Phase Formation and Stabilization Behavior of Ca-PSZ by Post-Heat Treatment II: CaOx-ZrO2(1 − x) (x = 5–10 mol%)
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maynard, A. Navigating the fourth industrial revolution. Nat. Nanotechnol. 2015, 10, 1005–1006. [Google Scholar] [CrossRef]
- Daemmrich, A. Invention, innovation systems, and the fourth industrial revolution. Technol. Innov. 2017, 18, 257–265. [Google Scholar] [CrossRef]
- Maksoud, A.; Fahlm, R.; Shala, A.; Elkodous, M.; Olojede, S.; Osman, A.; Farrell, C.; Al-Muhtaseb, A.; Awed, A.; Ashour, A.; et al. Advanced Materials and technologies for super capacitors used in energy conversion and storage: A review. Environ. Chem. Lett. 2021, 19, 375–439. [Google Scholar] [CrossRef]
- Haider, R.; Wen, Y.; Ma, Z.; Wilkinson, D.; Zhang, L.; Yusan, X.; Song, S.; Zhang, J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187. [Google Scholar] [CrossRef]
- Ryan, K.; Down, M.; Banks, C. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. J. Chem. Eng. 2021, 403, 126162. [Google Scholar] [CrossRef]
- Lopez-Gandara, C.; Ramos, F.M.; Cirera, A. YSZ-based oxygen sensors and the use of nanomaterials: A review from classical models to current trends. J. Sens. 2009, 2009, 258489. [Google Scholar] [CrossRef]
- Olah, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H. Impact of industry 4.0 on environmental sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Hou, X.; Zhao, X.; Zhang, Y.; Zhang, Z.; Liu, Y.; Qin, Y.; Tan, P.; Chen, C.; Yu, S.; Ding, M.; et al. High-Performance Harsh-Environment-Resistant GaOX Solar-Blind Photodetectors via Defect and Doping Engineering. Adv. Mater. 2022, 34, 2106923. [Google Scholar] [CrossRef]
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef]
- Loganathan, A.; Gandhi, A. Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia. Mater. Sci. Eng. A 2012, 556, 927–935. [Google Scholar] [CrossRef]
- Talibi, M.; Kaur, K.; Parmar, H. Do you know your ceramics? Part 5: Zirconia. Br. Dent. J. 2022, 232, 311–316. [Google Scholar] [CrossRef]
- Juri, A.Z.; Zhang, Y.; Kotousov, A.; Yin, L. Zirconia responses to edge chipping damage induced in conventional and ultrasonic vibration-assisted diamond machining. J. Mater. Res. Technol. 2021, 13, 573–589. [Google Scholar] [CrossRef]
- Yan, M.; Li, Y.; Yin, G.; Tong, S.; Chen, J. Synthesis and characterization of a MgO-MgAl2O4-ZrO2 composite with a continuous network microstructure. Ceram. Int. 2017, 43, 5914–5919. [Google Scholar] [CrossRef]
- Gao, L.; Guan, R.; Zhang, S.; Zhi, H.; Jin, C.; Jin, L.; Wei, Y.; Wang, J. As-sintered Manganese-Stabilized Zirconia Ceramics with Excellent Electrical Conductivity. Crystals 2022, 12, 620. [Google Scholar] [CrossRef]
- Li, K.; Jiang, Q.; Chen, J.; Peng, J.; Li, X.; Koppala, S.; Omaran, M.; Chen, G. The controlled preparation and stability mechanism of partially stabilized zirconia by microwave intensification. Ceram. Int. 2020, 46, 7523–7530. [Google Scholar] [CrossRef]
- Li, P.; Cen, I.W. Effect of Dopants on Zirconia Stabilization—An X-ray Absorption. J. Am. Ceram. Soc. 1994, 77, 1281–1288. [Google Scholar] [CrossRef]
- Chen, G.; Ling, Y.; Li, Q.; Zheng, H.; Li, K.; Jiang, Q.; Gao, L.; Omran, M.; Peng, J.; Chen, J. Stability properties and structural characteristics of CaO-partially stabilized zirconia ceramics synthesized from fused ZrO2 by microwave sintering. Ceram. Int. 2020, 46, 16842–16848. [Google Scholar] [CrossRef]
- Toraya, H.; Yoshimura, M.; Somiya, S. Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction. J. Am. Ceram. Soc. 1984, 67, 119–121. [Google Scholar]
- Kulyk, V.; Duriagina, Z.; Kostryzhev, A.; Vasyliv, B.; Vavrukh, V.; Marenych, O. The Effect of Yttria Content on Microstructure, Strength, and Fracture Behavior of Yttria-Stabilized Zirconia. Materials 2022, 15, 5212. [Google Scholar] [CrossRef]
- Chen, P.; Li, X.; Tian, F.; Liu, Z.; Hu, D.; Xie, T.; Liu, Q.; Li, J. Fabrication, microstructure, and properties of 8 mol% yttria-stabilized zirconia (8YSZ) transparent ceramics. J. Adv. Ceram. 2022, 11, 1153–1162. [Google Scholar] [CrossRef]
- Yusuf, D.; Maryani, E.; Mardhian, D.; Noviyanti, A. Evaluation of Structural Stability, Mechanical Properties, and Corrosion Resistance of Magnesia Partially Stabilized Zirconia (Mg-PSZ). Molecules 2022, 28, 6054. [Google Scholar] [CrossRef]
- Juyoung, K.; Buyoung, K.; Heesoo, L. Technology development trends related to zirconia materials. J. Korean Inst. Electr. Electron. Mater. Eng. 2020, 33, 18–30. [Google Scholar]
- Zhang, M.; Gao, L.; Kang, J.; Pu, J.; Peng, J.; Omran, M.; Chen, G. Stability optimisation of CaO-doped partially stabilized zirconia by microwave sintering. Ceram. Int. 2019, 45, 23278–23282. [Google Scholar] [CrossRef]
- Hwanseok, L.; Kanghee, J.; Heesoo, L. Phase stability of yttria-stabilized zirconia under thermo-chemical stressfor solid oxide membrane electrolysis. J. Surf. Sci. Eng. 2021, 6, 38. [Google Scholar]
- Li, K.; Chen, J.; Peng, J.; Koppala, S.; Omran, M.; Chen, G. One-step preparation of CaO-doped partially stabilized zirconia from fused zirconia. Ceram. Int. 2020, 46, 6484–6490. [Google Scholar] [CrossRef]
- Changsu, H. Degradation of ZrO2-C Material for Submerged Entry Nozzle in Thin Slab Casting. J. Korean Ceram. Soc. 1998, 35, 251–258. [Google Scholar]
- Tsubakino, H.; Nozato, R.; Hamamoto, M. Effect of Alumina Addition on the Tetragonal-to-Monoclinic Phase Transformation in Zirconia–3 mol% Yttria. J. Am. Ceram. Soc. 1991, 74, 440–443. [Google Scholar] [CrossRef]
- Yoo, H.J.; Lee, H.S.; Jo, K.H.; Kim, J.Y.; Jo, I.K.; Lee, H.S. Phase Formation and Stabilization Behavior of Ca-PSZ by Post-Heat Treatment. Metals 2022, 12, 1479. [Google Scholar] [CrossRef]
- Heuer, A.H.; Claussen, N.; Kriven, W.M.; Ruhle, M. Stability of Tetragonal ZrO2 Particles in Ceramic Matrices. J. Am. Ceram. Soc. 1982, 65, 642. [Google Scholar] [CrossRef]
- Evis, Z.; Ergun, C.; Doremus, R.H. Hydroxylapatite-zirconia composites: Thermal stability of phases and sinterability as related to the CaO-ZrO2 phase diagram. J. Mater. Sci. 2005, 40, 1127–1134. [Google Scholar] [CrossRef]
- Leib, E.W.; Pasquarelli, R.M.; Rosario, J.J.; Dyachenko, P.N.; Doring, S.d.; Puchert, A.; Petrov, A.U.; Eich, M.; Schneider, G.A.; Janssen, R.; et al. Yttria-stabilized zirconia microspheres: Novel building blocks for high-temperature photonics. J. Mater. Chem. C 2016, 4, 62–74. [Google Scholar] [CrossRef]
- Eugenio, F.; Lucia, G. Oxygen vacancy formation and their role in the CO2 activation on Ca doped ZrO2 surface: An ab-initio DFT study. Appl. Surf. Sci. 2021, 553, 149589. [Google Scholar]
- Lu, X.; Liang, K.; Gu, S.; Zheng, Y.; Fang, H. Effect of oxygen vacancies on transformation of zirconia at low temperatures. J. Mater. Sci. 1997, 32, 6653–6656. [Google Scholar] [CrossRef]
- Kurumada, M.; Hara, H.; Iguchi, E. Oxygen vacancies contributing to intragranular electrical conduction of yttria-stabilized zirconia (YSZ) ceramics. Acta Mater. 2005, 53, 4839–4846. [Google Scholar] [CrossRef]
- Jihoon, P.; Ilhwan, B.; Sangjin, L. Phase Transition and Thermal Expansion Behavior of Zirconia Setter Fabricated from Fused CaO Stabilized Zirconia. J. Korean Ceram. Soc. 2019, 56, 184–190. [Google Scholar]
- Jung, J.H.; Yon, S.J.; Seok, J.W. Cubic zirconia single crystal growth using shell by skull melting method. J. Korean Cryst. Growth Cryst. Technol. 2013, 23, 124–128. [Google Scholar] [CrossRef]
- Guo, X. Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction with Water Molecules. Chem. Mater. 2004, 16, 3988–3994. [Google Scholar] [CrossRef]
Specimen | Volume Fraction of the Monoclinic Phase (%, Vm) | |
---|---|---|
Before Post-Heat Treatment | After Post-Heat Treatment | |
5CSZ | 62.50 | 59.38 |
6CSZ | 58.23 | 55.02 |
7CSZ | 52.22 | 47.25 |
8CSZ | 43.54 | 37.21 |
9CSZ | 31.55 | 19.57 |
10CSZ | 21.02 | 24.84 |
Specimen | Thermal Expansion Coefficient (1/K) | |
---|---|---|
Before Post-Heat Treatment | After Post-Heat Treatment | |
5CSZ | 8.229 × 10−6 | 8.342 × 10−6 |
6CSZ | 8.288 × 10−6 | 8.390 × 10−6 |
7CSZ | 8.490 × 10−6 | 8.588 × 10−6 |
8CSZ | 8.758 × 10−6 | 9.025 × 10−6 |
9CSZ | 9.074 × 10−6 | 9.294 × 10−6 |
10CSZ | 9.448 × 10−6 | 9.086 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, H.; Kim, J.; Lee, H.; Jo, I.; Lee, H. Phase Formation and Stabilization Behavior of Ca-PSZ by Post-Heat Treatment II: CaOx-ZrO2(1 − x) (x = 5–10 mol%). Metals 2023, 13, 1659. https://doi.org/10.3390/met13101659
Yoo H, Kim J, Lee H, Jo I, Lee H. Phase Formation and Stabilization Behavior of Ca-PSZ by Post-Heat Treatment II: CaOx-ZrO2(1 − x) (x = 5–10 mol%). Metals. 2023; 13(10):1659. https://doi.org/10.3390/met13101659
Chicago/Turabian StyleYoo, Hyunjo, Juyoung Kim, Hwanseok Lee, Ilguk Jo, and Heesoo Lee. 2023. "Phase Formation and Stabilization Behavior of Ca-PSZ by Post-Heat Treatment II: CaOx-ZrO2(1 − x) (x = 5–10 mol%)" Metals 13, no. 10: 1659. https://doi.org/10.3390/met13101659
APA StyleYoo, H., Kim, J., Lee, H., Jo, I., & Lee, H. (2023). Phase Formation and Stabilization Behavior of Ca-PSZ by Post-Heat Treatment II: CaOx-ZrO2(1 − x) (x = 5–10 mol%). Metals, 13(10), 1659. https://doi.org/10.3390/met13101659