 | 0.52 | Co | <0.1 | <0.1 | <0.1 | <0.1 |
Cu | 7.9 | 0.50 | 5.5 | 0.58 | Cu | 0.1 | 0.1 | 0.3 | 7.7 |
Sample Name (°C) | HNO3 | HCl | ||||
---|---|---|---|---|---|---|
Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | |
30 | 10.10 | 8.78 | 96.71 | 10.09 | 8.86 | 97.68 |
40 | 10.10 | 8.88 | 97.84 | 10.02 | 8.79 | 97.66 |
50 | 10.13 | 8.88 | 97.5 | 10.12 | 8.81 | 96.92 |
60 | 10.10 | 8.91 | 98.3 | 10.21 | 8.98 | 97.93 |
Element Analyzed | HNO3 | HCl | Total | |||
---|---|---|---|---|---|---|
Time (min) | Si | Al | Si | Al | ||
30 | 99.10 | 0.9 | 99.68 | 0.32 | 100 | |
60 | 100 | - | 99.85 | 0.15 | ||
90 | 99.84 | 0.16 | 99.92 | 0.08 | ||
120 | 99.83 | 0.17 | 99.85 | 0.15 |
Element Analyzed and Content (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|
HNO3 | HCl | ||||||||
Element | 30 min | 60 min | 90 min | 120 min | Element | 30 min | 60 min | 90 min | 120 min |
Al | 1400 | 1500 | 1500 | 1300 | Al | 900 | 1300 | 1200 | 1100 |
Ag | 412 | 240 | 430 | 330 | Ag | 0.1 | 4.8 | <0.1 | <0.1 |
Si | 64 | 89 | 54 | 43 | Si | 23 | 37 | 35 | 35 |
Fe | 5.1 | 4.2 | 3.8 | 3.1 | Fe | 4.0 | 4.1 | 3.3 | 3.4 |
Zn | 12 | 15 | 12 | 4.1 | Zn | 6.8 | 8.0 | 8.9 | 8.4 |
Pb | 44 | 27 | 27 | 53 | Pb | 1.6 | 6.8 | 1.6 | 12 |
Bi | 27 | 51 | 64 | 64 | Bi | 0.3 | 1.2 | 0.4 | 11 |
Ni | 0.4 | 8.1 | 0.6 | 3.4 | Ni | 0.3 | 0.5 | 0.5 | 0.5 |
In | 0.8 | 1.0 | 0.6 | 0.7 | In | 0.4 | 0.8 | 0.7 | 0.6 |
Sn | 1.6 | 6.2 | 1.2 | 3.4 | Sn | 1.0 | 9.7 | 0.7 | 3.2 |
Mg | 0.2 | 0.22 | 0.1 | 0.2 | Mg | 0.1 | 0.1 | 0.1 | 0.1 |
Mn | <0.1 | 0.37 | 0.1 | 0.1 | Mn | <0.1 | <0.1 | <0.1 | <0.1 |
Co | <0.1 | 0.52 | <0.1 | 0.2 | Co | <0.1 | <0.1 | 0.1 | 0.2 |
Cu | 35 | 0.98 | 1.6 | 1.0 | Cu | 7.1 | 7.7 | <0.1 | 2.9 |
Sample Name (min) | HNO3 | HCl | ||||
---|---|---|---|---|---|---|
Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | |
30 | 10.43 | 9.15 | 96.9 | 10.09 | 8.95 | 98.45 |
60 | 10.10 | 8.91 | 98.3 | 10.21 | 8.98 | 97.93 |
90 | 10.42 | 9.27 | 98.9 | 10.14 | 8.91 | 97.80 |
120 | 10.33 | 9.11 | 98.17 | 10.25 | 9.14 | 99.24 |
Element Analyzed | HNO3 | HCl | Total | |||
---|---|---|---|---|---|---|
Ultrasonic Intensity (W) | Si | Al | Si | Al | ||
100 | 99.91 | 0.09 | 99.97 | 0.03 | 100 | |
150 | 99.84 | 0.16 | 99.85 | 0.15 | ||
200 | 99.92 | 0.08 | 100 | - |
Element Analyzed and Content (mg/L) | |||||||
---|---|---|---|---|---|---|---|
HNO3 | HCl | ||||||
Element | 100 W | 150 W | 200 W | Element | 100 W | 150 W | 200 W |
Al | 1000 | 1400 | 1500 | Al | 1100 | 1100 | 1000 |
Ag | 220 | 280 | 430 | Ag | 4.1 | <0.1 | 7.4 |
Si | 72 | 54 | 46 | Si | 40 | 35 | 35 |
Fe | 5.7 | 3.8 | 3.7 | Fe | 4.8 | 3.4 | 11 |
Zn | 16 | 12 | 9.3 | Zn | 8.9 | 8.4 | 10 |
Pb | 17 | 27 | 9.7 | Pb | 30 | 12 | 20 |
Bi | 62 | 64 | 37 | Bi | 27 | 11 | 26 |
Ni | 0.4 | 0.6 | 0.4 | Ni | 0.8 | 0.5 | 3.3 |
In | 0.9 | 0.6 | 0.7 | In | 1.0 | 0.6 | 1.1 |
Sn | 1.0 | 1.2 | 0.7 | Sn | 34 | 3.2 | 3.9 |
Mg | 0.1 | 0.1 | 0.1 | Mg | 0.4 | 0.1 | 1.3 |
Mn | <0.1 | 0.1 | 0.1 | Mn | 0.1 | <0.1 | 0.2 |
Co | <0.1 | <0.1 | <0.1 | Co | 0.1 | 0.2 | 0.5 |
Cu | 2.1 | 1.6 | 0.4 | Cu | 0.7 | 2.9 | 2.8 |
Sample Name (W) | HNO3 | HCl | ||||
---|---|---|---|---|---|---|
Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | Before Experiment (g) | After Experiment (g) | Recovery Rate (%) | |
100 | 10.28 | 8.70 | 94.3 | 10.15 | 8.97 | 98.43 |
150 | 10.42 | 9.27 | 98.9 | 10.25 | 9.14 | 99.24 |
200 | 10.01 | 8.73 | 97.1 | 10.16 | 9.00 | 98.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-P.; Lee, D.-H.; Go, M.-S.; So, E.-K. A Study on the Wet Process Conditions That Affect the Selective Recovery of Si from Photovoltaic Cells by Using the Cavitation Effect. Metals 2022, 12, 222. https://doi.org/10.3390/met12020222
Wang J-P, Lee D-H, Go M-S, So E-K. A Study on the Wet Process Conditions That Affect the Selective Recovery of Si from Photovoltaic Cells by Using the Cavitation Effect. Metals. 2022; 12(2):222. https://doi.org/10.3390/met12020222
Chicago/Turabian StyleWang, Jei-Pil, Dong-Hun Lee, Min-Seok Go, and Eun-Kyu So. 2022. "A Study on the Wet Process Conditions That Affect the Selective Recovery of Si from Photovoltaic Cells by Using the Cavitation Effect" Metals 12, no. 2: 222. https://doi.org/10.3390/met12020222
APA StyleWang, J. -P., Lee, D. -H., Go, M. -S., & So, E. -K. (2022). A Study on the Wet Process Conditions That Affect the Selective Recovery of Si from Photovoltaic Cells by Using the Cavitation Effect. Metals, 12(2), 222. https://doi.org/10.3390/met12020222