A Tribological Study on the Effect of Reinforcing SiC and Al2O3 in Al7075: Applications for Spur Gears
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Methods
3.1. Hardness Test
3.2. Tensile Test
3.3. Wear Test
3.4. Coefficient of Friction
4. Results and Discussion
4.1. Hardness Test
4.2. Tensile Strength Test
4.3. Wear Test
Effect of Reinforcements
4.4. Coefficient of Friction
5. Microcharacterisation Study
5.1. EDAX Analysis
5.2. Scanning Electron Microscope Analysis
5.2.1. Al7075 + 6% SiC + 5% Al2O3
5.2.2. Al 7075 Unreinforced
5.2.3. Al7075 + 3% SiC + 5% Al2O3
5.2.4. Al7075 + 9% SiC + 5% Al2O3
6. Simulation Study
Static Structural Analysis
7. Conclusions
- (1)
- The Vickers hardness number (VHN) obtained for Al 7075 with 9% SiC and 5% Al2O3 was 98, which increased about 47% compared to unreinforced aluminium 7075.
- (2)
- The ultimate tensile strength (UTS) obtained for Al 7075 with 6% SiC and 5% Al2O3 was 366 MPa, which is 67.79% higher in comparison to unreinforced aluminium 7075. Another finding in tensile study was that for Al 7075 with 9% SiC and 5% Al2O3, the ultimate tensile strength decreased to 228.6 MPa compared to its earlier counterpart. These results of tensile test shows that hybrid composites are more advantageous compared to conventional composites.
- (3)
- The wear rate decreased with increase in reinforcements. The lowest wear rate was observed for Al 7075 with 9% SiC and 5% Al2O3. However, the findings during the wear test were with the increase in load, the sliding distance and sliding radius wear rate increased for all hybrid reinforced Al 7075 composites and unreinforced Al 7075. The coefficient of friction decreased with the increase in load for all specimens.
- (4)
- Simulation study reveals the behaviour of mechanical properties such as total deformation and von Mises stress for a given condition of Al 7075 + SiC + Alumina resulted in 30% lower deformation and unaltered stress values (as stress is not a material property) in comparison to pristine Al 7075 alloy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, P.; Singh, S.; Pal, K. Enhancement of Mechanical and Tribological Properties of SiC- and CB-reinforced Aluminium 7075 Hybrid Composites Through Friction Stir Processing. Adv. Compos. Mater. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Suryakumari, T.; Ranganathan, S. Preparation and Study the Wear Behaviour of Aluminium Hybrid Composite. Mater. Today Proc. 2018, 5, 8104–8111. [Google Scholar] [CrossRef]
- Rajesh, A.M.; Kaleelmulla, M. Experimental Investigations on Mechanical Behavior of Aluminium Metal Matrix Composites. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012121. [Google Scholar] [CrossRef] [Green Version]
- Moona, G.; Walia, R.S.; Rastogi, V.; Sharma, R. Parametric Optimization of Fatigue Behaviour of Hybrid Aluminium Metal Matrix Composites. Mater. Today Proc. 2019, 21, 1441–1445. [Google Scholar] [CrossRef]
- Dong, X.; Chen, F.; Chen, S.; Liu, Y.; Huang, Z.; Chenb, H.; Feng, S.; Zhao, L.; Wu, Z.; Zhang, X. Microstructure and Microhardness of Hot Extruded 7075 Aluminum Alloy Micro-gear. J. Mater. Proc. Technol. 2015, 219, 199–208. [Google Scholar] [CrossRef]
- Raturi, A.; Mer, K.K.S.; Pant, P.K. Synthesis and Characterization of Mechanical, Tribological and Micro Structural Behaviour of Al 7075 Matrix Reinforced with Nano Al2O3 Particles. Mater. Today Proc. 2017, 4, 2645–2658. [Google Scholar] [CrossRef]
- Poovazhagan, L.; Kalaichelvan, K.; Rajadurai, A.; Senthilvelan, V. Characterization of Hybrid Silicon Carbide and Boron Carbide Nanoparticles-Reinforced Aluminum Alloy Composites. Procedia Eng. 2013, 64, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Shi, Y. Contact Stress Analysis for a Pair of Aluminum Matrix Composite Helical Gear and Steel Worm. J. Reinf. Plast. Compos. 2015, 34, 213–221. [Google Scholar] [CrossRef]
- Canesan, N.; Vijayarangan, S. A Static Analysis of Metal Matrix Composite Spur Gear by Three-Dimensional Finite Element Method. Comput. Struct. 1993, 46, 1021–1027. [Google Scholar]
- Nallusamy, S.; Narayanan, M.R.; Saravanan, S. Investigation on Structural Steel and Silicon Carbide Aluminum Metal Matrix Composite Spur Gears using PTC Creo and ANSYS 16.0. Mater. Des. Appl. 2018, 937, 33–41. [Google Scholar]
- Saleem, M.; Ashok Raj, J.; Kumar, G.S.; Akhila, R. Design and Analysis of Aluminium Matrix Composite Spur Gear. Adv. Mater. Processing Technol. 2020, 1–9. [Google Scholar] [CrossRef]
- Pawar, P.B.; Utpat, A.A. Analysis of Composite Material Spur Gear Under Static Loading Condition. Mater. Today Proc. 2015, 2, 2968–2974. [Google Scholar] [CrossRef]
- Pawar, P.B.; Utpat, A.A. Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear. Procedia Mater. Sci. 2014, 6, 1150–1156. [Google Scholar] [CrossRef] [Green Version]
- Al-Salihi, H.A.; Mahmood, A.A.; Alalkawi, H.J. Mechanical and Wear Behavior of AA7075 Aluminum Matrix Composites Reinforced by Al2O3 Nanoparticles. Nanocomposites 2019, 5, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Adediran, A.A.; Alaneme, K.K.; Oladele, I.O.; Akinlabi, E.T. Wear Characteristics of Aluminium Matrix Composites Reinforced with Si-based Refractory Compounds Derived from Rice Husks. Cogent Eng. 2020, 7, 1826634. [Google Scholar] [CrossRef]
- Xavier, L.F.; Suresh, P. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial waste. Sci. World J. 2016, 2016, 6538345. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.G.; Jiang, D.M.; Meng, Q.C. Evolution of Eutectic Structures in Al-Zn-Mg-Cu Alloys During Heat Treatment. Trans. Nonferrous Met. Soc. China 2006, 16, 577–581. [Google Scholar] [CrossRef]
- Lee, Y.L.; Pan, J.; Hathaway, R. Fatigue Testing and Analysis: Theory and Practice. Mech. Eng. 2004, 126, 59. [Google Scholar]
- Flores-Johnson, E.A.; Shen, L.M. Effects of Heat Treatment and Strain Rate on the Microstructure and Mechanical Properties of 6061 Al Alloy. Int. J. Damage Mech. 2015, 25, 26–41. [Google Scholar]
- Patil, V.S.; Banoo, F.; Kurahatti, R.V.; Patil, A.Y.; Raju, G.U.; Soudagar, M.E.M.; Kumar, R.; Saleel, C.A. A Study of Sound Pressure Level (SPL) Inside the Truck Cabin for New Acoustic Materials: An Experimental and FEA approach. Alex. Eng. J. 2021, 60, 5949–5976. [Google Scholar] [CrossRef]
- Patil, A.Y.; Naik, A.; Vakani, B.; Kundu, R.; Banapurmath, N.R.; Roseline, M.; Krishnapillai, L.; Mathad, S.N. Next Generation Material for Dental Teeth and Denture Base Material: Limpet Teeth (LT) as an Alternative Reinforcement in Polymethylmethacrylate (PMMA). J. Nano-Electron. Physics. 2021, 13, 02033. [Google Scholar] [CrossRef]
- Patil, A.Y.; Banapurmath, N.R.; Sumukh, E.P.; Chitwadagi, M.V.; YunusKhan, T.M.; Badruddin, I.A.; Kamangar, S. Multi-Scale Study on Mechanical Property and Strength of New Green Sand (Poly Lactic Acid) as Replacement of Fine Aggregate in Concrete Mix. Symmetry 2020, 12, 29. [Google Scholar] [CrossRef]
- Dhaduti, S.C.; Sarganachari, S.G.; Patil, A.Y.; Yunus Khan, Y.T. Prediction of Injection Molding Parameters for Symmetric Spur Gear. J. Mol. Model. 2020, 26, 302. [Google Scholar] [CrossRef] [PubMed]
- Yavagal, P.S.; Kulkarni, P.A.; Patil, N.M.; Salimath, N.S.; Patil, A.Y.; Savadi, R.S.; Kotturshettar, B.B. Cleaner Production of Edible Straw as Replacement for Thermoset Plastic. Mater. Today Proc. 2020, 32, 492–497. [Google Scholar] [CrossRef]
- Totla, S.K.; Pillai, A.M.; Chetan, M.; Warad, C.; Vinodkumar, S.K.; Patil, A.Y.; Kotturshettar, B.B. Analysis of Helmet with Coconut Shell as the Outer Layer. Mater. Today Proc. 2020, 32, 365–373. [Google Scholar] [CrossRef]
- Poornakanta, H.; Kadam, K.; Pawar, D.; Medar, K.; Makandar, I.; Patil, A.Y.; Kotturshettar, B.B. Optimization of Sluice Gate Under Fatigue Life Subjected for Forced Vibration by Fluid Flow. J. Mech. Eng. 2018, 68, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Patil, A.Y.; Banapurmath, N.R.; Shivangi, U.S. Feasibility study of Epoxy coated Poly Lactic Acid as a sustainable replacement for River sand. J. Clean. Prod. 2020, 267, 121750. [Google Scholar] [CrossRef]
- Kaka, M.; Lavernia, E.J.; Schoenung, J.M. Particulate Reinforced Aluminum Alloy Matrix Composites—A Review on the Effect of Microconstituents. Rev. Adv. Mater. Sci. 2017, 48, 91–104. [Google Scholar]
- Bonatti, R.S.; Siqueira, R.R.; Padilha, G.S.; Bortolozo, A.D.; Osorio, W.R. Distinct Alp/Sip Composites Affecting its Densification and Mechanical Behavior. J. Alloys Compd. 2018, 757, 434–447. [Google Scholar] [CrossRef]
- Hafizpour, H.R.; Simchi, A. Investigation on Compressibility of Al–SiC Composite Powders. Powder Metall. 2018, 51, 217–222. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Mohamed, F.A.; Lavernia, E.J. Particulate Reinforced Metal Matrix Composites—A Review. J. Mater. Sci. 1991, 26, 1137–1156. [Google Scholar] [CrossRef]
- Satizabal, L.M.; Caurin, H.F.; Meyer, Y.A.; Padilha, G.S.; Bortolozo, A.D.; Osorio, W.R. Distinct Heat Treatments and Powder Size Ratios Affecting Mechanical Responses of Al/Si/Cu Composites. J. Compos. Mater. 2021, 55, 3589–3605. [Google Scholar] [CrossRef]
- Hallad, S.A.; Banapurmath, N.R.; Patil, V.; Ajarekar, V.S.; Patil, A.Y.; Godi, M.T.; Shettar, A.S. Graphene Reinforced Natural Fiber Nanocomposites for Structural Applications. IOP Conf. Ser. Mater. Sci. Eng. 2018, 376, 012072. [Google Scholar] [CrossRef]
- Patil, A.Y.; Hrishikesh, N.U.; Basavaraj, G.D.; Kodancha, K.G.; Chalageri, G.R. Influence of Bio-degradable Natural Fiber Embedded in Polymer Matrix, Elsevier. Mater. Today Proc. 2018, 5, 7532–7540. [Google Scholar] [CrossRef]
Material | VHN | Error Range |
---|---|---|
Aluminium 7075 alloy | 51 | 1.5 |
Al 7075 + 3% SiC + 5% Al2O3 | 66 | 0.6 |
Al 7075 + 6% SiC + 5% Al2O3 | 73 | 2.1 |
Al 7075 + 9% SiC + 5% Al2O3 | 98 | 1 |
Material | Ultimate Tensile Strength (MPa) | Error Range |
---|---|---|
Aluminium 7075 alloy | 118 | 25.2 |
Al7075 + 3% SiC + 5% Al2O3 | 166 | 43.8 |
Al7075 + 6% SiC + 5% Al2O3 | 366.45 | 6.5 |
Al7075 + 9% SiC + 5% Al2O3 | 228.6 | 3.5 |
Material | Load in N | |||||
---|---|---|---|---|---|---|
10 | Error Range | 15 | Error Range | 20 | Error Range | |
Al 7075 Unreinforced | 0.612401 | 0.000002 | 0.562843 | 0.0000005 | 0.501195 | 0.000001 |
Al 7075 + 3% SiC + 5% Al2O3 | 0.596247 | 0.000001 | 0.557303 | 0.000001 | 0.500626 | 0.000001 |
Al 7075 + 6% SiC + 5% Al2O3 | 0.585846 | 0.000002 | 0.538051 | 0.000002 | 0.488562 | 0.000003 |
Al 7075 + 9% SiC + 5% Al2O3 | 0.564168 | 0.000001 | 0.532732 | 0.000003 | 0.487192 | 0.000001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budapanahalli, S.H.; Mallur, S.B.; Patil, A.Y.; Alosaimi, A.M.; Khan, A.; Hussein, M.A.; Asiri, A.M. A Tribological Study on the Effect of Reinforcing SiC and Al2O3 in Al7075: Applications for Spur Gears. Metals 2022, 12, 1028. https://doi.org/10.3390/met12061028
Budapanahalli SH, Mallur SB, Patil AY, Alosaimi AM, Khan A, Hussein MA, Asiri AM. A Tribological Study on the Effect of Reinforcing SiC and Al2O3 in Al7075: Applications for Spur Gears. Metals. 2022; 12(6):1028. https://doi.org/10.3390/met12061028
Chicago/Turabian StyleBudapanahalli, Shridhar H., Shekhar B. Mallur, Arun Y. Patil, Abeer Mohamed Alosaimi, Anish Khan, Mahmoud Ali Hussein, and Abdullah M. Asiri. 2022. "A Tribological Study on the Effect of Reinforcing SiC and Al2O3 in Al7075: Applications for Spur Gears" Metals 12, no. 6: 1028. https://doi.org/10.3390/met12061028
APA StyleBudapanahalli, S. H., Mallur, S. B., Patil, A. Y., Alosaimi, A. M., Khan, A., Hussein, M. A., & Asiri, A. M. (2022). A Tribological Study on the Effect of Reinforcing SiC and Al2O3 in Al7075: Applications for Spur Gears. Metals, 12(6), 1028. https://doi.org/10.3390/met12061028