Identifying Oxide and CaS Non-Metallic Inclusions in Steel with Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Inclusion Phase Identification Based on Raman Spectra Analysis
3.2. Qualitative Identification of Inclusion Phases based on Raman Spectra
3.3. Raman Spectra from the Samples
3.4. Non-Metallic Inclusion Characterization with FESEM-EDS
4. Discussion
Identification of Inclusion Phases Using Peak Position and Relative Intensity
5. Conclusions
- The relative intensities and Raman peak positions were used to qualitatively estimate the sample phases of Al2O3, CA, C12A7, C3A, MgO·Al2O3, and CaS in the steel samples using Raman peaks at:
- ○
- 383 cm−1 for Al2O3, 149 cm−1 for CaS, and 412–415 and 669 cm−1 for MgO·Al2O3.
- ○
- For calcium aluminates; at 520 and 548 cm−1 for CA; 754 cm−1 for C3A; and 312, 514–516, and 771 cm−1 for C12A7.
- The inclusion phases identified based on the Raman spectra obtained from the sample generally correspond with those evaluated using FESEM-EDS analyses.
- This demonstrates the prospect of using Raman spectroscopy for quickly characterizing qualitatively oxides such as calcium aluminates, magnesium aluminate, spinel (MgO·Al2O3), and calcium sulfide-based inclusions in steel samples, followed by using FESEM-EDS for detailed studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tervo, H.; Kaijalainen, A.; Pikkarainen, T.; Mehtonen, S.; Porter, D. Effect of impurity level and inclusions on the ductility and toughness of an ultra-high-strength steel. Mater. Sci. Eng. 2017, 697, 184–193. [Google Scholar] [CrossRef]
- Zhang, L.; Thomas, B.G. State of the art in the control of inclusions during steel ingot casting. Metall. Mater. Trans. B 2006, 37, 733–761. [Google Scholar] [CrossRef]
- Gollapalli, V.; Rao, M.B.V.; Karamched, P.S.; Borra, C.R.; Roy, G.G.; Srirangam, P. Modification of oxide inclusions in calcium treated Al-Killed high sulphur steels. Ironmak. Steelmak. 2018, 46, 663. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Li, H.; Bao, C.; Yang, J. Inclusion evolution during modification of alumina inclusions by calcium in liquid steel and deformation during hot rolling process. ISIJ Int. 2015, 55, 2115–2124. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Wang, X. Inclusion evolution after calcium addition in low carbon al-killed steel with ultra low sulfur content. ISIJ Int. 2015, 55, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-J.; He, S.-P.; Guo, Y.-T.; Shen, B.-Y.; Zhao, S.; Wang, Q. Optimization of Calcium addition to high-strength low-alloy steel. J. Iron Steel Res. Int. 2015, 22, 590. [Google Scholar] [CrossRef]
- Lis, T. Modification of oxygen and sulphur inclusions in steel by calcium treatment. Metalugija 2009, 48, 95. [Google Scholar]
- Pires, J.C.S.; Garcia, A. Modification of oxide inclusions present in aluminium-killed low carbon steel by addition of calcium. Rem. Rev. Esc. Minas 2004, 57, 183–189. [Google Scholar] [CrossRef]
- Holappa, L.; Hämäläinen, M.; Liukkonen, M.; Lind, M. Thermodynamic examination of inclusion modification and precipitation from calcium treatment to solidified steel. Ironmak. Steelmak. 2002, 30, 111. [Google Scholar] [CrossRef]
- Deng, Z.; Zhu, M.; Sichen, D. Effect of refractory on nonmetallic inclusions in Al-killed steel metall. Mater. Trans. B 2016, 47, 3158. [Google Scholar] [CrossRef]
- Poirier, J. A review: Influence of refractories on steel quality. Metall. Res. Technol. 2015, 112, 410. [Google Scholar] [CrossRef]
- Tehovnik, F.; Burja, J.; Arh, B.; Knap, M. Submerged entry nozzle clogging during continuous casting of Al-killed steel. Metalurgija 2015, 54, 371. [Google Scholar]
- Xu, Z.Y.; Liu, J.H.; He, Z.J.; Pang, Q.H. Study on clogging mechanism of submerged entry nozzle of steel 38CrMoAl. Metalurgija 2018, 57, 79–82. [Google Scholar]
- Zhang, L.; Thomas, B.G. State of the art in evaluation and control of steel cleanliness. ISIJ Int. 2003, 43, 271–291. [Google Scholar] [CrossRef] [Green Version]
- Gyakwaa, F.; Aula, M.; Alatarvas, T.; Vuolio, T.; Shu, Q.; Huttula, M.; Fabritius, T. Application of Raman spectroscopy for characterising synthetic non-metallic inclusions consisting of calcium sulphide and oxides. Appl. Sci. 2020, 10, 2113. [Google Scholar] [CrossRef] [Green Version]
- Gyakwaa, F.; Aula, M.; Alatarvas, T.; Vuolio, T.; Shu, Q.; Huttula, M.; Fabritius, T. Characterisation of binary phase mixtures of magnesium-aluminate spinel and calcium-aluminates using time-gated Raman spectroscopy. ISIJ Int. 2020, 60, 988–997. [Google Scholar] [CrossRef] [Green Version]
- Gyakwaa, F.; Aula, M.; Alatarvas, T.; Vuolio, T.; Shu, Q.; Huttula, M.; Fabritius, T. Characterisation of multiphase mixtures of calcium-aluminates and magnesium-aluminate spinel using time-gated Raman spectroscopy. Steel Res. Int. 2020, 91, 2000084. [Google Scholar] [CrossRef]
- Li, S.; Hihara, L.H. Identification of inclusions in carbon steels using micro-Raman spectroscopy. J. Raman Spectrosc. 2017, 48, 137–142. [Google Scholar] [CrossRef]
- Neuville, D.R.; Henderson, G.S.; Cormier, L.; Massiot, D. The structure of crystals, glasses, and melts along the CaO-Al2O3 join: Results from Raman, Al L- and K-edge X-ray absorption, and 27Al NMR spectroscopy. Am. Mineral. 2010, 95, 1580–1589. [Google Scholar] [CrossRef]
- Misra, A.; Bist, H.D.; Navati, M.S.; Thareja, R.K.; Narayan, J. Thin film of aluminum oxide through pulsed laser deposition: A Micro-Raman study. Mater. Sci. Eng. 2001, 79, 49–54. [Google Scholar] [CrossRef]
- Avril, C.; Malavergne, V.; Caracas, R.; Zanda, B.; Reynard, B.; Charon, E.; Bobocioiu, E.; Brunet, F.; Borensztajn, S.; Pont, S.; et al. Raman spectroscopic properties and Raman identification of CaS–MgS–MnS–FeS–Cr2FeS4 sulfides in meteorites and reduced sulfur-rich systems. Meteor. Planet. Sci. 2013, 48, 1415–1426. [Google Scholar] [CrossRef]
- Dash, S.; Sahoo, R.K.; Das, A.; Bajpai, S.; Debasish, D.; Singh, S.K. Synthesis of MgAl2O4 spinel by thermal plasma and its synergetic structural study. J. Alloys Compd. 2017, 726, 1186–1194. [Google Scholar] [CrossRef]
- Ishikawa, K.; Fujima, N.; Komura, H. First order Raman scattering in MgO microcrystals. Am. Inst. Phys. 1985, 57, 973. [Google Scholar] [CrossRef]
- Lipiäinen, T.; Pessi, J.; Movahedi, P.; Koivistoinen, J.; Kurki, L.; Tenhunen, M.; Yliruusi, J.; Juppo, A.M.; Heikkonen, J.; Pahikkala, T.; et al. Time-gated Raman spectroscopy for quantitative determination of solid-state forms of fluorescent pharmaceuticals. Anal. Chem. 2018, 90, 4832–4839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandeu, A.; Humbert, B.; Carteret, C.; Muhr, H.; Plasari, E.; Bossoutrot, J.-M. Raman spectroscopy—A powerful tool for the quantitative determination of the composition of polymorph mixtures: Application to CaCO3 polymorph mixtures. Chem. Eng. Technol. 2006, 29, 2. [Google Scholar] [CrossRef]
- Muñoz Tabares, J.A.; Anglada, M.J. Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy. J. Am. Ceram. Soc. 2010, 93, 1790. [Google Scholar] [CrossRef]
Phase | Measured Peaks [Raman Shift, cm−1] | Reference |
---|---|---|
C3A | 140–150 w, 506 –508, 756 –757, | [15,16,17,19] |
C12A7 | 312–333, 516–520, 772 m, 779 | [15,16,17,19] |
Al2O3 | 422, 383, 760, | [20] |
CaS | 155–160 s, 193–200 m, 215 (±15), 485 (±10) | [15,21] |
MgO·Al2O3 | 312–313, 410–415, 767–772 m, 666–674, | [22] |
CA | 520–521 s, 547–550, 790–793 | [15,16,17,19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyakwaa, F.; Alatarvas, T.; Shu, Q.; Fabritius, T. Identifying Oxide and CaS Non-Metallic Inclusions in Steel with Raman Spectroscopy. Metals 2023, 13, 43. https://doi.org/10.3390/met13010043
Gyakwaa F, Alatarvas T, Shu Q, Fabritius T. Identifying Oxide and CaS Non-Metallic Inclusions in Steel with Raman Spectroscopy. Metals. 2023; 13(1):43. https://doi.org/10.3390/met13010043
Chicago/Turabian StyleGyakwaa, Francis, Tuomas Alatarvas, Qifeng Shu, and Timo Fabritius. 2023. "Identifying Oxide and CaS Non-Metallic Inclusions in Steel with Raman Spectroscopy" Metals 13, no. 1: 43. https://doi.org/10.3390/met13010043
APA StyleGyakwaa, F., Alatarvas, T., Shu, Q., & Fabritius, T. (2023). Identifying Oxide and CaS Non-Metallic Inclusions in Steel with Raman Spectroscopy. Metals, 13(1), 43. https://doi.org/10.3390/met13010043