Effect of Mn Element on the Structures and Properties of A2B7-Type La–Y–Ni-Based Hydrogen Storage Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Structure Characterization
2.3. Hydrogen Absorption and Desorption Measurements
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Crystal Structure
3.2. Hydrogen Storage Characteristics
3.3. Discharge and Cyclic Properties
4. Conclusions
- (1)
- Y0.75La0.25Ni3.5 alloy consisted of complex phases: PuNi3-type, Ce2Ni7-type, Gd2Co7-type, Ce5Co19-type and CaCu5-type phase. A small amount of Mn substitution for Ni does not change the phase structure of the alloys. With the increase in Mn content, the Gd2Co7-type phase turns into the Ce2Ni7-type phase. When the value of Mn is between 0.1 and 0.15, the single-phase property of the alloys is better, and the phase abundance of Ce2Ni7-type reaches more than 80%. Mn mainly occupies Ni sites in the [AB5] subunit and the interface between the [AB5] and [A2B4] subunits.
- (2)
- The maximum hydrogen absorption capacity of series alloys is 1.260 wt.%–1.444 wt.% under 8 MPa. When the Mn content increases, the maximum hydrogen absorption of the alloy increases first and then decreases. It increases from 1.339 wt.% (x = 0) to 1.444 wt.% (x = 0.15) and then decreases to 1.404 wt.% (x = 0.3). The hydrogen desorption plateau pressure of the alloys gradually decreases, and the hydrogen absorption/desorption plateau pressure of the alloy becomes flatter and wider. The addition of Mn effectively improves the hydrogen absorption/desorption performance of the series alloys.
- (3)
- With the increase in Mn content, the maximum discharge capacity of the alloy electrodes first increased and then decreased, from 231.9 mAh·g−1 (x = 0) to 367.4 mAh·g−1 (x = 0), and then decreased to 334.4 mAh·g−1 (x = 0). The maximum discharge capacity of the alloy electrodes is closely related to its hydrogen storage capacity at 0.1 MPa and its hydrogen absorption/desorption plateau pressure. The cyclic stability of all the Mn-containing alloy electrodes was improved distinctly compared to that of Mn-free alloy electrodes, because the volume mismatch between the [A2B4] and [AB5] subunits of each phase for series alloys became smaller after the addition of Mn, which improved the structural stability and reduced the corrosion of the alloys during the hydrogen absorption/desorption cycles.
Author Contributions
Funding
Conflicts of Interest
References
- Orzech, M.W.; Mazzali, F.; McGettrick, J.D.; Pleydell-Pearce, C.; Watson, T.M.; Voice, W.; Jarvis, D.; Margadonna, S. Synergic effect of Bi, Sb and Te for the increased stability of bulk alloying anodes for sodium-ion batteries. J. Mater. Chem. 2017, 44, 23198–23208. [Google Scholar] [CrossRef] [Green Version]
- Young, K.H.; Nei, J. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications. Materials 2013, 10, 4574–4608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, L.; Huang, J.; Wang, H.; Liu, J.; Zhu, M. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review. Mater. Chem. Phys. 2017, 200, 164–178. [Google Scholar] [CrossRef]
- Khazaeli, A.; Barz, D.P.J. Fabrication and characterization of a coplanar nickel-metal hydride microbattery equipped with a gel electrolyte. J. Power Sources 2019, 414, 141–149. [Google Scholar] [CrossRef]
- Wang, W.; Qin, R.; Wu, R.; Tao, X.; Zhang, H.; Ding, Z.; Fu, Y.; Zhang, L.; Wu, L.; Li, Y.; et al. A promising anode candidate for rechargeable nickel metal hydride power battery: An A5B19-type La–Sm–Nd–Mg–Ni–Al-based hydrogen storage alloy. J. Power Sources 2020, 465, 228236. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, Z.; Wang, W.; Rodríguez-Pérez, I.A.; Zhao, Y.; Li, Y.; Zhao, X.; Wang, L.; Han, S. A new choice for the anode of nickel metal hydride batteries with long cycling life: A Ce2Ni7-type single-phase Nd0.80Mg0.20Ni3.58 hydrogen storage alloy. J. Power Sources 2019, 433, 126687. [Google Scholar] [CrossRef]
- Tarasov, B.P.; Fursikov, P.V.; Volodin, A.A.; Bocharnikov, M.S.; Shimkus, Y.Y.; Kashin, A.M.; Yartys, V.A.; Chidziva, S.; Pasupathi, S.; Lototskyy, M.V. Metal hydride hydrogen storage and compression systems for energy storage technologies. Int. J. Hydrog. Energy 2020, 46, 13647–13657. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Wang, L.; Wong, D.F. The effects of Al substitution on the phase abundance, structure and electrochemical performance of La0.7Mg0.3Ni2.8Co0.5−xAlx (x = 0, 0.1, 0.2) alloys. J. Power Sources 2015, 279, 172–179. [Google Scholar] [CrossRef]
- Qiu, S.; Huang, J.; Chu, H.; Zou, Y.; Xiang, C.; Zhang, H.; Xu, F.; Sun, L.; Ouyang, L.; Zhou, H. Influence of Zr Addition on Structure and Performance of Rare Earth Mg-Based Alloys as Anodes in Ni/MH Battery. Metals 2015, 5, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhao, B.; Fang, M.; Liu, C.; Hu, Q.; Fang, F.; Sun, D.; Ouyang, L.; Zhu, M. (Nd1.5Mg0.5)Ni7-based compounds: Structural and hydrogen storage properties. Inorg. Chem. 2012, 51, 2976–2983. [Google Scholar] [CrossRef]
- Pan, H.; Jin, Q.; Gao, M.; Liu, Y.; Li, R.; Lei, Y.; Wang, Q. An electrochemical study of La0.4Ce0.3Mg0.3Ni2.975−xMnxCo0.525 (x = 0.1–0.4) hydrogen storage alloys. J. Alloys Compd. 2004, 376, 196–204. [Google Scholar] [CrossRef]
- Kadir, K.; Sakai, T.; Uehara, I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J. Alloys Compd. 1997, 257, 115–121. [Google Scholar] [CrossRef]
- Kohno, T.; Yoshida, H.; Kawashima, F.; Inaba, T.; Sakai, I.; Yamamoto, M.; Kanda, M. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J. Alloys Compd. 2000, 311, L5–L7. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, H.; Guo, M.; Jiang, L. Effect of Y element on cyclic stability of A2B7-type La–Y–Ni-based hydrogen storage alloy. Int. J. Hydrog. Energy 2019, 44, 22064–22073. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, H.; Yang, L.; Liu, J.; Ouyang, L.; Zhu, M. Modulating superlattice structure and cyclic stability of Ce2Ni7-type LaY2Ni10.5-based alloys by Mn, Al, and Zr substitutions. J. Power Sources 2022, 524, 231067. [Google Scholar] [CrossRef]
- Crivello, J.C.; Paul-Boncour, V. Relation between the weak itinerant magnetism in A2Ni7 compounds (A = Y, La) and their stacked crystal structures. J. Phys. Condens. Matter. 2020, 32, 145802. [Google Scholar] [CrossRef] [Green Version]
- Iwase, K.; Sakaki, K.; Nakamura, Y.; Akiba, E. In situ XRD study of La2Ni7Hx during hydrogen absorption-desorption. Inorg. Chem. 2013, 52, 10105–10111. [Google Scholar] [CrossRef]
- Chung, U.I.; Lee, J.-Y. A study on hydrogen-induced amorphization in the La-Ni system. J. Non-Cryst. Solids 1989, 110, 203–210. [Google Scholar] [CrossRef]
- Oesterreicher, H.; Clinton, J.; Bittner, H. Hydrides of La-Ni compounds. Mater. Res. Bull. 1976, 11, 1241–1247. [Google Scholar] [CrossRef]
- Denys, R.V.; Riabov, A.B.; Yartys, V.A.; Sato, M.; Delaplane, R.G. Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7–H(D)2 system. J. Solid State Chem. 2008, 181, 812–821. [Google Scholar] [CrossRef]
- Gal, L.; Charbonnier, V.; Zhang, J.; Goubault, L.; Bernard, P.; Latroche, M. Optimization of the La substitution by Mg in the La2Ni7 hydride-forming system for use as negative electrode in Ni-MH battery. Int. J. Hydrog. Energy 2015, 40, 17017–17020. [Google Scholar] [CrossRef]
- Charbonnier, V.; Zhang, J.; Monnier, J.; Goubault, L.; Bernard, P.; Magén, C.; Serin, V.; Latroche, M. Structural and Hydrogen Storage Properties of Y2Ni7 Deuterides Studied by Neutron Powder Diffraction. J. Phys. Chem. C 2015, 119, 12218–12225. [Google Scholar] [CrossRef]
- Paul-Boncour, V.; Crivello, J.C.; Madern, N.; Zhang, J.; Diop, L.V.B.; Charbonnier, V.; Monnier, J.; Latroche, M. Correlations between stacked structures and weak itinerant magnetic properties of La2-xYxNi7 compounds. J. Phys. Condens. Matter. 2020, 32, 415804. [Google Scholar] [CrossRef] [PubMed]
- Lartigue, C.; Percheron-Guégan, A.; Achard, J.C.; Tasset, F. Thermodynamic and structural properties of LaNi5−xMnx compounds and their related hydrides. J. Less Common Met. 1980, 75, 23–29. [Google Scholar] [CrossRef]
- Zhang, X.B.; Sun, D.Z.; Yin, W.Y.; Chai, Y.J.; Zhao, M.S. Effect of Mn content on the structure and electrochemical characteristics of La0.7Mg0.3Ni2.975−xCo0.525Mnx (x = 0–0.4) hydrogen storage alloys. Electrochim. Acta 2005, 50, 2911–2918. [Google Scholar] [CrossRef]
- Liao, B.; Lei, Y.Q.; Chen, L.X.; Lu, G.L.; Pan, H.G.; Wang, Q.D. A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Compd. 2004, 376, 186–195. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, H.; Zhu, Y.; Li, R.; Lei, Y. Influence of Mn content on the structural and electrochemical properties of the La0.7Mg0.3Ni4.25−xCo0.75Mnx hydrogen storage alloys. Mater. Sci. Eng. A 2004, 372, 163–172. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, Y.; Chen, J.; Yan, R.; Kang, L.; Chen, J. Effect of annealing treatment on structure and electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. J. Power Sources 2005, 150, 247–254. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Zhang, G.; Zhang, Y.; Ren, H. Single phase A2B7-type La-Mg-Ni alloy with improved electrochemical properties prepared by melt-spinning and annealing. J. Rare Earths 2019, 37, 1305–1311. [Google Scholar] [CrossRef]
- Wang, W.; Xu, G.; Zhang, L.; Ma, C.; Zhao, Y.; Zhang, H.; Ding, Z.; Fu, Y.; Li, Y.; Han, S. Electrochemical features of Ce2Ni7-type La0.65Nd0.15Mg0.25Ni3.20M0.10 (M = Ni, Mn and Al) hydrogen storage alloys for rechargeable nickel metal hydride battery. J. Alloys Compd. 2021, 861, 158469. [Google Scholar] [CrossRef]
- Young, R.A. The Rietveld Method; Oxford University Press: New York, NY, USA, 1993; pp. 1–38. [Google Scholar]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55. [Google Scholar] [CrossRef]
- Si, T.; Zhang, Q.; Liu, N. Phase structure and electrochemical properties of laser sintered La2MgNi9 hydrogen storage electrode alloys. J. Rare Earths 2008, 26, 598–603. [Google Scholar] [CrossRef]
- Buschow, K.H.J.; Van Der Goot, A.S. The crystal structure of rare-earth nickel compounds of the type R2Ni7. J. Less Common Met. 1970, 22, 419–428. [Google Scholar] [CrossRef]
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 2006, 3, 26–37. [Google Scholar] [CrossRef]
- Khan, Y. The crystal structure of R5Co19. Acta Crystallogr. Sect. B Struct. Crystallogr. Crystal Chem. 1974, 30, 1533–1537. [Google Scholar] [CrossRef]
- Denys, R.V.; Riabov, B.; Yartys, V.A.; Delaplane, R.G.; Sato, M. Hydrogen storage properties and structure of La1−xMgx(Ni1−yMny)3 intermetallics and their hydrides. J. Alloys Compd. 2007, 446–447, 166–172. [Google Scholar] [CrossRef]
- Fang, F.; Chen, Z.; Wu, D.; Liu, H.; Dong, C.; Song, Y.; Sun, D. Subunit volume control mechanism for dehydrogenation performance of AB3-type superlattice intermetallics. J. Power Sources 2019, 427, 145–153. [Google Scholar] [CrossRef]
- Zhang, J.; Charbonnier, V.; Madern, N.; Monnier, J.; Latroche, M. Improvement of reversible H storage capacity by fine tuning of the composition in the pseudo-binary systems A2−xLaxNi7 (A = Gd, Sm, Y, Mg). J. Alloys Compd. 2021, 852, 157008. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Han, D.; Yang, S.; Chen, X.; Zhang, L.; Han, S. Electrochemical performance and capacity degradation mechanism of single-phase La–Mg–Ni-based hydrogen storage alloys. J. Power Sources 2015, 300, 77–86. [Google Scholar] [CrossRef]
- Xiong, W.; Yan, H.; Wang, L.; Verbetsky, V.; Zhao, X.; Mitrokhin, S.; Li, B.; Li, J.; Wang, Y. Characteristics of A2B7-type La-Y-Ni-based hydrogen storage alloys modified by partially substituting Ni with Mn. Int. J. Hydrog. Energy 2017, 42, 10131–10141. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, H.; Yue, Y.; Wu, X.; Chen, N.; Lei, Y. Cycling durability and degradation behavior of La–Mg–Ni–Co-type metal hydride electrodes. J. Alloys Compd. 2005, 395, 291–299. [Google Scholar] [CrossRef]
Sample | Phase | Space Group | Phase Abundance | Lattice Constant | |||
---|---|---|---|---|---|---|---|
(x) | (%) | a(Å) | c(Å) | V(Å3) | c/a | ||
x = 0 | PuNi3 | R-3m | 24(1) | 4.934(3) | 24.755(2) | 521.86(4) | 5.017 |
Ce2Ni7 | P63/mmc | 19(1) | 4.978(1) | 24.166(1) | 518.97(10) | 4.853 | |
Gd2Co7 | R-3m | 37(1) | 4.975(1) | 36.446(2) | 781.23(6) | 7.326 | |
Ce5Co19 | R-3m | 17(1) | 4.977(1) | 48.327(4) | 1036.8(2) | 9.710 | |
CaCu5 | P6/mmm | 3(1) | 4.922(1) | 3.9756(1) | 83.407(1) | 0.808 | |
x = 0.05 | PuNi3 | R-3m | 11(1) | 4.956(1) | 24.736(1) | 526.07(18) | 4.992 |
Ce2Ni7 | P63/mmc | 28(1) | 4.986(1) | 24.202(1) | 521.08(6) | 4.854 | |
Gd2Co7 | R-3m | 14(1) | 4.986(1) | 36.425(1) | 784.09(6) | 7.306 | |
Ce5Co19 | R-3m | 18(1) | 4.968(2) | 48.230(3) | 1031.0(1) | 9.708 | |
CaCu5 | P6/mmm | 29(1) | 4.927(2) | 3.9722(1) | 83.523(1) | 0.806 | |
x = 0.1 | PuNi3 | R-3m | 6(1) | 4.974(1) | 24.682(2) | 528.83(7) | 4.962 |
Ce2Ni7 | P63/mmc | 84(1) | 4.993(1) | 24.241(5) | 523.42(2) | 4.855 | |
Gd2Co7 | R-3m | 10(1) | 4.993(1) | 36.418(29) | 786.22(10) | 7.294 | |
x = 0.15 | PuNi3 | R-3m | 7(1) | 5.008(1) | 24.581(14) | 533.88(4) | 4.908 |
Ce2Ni7 | P63/mmc | 93(1) | 4.997(1) | 24.287(3) | 525.15(1) | 4.861 | |
x = 0.2 | PuNi3 | R-3m | 30(1) | 5.018(1) | 24.532(1) | 534.93(2) | 4.889 |
Ce2Ni7 | P63/mmc | 70(1) | 5.003(1) | 24.328(1) | 527.33(2) | 4.863 | |
x = 0.3 | PuNi3 | R-3m | 38(1) | 5.020(1) | 24.500(6) | 534.71(2) | 4.880 |
Ce2Ni7 | P63/mmc | 62(1) | 5.010(1) | 24.369(1) | 529.65(1) | 4.864 |
(a) | ||||||
Site | Atom | x | y | z | Biso(Å2) | Occupancy |
---|---|---|---|---|---|---|
3a | La | 0 | 0 | 0 | 1.9(2) | 0.28(4) |
Y | 0 | 0 | 0 | 1.9(2) | 0.72(4) | |
6c | La | 0 | 0 | 0.1418(7) | 0.4(1) | 0.11(2) |
Y | 0 | 0 | 0.1418(7) | 0.4(1) | 0.89(2) | |
3b | Ni | 0 | 0 | 0.5 | 0.6(1) | 1 |
6c | Ni | 0 | 0 | 0.3317(9) | 2.5(2) | 0.75(3) |
Mn | 0 | 0 | 0.3317(9) | 2.5(2) | 0.25(3) | |
18h | Ni | 0.4999(12) | −0.4999(12) | 0.0830(4) | 0.3(1) | 0.96(1) |
Mn | 0.4999(12) | −0.4999(12) | 0.0830(4) | 0.3(1) | 0.04(1) | |
(b) | ||||||
Site | Atom | x | y | z | Biso(Å2) | Occupancy |
4f1 | Y | 0 | 0 | 0.0282(6) | 2.7(2) | 1 |
4f2 | La | 0 | 0 | 0.1717(6) | 1.7(2) | 0.58(5) |
Y | 0 | 0 | 0.1717(6) | 1.7(2) | 0.42(5) | |
2a | Ni | 0 | 0 | 0 | 1.9(2) | 1 |
4e | Ni | 0 | 0 | 0.1671(8) | 1.1(2) | 0.77(6) |
Mn | 0 | 0 | 0.1671(8) | 1.1(2) | 0.23(6) | |
4f | Ni | 0.6667 | 0.3333 | 0.1666(6) | 0.2(2) | 1 |
6h | Ni | 0.1621(6) | 0.3241(12) | 0.75 | 1.6(1) | 0.68(5) |
Mn | 0.1621(6) | 0.3241(12) | 0.75 | 1.6(1) | 0.32(5) | |
12k | Ni | 0.1689(7) | 0.3377(14) | 0.9156(3) | 1.2(1) | 1 |
Sample (x) | Activation | Plateau Pressure | Hydrogen Capacity | Hydrogen Capacity | |
---|---|---|---|---|---|
Time | (MPa) | 8 MPa | 0.1 MPa | ||
Na | Abs. | Des. | (wt.%) | (wt.%) | |
x = 0.00 | 3 | 0.05/0.67 | 0.01/0.39 | 1.34 | 0.44 |
x = 0.05 | 3 | 0.25/0.69 | 0.04/0.42 | 1.26 | 0.38 |
x = 0.10 | 3 | 0.03/0.02 | 0.01/0.13 | 1.42 | 0.79 |
x = 0.15 | 3 | 0.03/0.13 | 0.02/0.10 | 1.44 | 0.87 |
x = 0.20 | 3 | 0.03 | 0.02 | 1.40 | 1.16 |
x = 0.30 | 3 | 0.02 | 0.01 | 1.40 | 1.21 |
Sample (x) | Na | Cmax | S100 | icorr | Ecorr |
---|---|---|---|---|---|
(mAh‧g−1) | (%) | (mA‧cm−2) | (V) | ||
x = 0 | 3 | 231.9 | 67.1 | 10.1 | −0.934 |
x = 0.05 | 9 | 245.8 | 84.0 | ||
x = 0.1 | 9 | 315.4 | 75.5 | 9.53 | −0.93 |
x = 0.15 | 3 | 367.4 | 74.9 | ||
x = 0.2 | 3 | 336.3 | 74.1 | ||
x = 0.3 | 5 | 334.4 | 77.4 | 3.85 | −0.925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, A.; Luo, Y.; Zhou, J.; Xie, Y.; Yuan, Y.; Kang, X.; Shen, B.; Zhang, H. Effect of Mn Element on the Structures and Properties of A2B7-Type La–Y–Ni-Based Hydrogen Storage Alloys. Metals 2022, 12, 1122. https://doi.org/10.3390/met12071122
Deng A, Luo Y, Zhou J, Xie Y, Yuan Y, Kang X, Shen B, Zhang H. Effect of Mn Element on the Structures and Properties of A2B7-Type La–Y–Ni-Based Hydrogen Storage Alloys. Metals. 2022; 12(7):1122. https://doi.org/10.3390/met12071122
Chicago/Turabian StyleDeng, Anqiang, Yongchun Luo, Jianfei Zhou, Yunding Xie, Yuan Yuan, Xiaoyan Kang, Bingjin Shen, and Haimin Zhang. 2022. "Effect of Mn Element on the Structures and Properties of A2B7-Type La–Y–Ni-Based Hydrogen Storage Alloys" Metals 12, no. 7: 1122. https://doi.org/10.3390/met12071122
APA StyleDeng, A., Luo, Y., Zhou, J., Xie, Y., Yuan, Y., Kang, X., Shen, B., & Zhang, H. (2022). Effect of Mn Element on the Structures and Properties of A2B7-Type La–Y–Ni-Based Hydrogen Storage Alloys. Metals, 12(7), 1122. https://doi.org/10.3390/met12071122