Structural Evolution of Bulk Silver during Cold Rolling and Annealing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- (1)
- During the cold rolling of bulk Ag sheet, the grains did not align along the rolling direction suggested. The microstructure underwent dynamic recovery/recrystallization due to the high defect density during the rolling process.
- (2)
- The following annealing treatment after cold rolling showed that as with the increasing of annealing temperature, recovery and recrystallization occurred in Ag sheet, and annealing at 600 °C for 1 h was a suitable recrystallization treatment for present cold rolled Ag.
- (3)
- The cold rolled Ag had mainly Goss orientation, and the deformation texture of Ag was affected by the deformation. After the annealing treatment, the Goss orientation shifted to η orientation, {110}<110> orientation, {111}<112> orientation, and α orientation with the increasing of temperature of 300~600 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, P.K.; Lee, C.T.; Chiang, D.; Cho, W.H.; Hsiao, C.N.; Chen, Y.Y.; Huang, B.M.; Yang, J.R. Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD. Nanoscale Res. Lett. 2014, 9, 35. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M. Vacuum glazing for highly insulating windows: Recent developments and future prospects. Renew. Sustain. Energy Rev. 2016, 54, 1345–1357. [Google Scholar] [CrossRef]
- Ho, S.M. A Review on Thin Films on Indium Tin Oxide Coated Glass Substrate. Asian J. Chem. 2016, 28, 469–472. [Google Scholar] [CrossRef]
- Bao, S.Y.; Deng, X.; Mao, F.; Zhong, N.; Yue, F.Y.; Sun, L.; Xiang, P.H.; Duan, C.G. Ultra-flat ITO films on mica for high temperature transparent flexible electrodes. Ceram. Int. 2020, 46, 2268–2272. [Google Scholar] [CrossRef]
- Shakiba, M.; Kosarian, A.; Farshidi, E. Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film. J. Mater. Sci. Mater. Electron. 2016, 28, 787–797. [Google Scholar] [CrossRef]
- Wang, H.; Tang, C.; Shi, Q.; Wei, M.; Su, Y.; Lin, S.; Dai, M. Influence of Ag incorporation on the structural, optical and electrical properties of ITO/Ag/ITO multilayers for inorganic all-solid-state electrochromic devices. Ceram. Int. 2021, 47, 7666–7673. [Google Scholar] [CrossRef]
- Yuan, Z.S.; Wu, C.C.; Tzou, W.C.; Yang, C.F.; Chen, Y.H. Investigation of high transparent and conductivity of IGZO/Ag/IGZO sandwich structures deposited by sputtering method. Vacuum 2019, 165, 305–310. [Google Scholar] [CrossRef]
- Alias, R.; Mahmoodian, R.; Genasan, K.; Vellasamy, K.M.; Hamdi Abd Shukor, M.; Kamarul, T. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110304. [Google Scholar] [CrossRef]
- Najafi, A.; Khoeini, M.; Khalaj, G.; Sahebgharan, A. Synthesis of silver nanoparticles from electronic scrap by chemical reduction. Mater. Res. Express 2021, 8, 125009. [Google Scholar] [CrossRef]
- Gubicza, J.; Chinh, N.Q.; Lábár, J.L.; Tichy, G.; Hegedűs, Z.; Xu, C.; Langdon, T.G. Stability of microstructure in silver processed by severe plastic deformation. Int. J. Mater. Res. 2009, 6, 884–887. [Google Scholar] [CrossRef]
- Balogh, L.; Ungár, T.; Zhao, Y.; Zhu, Y.T.; Horita, Z.; Xu, C.; Langdon, T.G. Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys. Acta Mater. 2008, 56, 809–820. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Horita, Z.; Langdon, T.G.; Zhu, Y.T. Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy. Mater. Sci. Eng. A 2008, 474, 342–347. [Google Scholar] [CrossRef]
- Doi, T.; Mori, M.; Shimohigashi, H.; Hakuraku, Y.; Onabe, K.; Okada, M.; Kashima, N.; Nagaya, S. {110} <112> and {110} <110> textured Ag tapes for biaxially oriented YBa2Cu3O7 coated conductors. Phys. C Supercond. 2002, 378–381, 927–931. [Google Scholar] [CrossRef]
- Suo, H.; Genoud, J.Y.; Schindl, M.; Walker, E.; Tybell, T.; Cléton, F.; Zhou, M.; Flükiger, R. Stable {110} ⟨ 112⟩ textured Ag ribbons for biaxially-aligned YBa2Cu3O7−δ coated tapes. Supercond. Sci. Technol. 2000, 13, 912–919. [Google Scholar] [CrossRef]
- Goyal, A.; Norton, D.P.; Christen, D.K.; Specht, E.D.; Paranthaman, M.; Kroeger, D.M.; Budai, J.D.; He, Q.; List, F.A.; Feenstra, R. Epitaxial superconductors on rolling-assisted biaxially-textured substrates (RABiTS): A route towards high critical current density wire. Appl. Supercond 1996, 4, 403–427. [Google Scholar] [CrossRef]
- Zhang, Z.-R.; Sekine, K. Development of single sharp {011} <211> recrystallization texture in polycrystalline silver by severe plastic deformation at room temperature. Mater. Sci. Eng. A 2006, 423, 243–246. [Google Scholar] [CrossRef]
- Cheng, C.; Feng, Y.; Chen, Z.; Li, H.E.; Wang, X.; Wang, Q. Effect of annealing temperature on microstructure, texture and tensile properties of TA32 sheet. Mater. Sci. Eng. A 2021, 826, 141971. [Google Scholar] [CrossRef]
- Li, X.H.; Yan, H.; Chen, R.S. Microstructure, texture and mechanical properties of Y2O3p/ZG21 composites after rolling and subsequent annealing. J. Alloys Compd. 2021, 889, 161683. [Google Scholar] [CrossRef]
- Liang, X.; Wu, Q.; Li, H.; Wang, R.; Kang, L.; Liu, B.; Wang, L. Static recrystallization and texture evolution of cold-rolled powder metallurgy CoCrFeNiN0.07 high-entropy alloy. J. Alloys Compd. 2021, 862, 158602. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Pouraliakbar, H.; Shiran, M.K.G.; Khalaj, G.; Shirazi, M. On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al-Mg alloy. Mater. Sci. Eng. A 2016, 657, 431–440. [Google Scholar] [CrossRef]
- Sun, B.; Shen, T. Probing the Deformation Mechanisms of Nanocrystalline Silver by In-Situ Tension and Synchrotron X-ray Diffraction. Metals 2020, 10, 1635. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wen, M.; Guo, J.M.; Xiao, Z.; Gan, J.Z.; Wang, C.J.; Tan, Z.L.; Guan, W.M. EBSD Study on the Recrystallization Behavior of Ni-5Pt Alloy. Rare Met. Mater. Eng. 2022, 51, 127–133. [Google Scholar]
- Conrad, H.; Jung, K. Effect of grain size from millimeters to nanometers on the flow stress and deformation kinetics of Ag. Mater. Sci. Eng. A 2005, 391, 272–284. [Google Scholar] [CrossRef]
- Paul, H.; Driver, J.H.; Maurice, C.; Piątkowski, A. Recrystallization mechanisms of low stacking fault energy metals as characterized on model silver single crystals. Acta Mater. 2007, 55, 833–847. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Z.; Wang, Q.; Zhao, D.; Pei, W.; Wen, M. Structural Evolution of Bulk Silver during Cold Rolling and Annealing. Metals 2022, 12, 1525. https://doi.org/10.3390/met12091525
Ning Z, Wang Q, Zhao D, Pei W, Wen M. Structural Evolution of Bulk Silver during Cold Rolling and Annealing. Metals. 2022; 12(9):1525. https://doi.org/10.3390/met12091525
Chicago/Turabian StyleNing, Zheda, Qunshou Wang, Dong Zhao, Wenli Pei, and Ming Wen. 2022. "Structural Evolution of Bulk Silver during Cold Rolling and Annealing" Metals 12, no. 9: 1525. https://doi.org/10.3390/met12091525
APA StyleNing, Z., Wang, Q., Zhao, D., Pei, W., & Wen, M. (2022). Structural Evolution of Bulk Silver during Cold Rolling and Annealing. Metals, 12(9), 1525. https://doi.org/10.3390/met12091525