Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties
Abstract
:1. Introduction
2. Ti6Al4V Alloy
3. Properties and Performance of Ti6Al4V Manufactured by LPBF
3.1. Tensile Properties
3.2. Fatigue Behavior
- (1)
- The densification level of the produced parts, which is defined by the processing parameters used in the fabrication. When defects such as pores and lack of fusion are present in higher amounts (porosity higher than 5%), the fatigue performance tends to be poor [4,69]. In this scenario, cracks can initiate either in the bulk or at the surface due to these defects [84].
- (2)
- The microstructural features are another important aspect because by performing thermal and thermo-mechanical post-treatments, it is possible to substantially improve the fatigue performance of this alloy by altering its microstructure. Hot Isostatic Pressing (a thermo-mechanical treatment) proves to be the most effective post-treatment to increase the fatigue performance of LPBF Ti6Al4V [4,21,84]
- (3)
- The surface condition has a crucial impact on the fatigue performance of this alloy, and regarding LPBF, the natural surface condition was found to be extremely detrimental, even when performing post-treatments on LPBF as-built parts (see Figure 10). In this sense, machining LPBF as-built parts seem to be an effective way to enhance the fatigue performance of Ti6Al4V parts manufactured by this technology.
3.3. Hardness and Wear Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- AM Market Forecast. Available online: https://www.metal-am.com/am-market-forecast-to-reach-51-billion-by-2030/ (accessed on 7 June 2022).
- Bartolomeu, F.; Buciumeanu, M.; Pinto, E.; Alves, N.; Silva, F.S.; Carvalho, O.; Miranda, G. Ti6Al4V biomedical alloy wear behavior—A comparison between selective laser melting, hot pressing and conventional casting. Trans. Nonferrous Met. Soc. China 2016, 27, 829–838. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Faria, S.; Carvalho, O.; Pinto, E.; Alves, N.; Silva, F.; Miranda, G. Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting. Mater. Sci. Eng. A 2016, 663, 181–192. [Google Scholar] [CrossRef]
- Chastand, V.; Tezenas, A.; Cadoret, Y.; Quaegebeur, P.; Maia, W.; Charkaluk, E. Fatigue characterization of Titanium Ti-6Al-4V samples produced by Additive Manufacturing. Procedia Struct. Integr. 2016, 2, 3168–3176. [Google Scholar] [CrossRef] [Green Version]
- Khorasani, M.; Ghasemi, A.; Rolfe, B.; Gibson, I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2022, 28, 87–100. [Google Scholar] [CrossRef]
- Bordin, A.; Sartori, S.; Bruschi, S.; Ghiotti, A. Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing. J. Clean. Prod. 2016, 142, 4142–4151. [Google Scholar] [CrossRef]
- Nicoletto, G. Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion. Int. J. Fatigue 2016, 94, 255–262. [Google Scholar] [CrossRef]
- Linares, J.-M.; Chaves-Jacob, J.; Lopez, Q.; Sprauel, J.-M. Fatigue life optimization for 17-4Ph steel produced by selective laser melting. Rapid Prototyp. J. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Montalbano, T.; Briggs, B.N.; Waterman, J.L.; Nimer, S.; Peitsch, C.; Sopcisak, J.; Trigg, D.; Storck, S. Uncovering the coupled impact of defect morphology and microstructure on the tensile behavior of Ti-6Al-4V fabricated via laser powder bed fusion. J. Mater. Process. Technol. 2021, 294, 117113. [Google Scholar] [CrossRef]
- Costa, M.; Lima, R.; Melo-Fonseca, F.; Bartolomeu, F.; Alves, N.; Miranda, A.; Gasik, M.; Silva, F.; Silva, N. Development of β-TCP-Ti6Al4V structures: Driving cellular response by modulating physical and chemical properties. Mater. Sci. Eng. C 2019, 98, 705–716. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Abreu, C.; Moura, C.; Costa, M.; Alves, N.; Silva, F.; Miranda, G. Ti6Al4V-PEEK multi-material structures—Design, fabrication and tribological characterization focused on orthopedic implants. Tribol. Int. 2018, 131, 672–678. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Costa, M.; Alves, N.; Miranda, G.; Silva, F. Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants. Opt. Lasers Eng. 2020, 134, 106208. [Google Scholar] [CrossRef]
- European Comission. Additive Manufacturing in FP7 and Horizon 2020, Report from the EC Workshop on Additive Manufacturing Held on 18 June 2014; 2014; 78p, Available online: https://www.rm-platform.com/linkdoc/EC AM Workshop Report 2014.pdf (accessed on 7 June 2022).
- Bandyopadhyay, A.; Espana, F.; Balla, V.K.; Bose, S.; Ohgami, Y.; Davies, N.M. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 2010, 6, 1640–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C 2016, 59, 690–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo-Fonseca, F.; Lima, R.; Costa, M.; Bartolomeu, F.; Alves, N.; Miranda, A.; Gasik, M.; Silva, F.; Silva, N. 45S5 BAG-Ti6Al4V structures: The influence of the design on some of the physical and chemical interactions that drive cellular response. Mater. Des. 2018, 160, 95–105. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Costa, M.; Alves, N.; Miranda, G.; Silva, F. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting. J. Mech. Behav. Biomed. Mater. 2020, 110, 103891. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Abbara, E.M.; Jiang, D.; Azizi, A.; Poliks, M.D.; Ning, F. High-cycle fatigue properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion additive manufacturing. Rapid Prototyp. J. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Giganto, S.; Martínez-Pellitero, S.; Cuesta, E.; Zapico, P.; Barreiro, J. Proposal of design rules for improving the accuracy of selective laser melting (SLM) manufacturing using benchmarks parts. Rapid Prototyp. J. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- De Formanoir, C.; Michotte, S.; Rigo, O.; Germain, L.; Godet, S. Electron beam melted Ti–6Al–4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater. Sci. Eng. A 2016, 652, 105–119. [Google Scholar] [CrossRef]
- Greitemeier, D.; Palm, F.; Syassen, F.; Melz, T. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 2016, 94, 211–217. [Google Scholar] [CrossRef]
- ISO 17296-2:2015; Additive Manufacturing. General Principles. Part 2: Overview of Process Categories and Feedstock. ISO: Geneva, Switzerland, 2015.
- Fan, Y.; Dong, D.; Li, C.; Sun, Y.; Zhang, Z.; Wu, F.; Yang, L.; Li, Q.; Guan, Y. Research and Experimental Verification on Topology-Optimization Design Method of Space Mirror Based on Additive-Manufacturing Technology. Machines 2021, 9, 354. [Google Scholar] [CrossRef]
- Barbieri, L.; Muzzupappa, M. Performance-Driven Engineering Design Approaches Based on Generative Design and Topology Optimization Tools: A Comparative Study. Appl. Sci. 2022, 12, 2106. [Google Scholar] [CrossRef]
- Holoch, J.; Lenhardt, S.; Revfi, S.; Albers, A. Design of Selective Laser Melting (SLM) Structures: Consideration of Different Material Properties in Multiple Surface Layers Resulting from the Manufacturing in a Topology Optimization. Algorithms 2022, 15, 99. [Google Scholar] [CrossRef]
- Vaithilingam, J.; Goodridge, R.D.; Hague, R.J.; Christie, S.D.; Edmondson, S. The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J. Mater. Process. Technol. 2016, 232, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sterling, A.J.; Torries, B.; Shamsaei, N.; Thompson, S.M.; Seely, D.W. Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V. Mater. Sci. Eng. A 2016, 655, 100–112. [Google Scholar] [CrossRef]
- Murr, L.; Quinones, S.; Gaytan, S.; Lopez, M.; Rodela, A.; Martinez, E.; Hernandez, D.; Medina, F.; Wicker, R. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009, 2, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Bowen, C.R.; Persson, J.; Plummer, A. Mechanical properties of titanium-based Ti–6Al–4V alloys manufactured by powder bed additive manufacture. Mater. Sci. Technol. 2016, 33, 138–148. [Google Scholar] [CrossRef]
- Donachie, M.J., Jr. Titanium: A Technical Guide, 2nd ed.; ASM International: Novelty, OH, USA, 2000. [Google Scholar]
- Kasperovich, G.; Haubrich, J.; Gussone, J.; Requena, G. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 2016, 105, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Raju, R.; Duraiselvam, M.; Petley, V.; Verma, S.; Rajendran, R. Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Mater. Sci. Eng. A 2015, 643, 64–71. [Google Scholar] [CrossRef]
- Shunmugavel, M.; Polishetty, A.; Littlefair, G. Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars. Procedia Technol. 2015, 20, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Yang, S.; Shuai, Z.; Wang, X.; Xu, H. Microstructure Study on Large-Sized Ti–6Al–4V Bar Three-High Skew Rolling Based on Cellular Automaton Model. Metals 2022, 12, 773. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, T.; Chen, J.; Li, X.; Song, H.; Huang, G. Investigation on Strain Hardening and Failure in Notched Tension Specimens of Cold Rolled Ti6Al4V Titanium Alloy. Materials 2022, 15, 3429. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, G.; Men, Y.; Zhang, S.; Zhang, H.; Li, F.; Chen, L. Superplastic Deformation Behaviors and Power Dissipation Rate for Fine-Grained Ti-6Al-4V Titanium Alloy Processed by Direct Rolling. Crystals 2022, 12, 270. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Zhang, M.; Liu, Y.; Sercombe, T.B.; Wang, S.; Hao, Y.; Yang, R.; Murr, L.E. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 2016, 95, 21–31. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Sampaio, M.; Carvalho, O.; Pinto, E.; Alves, N.; Gomes, J.; Silva, F.; Miranda, G. Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2017, 69, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef]
- Edwards, P.; Ramulu, M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Zheng, H.; Tang, K.; Ding, L.; Li, H.; Gong, S. Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy. Mater. Sci. Eng. A 2016, 660, 24–33. [Google Scholar] [CrossRef]
- Huang, H.; Lan, P.-H.; Zhang, Y.-Q.; Li, X.-K.; Zhang, X.; Yuan, C.-F.; Zheng, X.-B.; Guo, Z. Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V implants generated by electron beam melting. Surf. Coat. Technol. 2015, 283, 80–88. [Google Scholar] [CrossRef]
- Furton, E.T.; Wilson-Heid, A.E.; Beese, A.M. Effect of stress triaxiality and penny-shaped pores on tensile properties of laser powder bed fusion Ti-6Al-4V. Addit. Manuf. 2021, 48, 102414. [Google Scholar] [CrossRef]
- Capek, J.; Machova, M.; Fousova, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Jablonská, E.; Lipov, J.; Ruml, T. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater. Sci. Eng. C 2016, 69, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.G.; Rooy, E.L. Aluminum Alloy Castings: Properties, Processes And Applications; ASM International: Materials Park, OH, USA, 2004. [Google Scholar]
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Miranda, G.; Araújo, A.; Bartolomeu, F.; Buciumeanu, M.; Carvalho, O.; Souza, J.; Silva, F.; Henriques, B. Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications. Mater. Des. 2016, 108, 488–493. [Google Scholar] [CrossRef]
- Miranda, G.; Sousa, F.; Costa, M.; Bartolomeu, F.; Silva, F.; Carvalho, O. Surface design using laser technology for Ti6Al4V-hydroxyapatite implants. Opt. Laser Technol. 2019, 109, 488–495. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Costa, M.; Gomes, J.; Alves, N.; Abreu, C.; Silva, F.; Miranda, G. Implant surface design for improved implant stability—A study on Ti6Al4V dense and cellular structures produced by Selective Laser Melting. Tribol. Int. 2018, 129, 272–282. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Dourado, N.; Pereira, F.; Alves, N.; Miranda, G.; Silva, F. Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Mater. Sci. Eng. C 2020, 107, 110342. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Fonseca, J.; Peixinho, N.; Alves, N.; Gasik, M.; Silva, F.; Miranda, G. Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants. J. Mech. Behav. Biomed. Mater. 2019, 99, 104–117. [Google Scholar] [CrossRef]
- Song, B.; Zhao, X.; Li, S.; Han, C.; Wei, Q.; Wen, S.; Liu, J.; Shi, Y. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Front. Mech. Eng. 2015, 10, 111–125. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Buciumeanu, M.; Costa, M.; Alves, N.; Gasik, M.; Silva, F.; Miranda, G. Multi-material Ti6Al4V & PEEK cellular structures produced by Selective Laser Melting and Hot Pressing: A tribocorrosion study targeting orthopedic applications. J. Mech. Behav. Biomed. Mater. 2019, 89, 54–64. [Google Scholar] [CrossRef]
- Kasperovich, G.; Hausmann, J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 2015, 220, 202–214. [Google Scholar] [CrossRef]
- Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.; Maier, H. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 2013, 48, 300–307. [Google Scholar] [CrossRef]
- Wolff, S.; Lee, T.; Faierson, E.; Ehmann, K.; Cao, J. Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V. J. Manuf. Process. 2016, 24, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Vilaro, T.; Colin, C.; Bartout, J.-D. As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Met. Mater. Trans. A 2011, 42, 3190–3199. [Google Scholar] [CrossRef]
- Baufeld, B.; Van der Biest, O.; Gault, R. Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties. Mater. Des. 2010, 31, S106–S111. [Google Scholar] [CrossRef]
- SLM Solutions 125. Available online: https://www.slm-solutions.com/products-and-solutions/machines/slm-125/ (accessed on 6 June 2022).
- SLM Solutions 280. Available online: https://slm280.slm-solutions.com/ (accessed on 6 June 2022).
- EOS M280. Available online: https://cdn2.scrvt.com/eos/public/e1dc925774b24d9f/55e7f647441dc9e8fdaf944d18416bdb/systemdatasheet_M280_n.pdf (accessed on 6 June 2022).
- EOS M290. Available online: https://cdn2.scrvt.com/eos/public/413c861f2843b377/93ef12304097fd70c866344575a4af31/EOS_System-DataSheet-EOS-M290.pdf (accessed on 6 June 2022).
- Concept Laser GmbH M2 Cusing. Available online: https://www.concept-laser.de/fileadmin/user_upload/PDFs/1510_M2_cusing_EN.pdf (accessed on 6 June 2022).
- Khorasani, A.M.; Gibson, I.; Ghaderi, A.; Mohammed, M.I. Investigation on the effect of heat treatment and process parameters on the tensile behaviour of SLM Ti-6Al-4V parts. Int. J. Adv. Manuf. Technol. 2019, 101, 3183–3197. [Google Scholar] [CrossRef]
- Xu, W.; Brandt, M.; Sun, S.; Elambasseril, J.; Liu, Q.; Latham, K.; Xia, K.; Qian, M. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015, 85, 74–84. [Google Scholar] [CrossRef]
- Xu, W.; Sun, S.; Elambasseril, J.; Liu, Q.; Brandt, M.; Qian, M. Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties. JOM 2015, 67, 668–673. [Google Scholar] [CrossRef]
- Popovich, A.A.; Sufiiarov, V.S.; Polozov, I.A.; Borisov, E.V. Microstructure and Mechanical Properties of Inconel 718 Produced by SLM and Subsequent Heat Treatment. Key Eng. Mater. 2015, 651–653, 665–670. [Google Scholar] [CrossRef]
- Gong, H.; Rafi, K.; Gu, H.; Ram, G.D.J.; Starr, T.; Stucker, B. Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 2015, 86, 545–554. [Google Scholar] [CrossRef]
- Wycisk, E.; Emmelmann, C.; Siddique, S.; Walther, F. High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser Melting. Adv. Mater. Res. 2013, 816–817, 134–139. [Google Scholar] [CrossRef]
- Rafi, H.K.; Starr, T.L.; Stucker, B.E. A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting. Int. J. Adv. Manuf. Technol. 2013, 69, 1299–1309. [Google Scholar] [CrossRef]
- Mower, T.M.; Long, M.J. Mechanical Behavior of Additive Manufactured and Powder Metallurgy Ti6Al4V. In Proceedings of the 13th World Conference on Titanium, San Diego, CA, USA, 16–20 August 2015; pp. 1331–1336. [Google Scholar]
- Book, T.A.; Sangid, M.D. Strain localization in Ti-6Al-4V Widmanstätten microstructures produced by additive manufacturing. Mater. Charact. 2016, 122, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Greitemeier, D.; Donne, C.D.; Syassen, F.; Eufinger, J.; Melz, T. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V. Mater. Sci. Technol. 2016, 32, 629–634. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, Z.; Zhang, W.; Wu, S.; Chang, H. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy. J. Alloys Compd. 2018, 782, 1041–1048. [Google Scholar] [CrossRef]
- He, B.; Wu, W.; Zhang, L.; Lu, L.; Yang, Q.; Long, Q.; Chang, K. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum 2018, 150, 79–83. [Google Scholar] [CrossRef]
- Yan, X.; Yin, S.; Chen, C.; Huang, C.; Bolot, R.; Lupoi, R.; Kuang, M.; Ma, W.; Coddet, C.; Liao, H.; et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J. Alloys Compd. 2018, 764, 1056–1071. [Google Scholar] [CrossRef]
- Yan, X.; Yin, S.; Chen, C.; Jenkins, R.; Lupoi, R.; Bolot, R.; Ma, W.; Kuang, M.; Liao, H.; Lu, J.; et al. Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition. Mater. Res. Lett. 2019, 7, 327–333. [Google Scholar] [CrossRef]
- Maskery, I.; Aremu, A.O.; Simonelli, M.; Tuck, C.; Wildman, R.; Ashcroft, I.; Hague, R. Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size. Exp. Mech. 2015, 55, 1261–1272. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Liu, X.; Yang, X.; Zhang, R.; Shen, Z.; Feng, Q. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications. Front. Mater. Sci. 2015, 9, 373–381. [Google Scholar] [CrossRef]
- Ali, H.; Ghadbeigi, H.; Mumtaz, K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2018, 712, 175–187. [Google Scholar] [CrossRef]
- Weißmann, V.; Bader, R.; Hansmann, H.; Laufer, N. Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Mater. Des. 2016, 95, 188–197. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Young, P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015, 51, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günther, J.; Krewerth, D.; Lippmann, T.; Leuders, S.; Tröster, T.; Weidner, A.; Biermann, H.; Niendorf, T. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int. J. Fatigue 2017, 94, 236–245. [Google Scholar] [CrossRef]
- Riemer, A.; Richard, H.A. Crack Propagation in Additive Manufactured Materials and Structures. Procedia Struct. Integr. 2016, 2, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- Leuders, S.; Vollmer, M.; Brenne, F.; Tröster, T.; Niendorf, T. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting. Met. Mater. Trans. A 2015, 46, 3816–3823. [Google Scholar] [CrossRef]
- Dhansay, N.M.; Tait, R.; Becker, T. Fatigue and Fracture Toughness of Ti-6Al-4V Titanium Alloy Manufactured by Selective Laser Melting. Adv. Mater. Res. 2014, 1019, 248–253. [Google Scholar] [CrossRef]
- Edwards, P.G.; Ramulu, M. Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 1228–1236. [Google Scholar] [CrossRef]
- Palanivel, S.; Dutt, A.; Faierson, E.; Mishra, R. Spatially dependent properties in a laser additive manufactured Ti–6Al–4V component. Mater. Sci. Eng. A 2016, 654, 39–52. [Google Scholar] [CrossRef]
- Promoppatum, P.; Onler, R.; Yao, S.-C. Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J. Mater. Process. Technol. 2017, 240, 262–273. [Google Scholar] [CrossRef]
- Emmelmann, C.; Scheinemann, P.; Munsch, M.; Seyda, V. Laser Additive Manufacturing of Modified Implant Surfaces with Osseointegrative Characteristics. Phys. Procedia 2011, 12, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014, 1–4, 87–98. [Google Scholar] [CrossRef]
- Hassanin, H.; Modica, F.; El-Sayed, M.A.; Liu, J.; Essa, K. Manufacturing of Ti-6Al-4V Micro-Implantable Parts Using Hybrid Selective Laser Melting and Micro-Electrical Discharge Machining. Adv. Eng. Mater. 2016, 18, 1544–1549. [Google Scholar] [CrossRef] [Green Version]
- Toptan, F.; Alves, A.C.; Carvalho, O.; Bartolomeu, F.; Pinto, A.; Silva, F.; Miranda, G. Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy. J. Mater. Process. Technol. 2018, 266, 239–245. [Google Scholar] [CrossRef]
- Dai, N.; Zhang, L.; Zhang, J.; Chen, Q.; Wu, M. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros. Sci. 2016, 102, 484–489. [Google Scholar] [CrossRef]
- Urlea, V.; Brailovski, V. Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components. J. Mater. Process. Technol. 2017, 242, 1–11. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.Y.; Tuck, C. On the Texture Formation of Selective Laser Melted Ti-6Al-4V. Met. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45, 2863–2872. [Google Scholar] [CrossRef]
- Huang, Q.; Hu, N.; Yang, X.; Zhang, R.; Feng, Q. Microstructure and inclusion of Ti–6Al–4V fabricated by selective laser melting. Front. Mater. Sci. 2016, 10, 428–431. [Google Scholar] [CrossRef]
- Antony, K.; Arivazhagan, N.; Senthilkumaran, K. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J. Manuf. Process. 2014, 16, 345–355. [Google Scholar] [CrossRef]
- Facchini, L.; Magalini, E.; Robotti, P.; Molinari, A.; Höges, S.; Wissenbach, K. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp. J. 2010, 16, 450–459. [Google Scholar] [CrossRef]
- Cui, Y.; Cai, J.; Li, Z.; Jiao, Z.; Hu, L.; Hu, J. Effect of Porosity on Dynamic Response of Additive Manufacturing Ti-6Al-4V Alloys. Micromachines 2022, 13, 408. [Google Scholar] [CrossRef]
- Baitimerov, R.M.; Lykov, P.A.; Radionova, L.V.; Safonov, E.V. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser. IOP Conf. Ser. Mater. Sci. Eng. 2017, 248, 012012. [Google Scholar] [CrossRef]
- Khorasani, A.M.; Gibson, I.; Goldberg, M.; Littlefair, G. A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup. Mater. Des. 2016, 103, 348–355. [Google Scholar] [CrossRef]
- Benedetti, M.; Torresani, E.; Leoni, M.; Fontanari, V.; Bandini, M.; Pederzolli, C.; Potrich, C. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J. Mech. Behav. Biomed. Mater. 2017, 71, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, B.; Kruth, J.-P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 2007, 13, 196–203. [Google Scholar] [CrossRef]
- Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012, 541, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Koike, M.; Greer, P.; Owen, K.; Lilly, G.; Murr, L.E.; Gaytan, S.M.; Martinez, E.; Okabe, T. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting. Materials 2011, 4, 1776–1792. [Google Scholar] [CrossRef]
- Wysocki, B.; Maj, P.; Sitek, R.; Buhagiar, J.; Kurzydłowski, K.J.; Święszkowski, W. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants. Appl. Sci. 2017, 7, 657. [Google Scholar] [CrossRef]
- Lu, S.; Qian, M.; Tang, H.; Yan, M.; Wang, J.; StJohn, D. Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting. Acta Mater. 2015, 104, 303–311. [Google Scholar] [CrossRef]
- Gu, D.; Hagedorn, Y.-C.; Meiners, W.; Meng, G.; Batista, R.J.S.; Wissenbach, K.; Poprawe, R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012, 60, 3849–3860. [Google Scholar] [CrossRef]
- Benedetti, M.; Cazzolli, M.; Fontanari, V.; Leoni, M. Fatigue limit of Ti6Al4V alloy produced by Selective Laser Sintering. Procedia Struct. Integr. 2016, 2, 3158–3167. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2018, 164, 107552. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Huang, C.; Yan, X.; Zhao, L.; Liu, M.; Ma, W.; Wang, W.; Soete, J.; Simar, A. Ductilization of selective laser melted Ti6Al4V alloy by friction stir processing. Mater. Sci. Eng. A 2019, 755, 85–96. [Google Scholar] [CrossRef]
- Soro, N.; Attar, H.; Wu, X.; Dargusch, M.S. Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell. Mater. Sci. Eng. A 2018, 745, 195–202. [Google Scholar] [CrossRef]
- Galarraga, H.; Warren, R.; Lados, D.; Dehoff, R.R.; Kirka, M.M.; Nandwana, P. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater. Sci. Eng. A 2017, 685, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Ramamurty, U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti 6Al 4V alloy. Acta Mater. 2019, 169, 45–59. [Google Scholar] [CrossRef]
- Dallago, M.; Fontanari, V.; Torresani, E.; Leoni, M.; Pederzolli, C.; Potrich, C.; Benedetti, M. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting. J. Mech. Behav. Biomed. Mater. 2018, 78, 381–394. [Google Scholar] [CrossRef]
- Blasón, S.; Correia, J.; Apetre, N.; Arcari, A.; De Jesus, A.M.; Moreira, P.; Fernandez-Canteli, A. Proposal of a fatigue crack propagation model taking into account crack closure effects using a modified CCS crack growth model. Procedia Struct. Integr. 2016, 1, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Rafi, H.K.; Karthik, N.V.; Gong, H.; Starr, T.L.; Stucker, B.E. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. Mater. Eng. Perform. 2013, 22, 3872–3883. [Google Scholar] [CrossRef]
- Zhai, Y.; Galarraga, H.; Lados, D. Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques. Procedia Eng. 2015, 114, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Van Hooreweder, B.; Apers, Y.; Lietaert, K.; Kruth, J.-P. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomater. 2017, 47, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Kruth, J.-P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Dong, S.; Zhang, B.; Liao, H.; Coddet, C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater. Des. 2012, 35, 120–125. [Google Scholar] [CrossRef]
- Attar, H.; Calin, M.; Zhang, L.C.; Scudino, S.; Eckert, J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A 2014, 593, 170–177. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Y.; Wang, D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater. Des. 2013, 49, 545–552. [Google Scholar] [CrossRef]
- Amaya-Vazquez, M.; Sánchez-Amaya, J.; Boukha, Z.; Botana, F. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser. Corros. Sci. 2012, 56, 36–48. [Google Scholar] [CrossRef]
- Kao, W.; Su, Y.; Horng, J.; Chang, C. Tribological, electrochemical and biocompatibility properties of Ti6Al4V alloy produced by selective laser melting method and then processed using gas nitriding, CN or Ti-C:H coating treatments. Surf. Coat. Technol. 2018, 350, 172–187. [Google Scholar] [CrossRef]
- Kumar, S.; Kruth, J.-P. Wear Performance of SLS/SLM Materials. Adv. Eng. Mater. 2008, 10, 750–753. [Google Scholar] [CrossRef]
Property | Stainless Steel 316 L (Cast) | F75 CoCrMo Alloy (Cast) | Cortical Human Bone | Ti6Al4V Alloy (Wrought) | Aluminium Alloy A357 (Cast) |
---|---|---|---|---|---|
Density (g/cm3) | 8.0 | 8.8 | 1.5–2 | 4.4 | 2.7 |
Yield strength (MPa) | 205 | 500–1500 | - | 830–1070 | 265–275 |
Ultimate tensile strength (MPa) | 515 | 900–1800 | 130–190 | 920–1140 | 331–351 |
Tensile modulus of elasticity (GPa) | 195–205 | 200–230 | 10–30 | 100–110 | 70–75 |
Elastic elongation (%) | 10–40 | 4–13 | - | 10–15 | 6 |
Company | SLM Solutions GmbH (Germany) | EOS GmbH (Germany) | Concept Laser GmbH (Germany) | Renishaw (UK) | ||||
---|---|---|---|---|---|---|---|---|
Equipment | SLM 125HL [60] | SLM 250HL | SLM 280HL [61] | EOSINT M270 | EOSINT M280 [62] | EOSINT M290 [63] | M2 cusing [64] | AM 250 |
Build Envelope (mm3) | 125 × 125 × 125 | - | 280 × 280 × 365 | 250 × 250 × 215 | 250 × 250 × 325 | 250 × 250 × 325 | 250 × 250 × 280 | 250 × 250 × 300 |
Laser details | IPG fiber laser 400W | IPG fiber laser 400W | IPG fiber laser 400, 700 or 1000W | Yb-fiber laser 200W | Yb-fiber laser 200 or 400W | Yb-fiber laser 400W | Fiber laser 200 or 400W | Yb-fiber laser 200W |
Tensile strength | [33,65] | [56,66,67] | [68] | [69,70,71] | [21,72,73,74,75] | [76,77,78] | [55] | [79,80,81] |
Tensile strain | [33,65] | [56,66,67] | [68] | [69,70,71] | [21,72,73,74] | [76,77] | [55] | [79,80,81] |
Young’s Modulus | [33] | - | [82] | [69,83] | [72] | [77] | [79] | |
Fatigue behavior | - | [4,41,56,84,85,86] | [85] | [7,69,70] | [21,72,74,87] | [77,78] | [55] | |
Fatigue crack analysis | - | [4,56,84,85,86,88] | [85] | [7,69,70,71] | [72,74] | [77] | [55] | |
Hardness | [2,3] | [86] | - | [69] | [89] | [90] | [80] | |
Density | [2,3] | [31,66] | - | [83,91,92] | [89] | [77] | [55,93] | [81] |
Microstructure | [3,33,94] | [56,66,67,84,95] | [68,82] | [7,69,70,71,83,92] | [21,72,73,75,89] | [76,78,96] | [55] | [81,97,98] |
Heat treatments | [4,56,67,84,85,86] | [68,85] | [21,72,73,75] | [77] | [80] | |||
Parameters assessment | [3,65] | [31,66] | - | [69,92] | [90] | [55,93] | [81] | |
Surface roughness | - | [73,74,96] | [90,96] |
Reference | Yield Strength (MPa) | Tensile Strength (MPa) | Tensile Strain (%) | Young’s Modulus (GPa) | Direction |
---|---|---|---|---|---|
Benedetti et al. [104] | 1015 | 1090 | 10 | 113 | - |
Shunmugavel et al. [33] | 964 1058 | 1041 1114 | 7 3 | 113 109 | longitudinal transversal |
Vandenbroucke et al. [105] | 1125 | 1250 | 6 | 93 | - |
Vrancken et al. [106] | 1110 | 1267 | 7.3 | 109 | transversal |
Edwards et al. [41] | 910 | 1035 | 3 | - | transversal |
Vilaro et al. [58] | 1137 | 1206 | 7.6 | 105 | longitudinal |
962 | 1166 | 1.7 | 102 | transversal | |
Koike et al. [107] | 850 | 960 | 6.8 | - | - |
Anatoliy et al. [68] | 1200 | 1280 | 2.4 | - | - |
Gong et al. [69] | 1098 | 1237 | 8.8 | 109 | - |
Leuders et al. [56] | 1008 | 1080 | 1.6 | - | - |
Wysocki et al. [108] | 1150 | 1246 | 1.4 | - | longitudinal |
1273 | 1421 | 3.2 | - | transversal | |
Kasperovich et al. [55] | 802 | 1062 | 12.7 | - | longitudinal |
Rafi et al. [71] | 1195 1143 | 1269 1219 | 5 4.9 | - - | longitudinal transversal |
Mower et al. [72] | 972 1096 | 1034 1130 | - - | 109 115 | longitudinal transversal |
Huang et al. [80] | 970 | 1191 | 5.4 | - | - |
Fachini et al. [100] | 990 | 1095 | 8.1 | 110 | - |
Reference | Condition/Heat Treatment | YS (MPa) | TS (MPa) | TS’ (%) | Microstructure |
---|---|---|---|---|---|
Kasperovich et al. [55] | Wrought | 927 | 984 | 19.3 | globular α + β (Figure 1a) |
As-built | 736 | 1051 | 11.9 | α′ acicular, column width < 0.5 μm (Figure 1b) | |
700 °C–1 h–FC (10 °C/min) | 1051 | 1115 | 11.3 | α′ acicular, column width < 1.0 μm (Figure 1c) | |
900 °C–2 h followed by 700 °C–1 h–FC (10 °C/min) | 908 | 988 | 9.5 | elongated primary α grains in a β matrix (Figure 1d) | |
HIP (900 °C/100 MPa–2 h) followed by 700 °C–1 h–FC (10 °C/min) | 885 | 973 | 19 | elongated primary α grains in a β matrix (Figure 1e) | |
Vilaro et al. [58] | As-built | 1137 | 1206 | 7.6 | α′ acicular (Figure 2a) |
730 °C–2 h–AC | 965 | 1046 | 9.5 | α′ acicular embedded in α + β phases (Figure 2b) | |
950 °C–1 h–WQ | 944 | 1036 | 8.5 | α′ acicular, α and β (Figure 2c) | |
1050 °C–1 h–WQ | 913 | 1019 | 8.9 | α′ acicular (Figure 2d) | |
Huang et al. [80] | As-built | 970 | 1191 | 5.4 | α′ acicular (Figure 3a) |
800 °C–2 h–AC | 1010 | 1073 | 17.1 | less fine α′ acicular embedded in α + β phases (Figure 3b) | |
950 °C–2 h–AC | 893 | 984 | 14.2 | α laths in β matrix (Figure 3c) | |
1050 °C–1 h–AC | 869 | 988 | 13.3 | equiaxed and α-equiaxed prior β grains (Figure 3d) | |
1200 °C–1 h–AC | 897 | 988 | 11.3 | α-equiaxed prior β grains | |
Vrancken et al. [106] | Forged | 960 | 1006 | 18.4 | α + β |
As-built | 1110 | 1267 | 7.3 | α′ acicular (Figure 4a) | |
540 °C–5 h–WQ | 1118 | 1223 | 5.4 | - | |
850 °C–2 h–FC (0.04 °C/s) | 988 | 1004 | 12.8 | α′ acicular, α and β (Figure 4b) | |
940 °C–1 h–AC followed by 650 °C–2 h–AC | 899 | 948 | 13.6 | long columnar prior β grains (Figure 4c) | |
1015 °C–0.5 h–AC followed by 730 °C–2 h–AC | 822 | 902 | 12.7 | - | |
1015 °C–0.5 h–AC followed by 843 °C–2 h–FC (0.04 °C/s) | 801 | 874 | 13.5 | α + β | |
1020 °C–2 h–FC (0.04 °C/s) | 760 | 840 | 14.1 | α + β (Figure 4d) | |
Leuders et al. [56] | As-built | 1008 | 1080 | 1.6 | α′ acicular |
800 °C–1h–FC | 962 | 1040 | 5 | α′ acicular, α + β | |
1050 °C–1 h–FC | 798 | 945 | 11.6 | α + β | |
HIP (920 °C/1000 bar)–2 h–FC | 912 | 1005 | 8.3 | α + β |
Reference | Condition/Heat Treatment | Δkth (MPa√m) | m (Paris Slope) | Kc (MPa√m) | Fatigue Limit | Microstructure | Direction |
---|---|---|---|---|---|---|---|
Gong et al. [69] | As-built (OP1) | - | - | - | 107 cycles for 350 MPa | α′ acicular | - |
As-built (MP2) | - | - | - | 107 cycles for 350 MPa | α′ acicular | - | |
As-built (MP3) | - | - | - | 107 cycles for 300 MPa | α′ acicular | - | |
As-built (MP4) | - | - | - | 107 cycles for 100 MPa | α′ acicular | - | |
As-built (MP5) | - | - | - | 107 cycles for 100 MPa | α′ acicular | - | |
Leuders et al. [56] | As-built | 1.7 | - | - | - | α′ acicular | longitudinal |
800 °C–1 h–FC | 3.7 | - | - | - | α′ acicular, α + β | longitudinal | |
1050 °C–1 h–FC | 6.1 | - | - | - | α + β | longitudinal | |
HIP (920 °C/1000 bar)–2 h–FC | ≈3.7 | - | - | - | α + β | longitudinal | |
As-built | 1.4 | - | - | 2700 cycles for 600 MPa | α′ acicular | transversal | |
800 °C–1 h–FC | 3.9 | - | - | 93,000 cycles for 600 MPa | α′ acicular, α + β | transversal | |
1050 °C–1 h–FC | 3.9 | - | - | 2.9 × 104 cycles for 600 MPa | α + β | transversal | |
HIP (920 °C/1000 bar)–2 h–FC | ≈4.0 | - | - | 2 × 106 cycles for 600 MPa | α + β | transversal | |
Riemer et al. [85] | As-built | 1.4 | - | - | - | - | - |
800 °C–2 h–FC | 3.9 | - | - | - | - | - | |
1050 °C–2 h–FC | 3.6 | - | - | - | - | - | |
HIP (920 °C/1000 bar)–2 h–FC | 4.2 | - | - | - | - | - | |
Greitemeier et al. [21] | As-built (710 °C–2 h–Argon cooling) | ≈3.0 | - | - | 1 × 107 cycles for 200 MPa | α′ acicular | - |
Milled (710 °C–2 h–Argon cooling) | ≈3.0 | - | - | 1 × 107 cycles for ≈460 MPa | α′ acicular | - | |
As-built (HIP (920 °C/1000 bar)–2 h) | ≈4.0 | - | - | 1 × 107 cycles for ≈150 MPa | α + β | - | |
Milled (HIP (920 °C/1000 bar)–2 h) | ≈4.0 | - | - | 1 × 107 cycles for ≈600 MPa | α + β | - | |
Rafi et al. [120] | |||||||
Wycisk et al. [70] | As-built (650 °C–3 h–Argon cooling) | - | - | - | 107 cycles for 210 MPa | α′ acicular | longitudinal |
Polished (650 °C–3 h–Argon cooling) | - | - | - | 107 cycles for 510 MPa | α′ acicular | longitudinal | |
Shot-peened (650 °C–3 h–Argon cooling) | - | - | - | 107 cycles for 435 MPa | α′ acicular | longitudinal | |
Edwards et al. [88] | As-built | 6.3 | 2.612 | 72.8 | - | α′ acicular | longitudinal |
As-built | 5.8 | 2.366 | 70.1 | - | α′ acicular | transversal | |
As-built | 5.9 | 2.451 | 43.4 | - | α′ acicular | transversal |
Reference | Condition/Heat Treatment | Hardness (HV) | Microstructure |
---|---|---|---|
Kasperovich et al. [55] | Wrought | 314 | α + β globular |
As-built | 360 | α′ acicular | |
700 °C–1 h–FC | 351 | α′ acicular | |
900 °C–2 h followed by 700 °C–1 h–FC | 324 | α grain in β matrix | |
Koike et al. [107] | As-built | ≈400 | α′ acicular |
Kruth et al. [123] | As-built | 380–420 | α′ acicular |
Bartolomeu et al. [3] | As-built | 389 | α′ acicular |
Li et al. [120] | As-built | ≈400 | - |
Amaya-Vazquez et al. [127] | As built | 440 | α′ acicular |
Song et al. [124] | As-built | 450 | - |
Vilaro et al. [58] | As-built | 354 | α′ acicular |
730 °C–2 h–AC | 344 | α′ acicular, α + β |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomeu, F.; Gasik, M.; Silva, F.S.; Miranda, G. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals 2022, 12, 986. https://doi.org/10.3390/met12060986
Bartolomeu F, Gasik M, Silva FS, Miranda G. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals. 2022; 12(6):986. https://doi.org/10.3390/met12060986
Chicago/Turabian StyleBartolomeu, Flávio, Michael Gasik, Filipe Samuel Silva, and Georgina Miranda. 2022. "Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties" Metals 12, no. 6: 986. https://doi.org/10.3390/met12060986
APA StyleBartolomeu, F., Gasik, M., Silva, F. S., & Miranda, G. (2022). Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals, 12(6), 986. https://doi.org/10.3390/met12060986