Improved Tribocorrosion Behavior Obtained by In-Situ Precipitation of Ti2C in Ti-Nb Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Novel In-Situ TMCs
2.2. Characterization
2.3. Corrosion Tests
2.4. Tibocorrosion Tests
3. Results and Discussions
3.1. Microstructure and Physical Properties
3.2. Corrosion Behavior
3.3. Tribocorrosion Behavior
3.4. Limitations of the Present Study
4. Conclusions
- In-situ composites can be produced by Ti + NbC starting materials. When applying hot pressing at 1100 °C for 120 min, the Ti powder reacted in the solid-state with NbC powder, resulting in the dissolution of Nb into the metal matrix and precipitating Ti2C as the hard-ceramic reinforcement. The higher amount of NbC applied led to a higher amount of reinforcement and a higher amount of the Ti-Nb β phase in the matrix. For 20 vol.% of NbC, the final composite had a predominant β matrix reinforced with 42% of Ti2C.
- The corrosion resistance of the composites was mainly affected by the different quality of the oxide film. With the higher addition of NbC, the protection given by the oxide film was reduced. On the other hand, as in-situ processing allows the production of composites with low porosity and well-established matrix/reinforcement interfaces, no effect was detected by EIS and potentiodynamic polarization tests of localized corrosion or galvanic coupling.
- Improved tribocorrosion behaviors were registered for the composites. The best tribocorrosion behavior was obtained with α-β matrix and high reinforced composite (Ti + 12.5NbC), which exhibited the lowest corrosion tendency and kinetics under sliding among all studied conditions together with a polished wear track. Furthermore, the low corrosion tendency under sliding achieved with the predominant β matrix composite (Ti + 20NbC) demonstrates that wear is not entirely hardness dependent.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Niinomi, M. Design and development of metallic biomaterials with biological and mechanical biocompatibility. J. Biomed. Mater. Res. Part A 2019, 107, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Lütjering, G.; Williams, J.C. Fundamental Aspects. In Titanium, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 15–52. [Google Scholar]
- Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-Y.; Cui, Y.-W.; Zhang, L.-C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Bahl, S.; Suwas, S.; Chatterjee, K. Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials. Int. Mater. Rev. 2020, 66, 114–139. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.-H. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater. Sci. Eng. C 2020, 121, 111661. [Google Scholar] [CrossRef]
- Yamako, G.; Janssen, D.; Hanada, S.; Anijs, T.; Ochiai, K.; Totoribe, K.; Chosa, E.; Verdonschot, N. Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young’s modulus gradation. J. Biomech. 2017, 63, 135–143. [Google Scholar] [CrossRef]
- Kunčická, L.; Kocich, R.; Lowe, T.C. Advances in metals and alloys for joint replacement. Prog. Mater. Sci. 2017, 88, 232–280. [Google Scholar] [CrossRef]
- Gilbert, J.L.; Zhu, D. A metallic biomaterial tribocorrosion model linking fretting mechanics, currents, and potentials: Model development and experimental comparison. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 3174–3189. [Google Scholar] [CrossRef]
- Hoeppner, D.; Chandrasekaran, V. Fretting in orthopaedic implants: A review. Wear 1994, 173, 189–197. [Google Scholar] [CrossRef]
- Bijukumar, D.R.; Segu, A.; de Souza, J.C.M.; Li, X.; Barba, M.; Mercuri, L.G.; Jacobs, J.J.; Mathew, M.T. Systemic and local toxicity of metal debris released from hip prostheses: A review of experimental approaches. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Revell, P.A. The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J. R. Soc. Interface 2008, 5, 1263–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çaha, I.; Alves, A.C.; Rocha, L.A.; Toptan, F. A Review on Bio-functionalization of β-Ti Alloys. J. Bio- Tribo-Corros. 2020, 6, 135. [Google Scholar] [CrossRef]
- Wood, R. Tribo-corrosion of coatings: A review. J. Phys. D Appl. Phys. 2007, 40, 5502–5521. [Google Scholar] [CrossRef]
- Attar, H.; Ehtemam-Haghighi, S.; Soro, N.; Kent, D.; Dargusch, M.S. Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development. J. Alloys Compd. 2020, 827, 154263. [Google Scholar] [CrossRef]
- Hayat, M.D.; Singh, H.; He, Z.; Cao, P. Titanium metal matrix composites: An overview. Compos. Part A Appl. Sci. Manuf. 2019, 121, 418–438. [Google Scholar] [CrossRef]
- Jiao, Y.; Huang, L.; Geng, L. Progress on discontinuously reinforced titanium matrix composites. J. Alloys Compd. 2018, 767, 1196–1215. [Google Scholar] [CrossRef]
- Çaha, I.; Alves, A.C.; Chirico, C.; Pinto, A.M.; Tsipas, S.; Gordo, E.; Toptan, F. Improved tribocorrosion behavior on bio-functionalized β-type titanium alloy by the pillar effect given by TiN reinforcements. Surf. Coat. Technol. 2021, 415, 127122. [Google Scholar] [CrossRef]
- Feest, E. Interfacial phenomena in metal-matrix composites. Composites 1994, 25, 75–86. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef]
- Hihara, L.H.; Latanision, R.M. Corrosion of metal matrix composites. Int. Mater. Rev. 1994, 39, 245–264. [Google Scholar] [CrossRef]
- Bobić, B.; Mitrovic, S.; Babic, M.; Bobić, I. Corrosion of aluminium and zinc-aluminium alloys based metal-matrix composites. Tribol. Ind. 2009, 31, 44–53. [Google Scholar]
- Toptan, F.; Rego, A.; Alves, A.C.; Guedes, A. Corrosion and tribocorrosion behavior of Ti–B4C composite intended for orthopaedic implants. J. Mech. Behav. Biomed. Mater. 2016, 61, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Dikici, B.; Bedir, F.; Gavgali, M. The effect of high TiC particle content on the tensile cracking and corrosion behavior of Al–5Cu matrix composites. J. Compos. Mater. 2019, 54, 1681–1690. [Google Scholar] [CrossRef]
- Sannino, A.; Rack, H. Dry sliding wear of discontinuously reinforced aluminum composites: Review and discussion. Wear 1995, 189, 1–19. [Google Scholar] [CrossRef]
- Aikin, R.M. The mechanical properties of in-situ composites. JOM 1997, 49, 35–39. [Google Scholar] [CrossRef]
- Tjong, S.C. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep. 2000, 29, 49–113. [Google Scholar] [CrossRef]
- Silva, J.; Alves, A.; Pinto, A.; Toptan, F. Corrosion and tribocorrosion behavior of Ti–TiB–TiNx in-situ hybrid composite synthesized by reactive hot pressing. J. Mech. Behav. Biomed. Mater. 2017, 74, 195–203. [Google Scholar] [CrossRef]
- Trung, T.B.; Zuhailawati, H.; Ahmad, Z.A.; Ishihara, K.N. Grain growth, phase evolution and properties of NbC carbide-doped WC-10AISI304 hardmetals produced by pseudo hot isostatic pressing. J. Alloys Compd. 2012, 552, 20–25. [Google Scholar] [CrossRef]
- Zhou, W.; Xiong, J.; Wan, W.; Guo, Z.; Lin, Z.; Huang, S.; Tang, L.; Zhong, H. The effect of NbC on mechanical properties and fracture behavior of WC–10Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2015, 50, 72–78. [Google Scholar] [CrossRef]
- Huang, S.; Nie, H.; Guo, X.; Vleugels, J.; Huang, J.; Mohrbacher, H.; Rajendhran, N.; Sukumaran, J.; De Baets, P.; Cannizza, E.; et al. Microstructural investigation and machining performance of NbC-Ti(C0.5N0.5) matrix cermets. Int. J. Refract. Met. Hard Mater. 2019, 84, 105038. [Google Scholar] [CrossRef]
- Chang, S.-H.; Hung, L.-Y.; Yang, T.-H. The effects of adding micro-scaled niobium carbide on the microstructure, mechanical strength and polarization resistance of the Ti–8Mo–4Co-xNbC composites. Mater. Chem. Phys. 2019, 235, 121743. [Google Scholar] [CrossRef]
- Çaha, I.; Alves, A.C.; Kuroda, P.; Grandini, C.R.; Pinto, A.; Rocha, L.; Toptan, F. Degradation behavior of Ti-Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina. Corros. Sci. 2020, 167, 108488. [Google Scholar] [CrossRef]
- Thoemmes, A.; Bataev, I.A.; Belousova, N.S.; Lazurenko, D.V. Microstructure and mechanical properties of binary Ti-Nb alloys for application in medicine. In Proceedings of the 2016 11th International Forum on Strategic Technology (IFOST), Novosibirsk, Russia, 1–3 June 2016; pp. 26–29. [Google Scholar] [CrossRef]
- Lee, C.M.; Ju, C.P.; Lin, J.H.C. Structure-property relationship of cast Ti-Nb alloys. J. Oral Rehabil. 2002, 29, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, M.; Sahidin Salehudin, S.; Sulaiman, M.; Shah, N.H.N.E.A.; Ismail, M.H. Microstructures and Mechanical Properties of Ti-Nb Alloy at Different Composition of Nb Produced via Powder Metallurgy Route. Mater. Sci. Forum 2016, 863, 14–18. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, Y.; Zheng, Y.; Li, Y.; Zhang, R.; Lv, Y.; Zhao, Q.; Wei, S. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus. Mater. Sci. Eng. C 2015, 59, 565–576. [Google Scholar] [CrossRef]
- Geetha, M.; Mudali, U.K.; Gogia, A.; Asokamani, R.; Raj, B. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros. Sci. 2004, 46, 877–892. [Google Scholar] [CrossRef]
- Qin, P.; Chen, L.; Zhao, C.; Liu, Y.; Cao, C.; Sun, H.; Zhang, L. Corrosion behavior and mechanism of selective laser melted Ti35Nb alloy produced using pre-alloyed and mixed powder in Hank’s solution. Corros. Sci. 2021, 189, 109609. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy, 2nd ed.; Jonh Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bharat, N.; Bose, P. An overview on the effect of reinforcement and wear behaviour of metal matrix composites. Mater. Today Proc. 2021, 46, 707–713. [Google Scholar] [CrossRef]
- Mischler, S. Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation. Tribol. Int. 2008, 41, 573–583. [Google Scholar] [CrossRef]
- Çaha, I.; Alves, A.; Chirico, C.; Pinto, A.; Tsipas, S.; Gordo, E.; Toptan, F. Corrosion and Tribocorrosion Behavior of Ti-40Nb and Ti-25Nb-5Fe Alloys Processed by Powder Metallurgy. Met. Mater. Trans. A 2020, 51, 3256–3267. [Google Scholar] [CrossRef]
Condition | Ti α | Ti β | Ti2C |
---|---|---|---|
Unreinforced Ti | 100% | - | - |
Ti + 5NbC | 84% | 8% | 8% |
Ti + 12.5NbC | 39% | 29% | 32% |
Ti + 20NbC | 10% | 48% | 42% |
Condition | E(i=0) (VAg/AgCl) | ipass (µA cm−2) |
---|---|---|
Unreinforced Ti | ||
Ti + 5NbC | ||
Ti + 12.5NbC | ||
Ti + 20NbC |
Condition | (μFcm−2) | (10−4) | |||
---|---|---|---|---|---|
Unreinforced Ti | |||||
Ti + 5NbC | |||||
Ti + 12.5NbC | |||||
Ti + 20NbC |
Condition | COF | Eduring sliding (VAg/AgCl) |
---|---|---|
Unreinforced Ti | ||
Ti + 5NbC | ||
Ti + 12.5NbC | ||
Ti + 20NbC |
Condition | COF | QA (mC) |
---|---|---|
Unreinforced Ti | ||
Ti + 5NbC | ||
Ti + 12.5NbC | ||
Ti + 20NbC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, V.R.M.; Çaha, I.; Alves, A.C.; Toptan, F.; Rocha, L.A. Improved Tribocorrosion Behavior Obtained by In-Situ Precipitation of Ti2C in Ti-Nb Alloy. Metals 2022, 12, 908. https://doi.org/10.3390/met12060908
Gonçalves VRM, Çaha I, Alves AC, Toptan F, Rocha LA. Improved Tribocorrosion Behavior Obtained by In-Situ Precipitation of Ti2C in Ti-Nb Alloy. Metals. 2022; 12(6):908. https://doi.org/10.3390/met12060908
Chicago/Turabian StyleGonçalves, Vinícius Richieri Manso, Ihsan Çaha, Alexandra Cruz Alves, Fatih Toptan, and Luís Augusto Rocha. 2022. "Improved Tribocorrosion Behavior Obtained by In-Situ Precipitation of Ti2C in Ti-Nb Alloy" Metals 12, no. 6: 908. https://doi.org/10.3390/met12060908
APA StyleGonçalves, V. R. M., Çaha, I., Alves, A. C., Toptan, F., & Rocha, L. A. (2022). Improved Tribocorrosion Behavior Obtained by In-Situ Precipitation of Ti2C in Ti-Nb Alloy. Metals, 12(6), 908. https://doi.org/10.3390/met12060908