Effects of Paint Baking Heat Treatments on Mechanical Properties and Microstructure of Resistance Spot-Welded A5022-O and A6014-T4 Alloys
Abstract
:1. Introduction
2. Materials and Experimental Procedures
3. Results and Discussion
4. Conclusions
- -
- PB heat treatment has no significant effect on the lap shear strength or hardness of the weld structure for the cold-worked A5022-O, whereas the age-hardened A6014-T4 showed a notable decrease (up to 21.8%) in mechanical properties due to the dissolution of Mg2Si precipitates. The failure mode of A6014-T4 changed from pull-out nugget failure to partial nugget failure after baking. Further softening (8.31%) of the equiaxed zone with heat treatment may have caused the fracture in the middle of the nugget.
- -
- Under varied-cycle loading, PB heat treatment induced gradual crack propagation and increased the number of cycles to failure (up to 74%) in the fatigue test compared to the results observed in the as-welded condition. This is due to the increased elastic modulus in the A6014-T4 alloy after heat treatment. In conclusion, the failure mode changed from nugget failure to the sheet tearing.
- -
- According to the findings of the current study, the mechanical properties of the weldments can change with unintentional heat treatment. The structural application of the 6xxx series aluminum must be carefully considered, as the thermal cycle may affect its structural integrity. In some cases, the application of the 5xxx series may be preferable, due to the consistency of its properties after paint baking.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gould, J.E. Joining aluminum sheet in the automotive industry—A 30 year history. Weld. J. 2012, 91, 23–34. [Google Scholar]
- Gullino, A.; Matteis, P.; D’Aiuto, F. Review of aluminum-to-steel welding technologies for car-body applications. Metals 2019, 9, 315. [Google Scholar] [CrossRef]
- Loganathan, K.; Subramani, S.K.V.S. Design and optimization of aluminium alloy wheel rim in automobile industry. In Materials Today Proceedings; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.; De Smet, P.; Haszler, A.; Vieregge, A.J.M.S. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Lee, T. Resistance spot weldability of heat-treatable and non-heat-treatable dissimilar aluminium alloys. Sci. Technol. Weld. Join. 2020, 25, 543–548. [Google Scholar] [CrossRef]
- Kapil, A.; Lee, T.; Vivek, A.; Cooper, R.; Hetrick, E.; Daehn, G. Spot impact welding of an age-hardening aluminum alloy: Process, structure and properties. J. Manuf. Process. 2019, 37, 42–52. [Google Scholar] [CrossRef]
- Davis, J.R. Aluminum and Aluminum Alloys; ASM International: Almere, The Netherlands, 1993. [Google Scholar]
- Lumley, R.N.; Morton, A.J.; O’Donnell, R.G.; Polmear, I.J. New heat treatments for age-hardenable aluminum alloys. Heat Treat. Prog. 2005, 5, 23–29. [Google Scholar]
- Betemps, M.I.; Haskel, T.; Barbieri, R.; Verran, G.O. Effect of artificial aging time on torsional fatigue life and cyclic behavior of AA6351 aluminum alloy and evaluation of estimation methods. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 2895–2908. [Google Scholar] [CrossRef]
- Zi, Y.; Zeqin, L.; Leyvraz, D.; Banhart, J. Effect of pre-ageing on natural secondary ageing and paint bake hardening in Al–Mg–Si alloys. Materialia 2019, 7, 100413. [Google Scholar] [CrossRef]
- Kleiner, S.; Henkel, C.; Schulz, P.; Uggowitzer, P.J. Paint bake response of aluminium alloy 6016. Aluminium 2001, 77, 185–189. [Google Scholar]
- Yang, X.; Liu, J.; Chen, J.; Wan, C.; Fang, L.; Liu, P.; Wu, C. Relationship Between the Strengthening Effect and the Morphology of Precipitates in Al–7.4 Zn–1.7 Mg–2.0 Cu Alloy. Acta Metall. Sin. 2014, 27, 1070–1077. [Google Scholar] [CrossRef]
- Ma, Z.; Cooksey-Nash, E.; Barbier, D.; Robson, J.D. Microstructural stability and paint bake response of pre-aged AA7075. Mater. Charact. 2023, 200, 112862. [Google Scholar] [CrossRef]
- Ma, Z.; Robson, J.D. Understanding the effect of deformation combined with heat treatment on age hardening of Al-Zn-Mg-Cu alloy AA7075. Mater. Sci. Eng. A 2023, 878, 145212. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhu, Z.; Luo, Z.; Manladan, S.M. Bake-strengthening of resistance spot welded aluminum alloy 6061. Weld. J. 2019, 98, 337S–350S. [Google Scholar]
- Zhang, W.; He, H.; Shan, Y.; Sun, C.; Li, L. Diffusion assisted hardness recovering and related microstructural characteristics in fusion welded Al–Mg–Si alloy butt. Mater. Res. Express 2019, 6, 066549. [Google Scholar] [CrossRef]
- Blundell, N.; Han, L.; Hewitt, R.; Young, K. The Influence of Paint Bake Cycles on the Mechanical Properties of Spot Friction Joined Aluminium Alloys; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- 5022 Aluminum Alloy. Available online: https://www.uacj.co.jp/english/products/sheeting/aas-panel.htm (accessed on 7 September 2023).
- Aluminum Alloys. Available online: https://www.makeitfrom.com/material-group/Aluminum-Alloy (accessed on 7 September 2023).
- Zhang, W.J.; Cross, I.; Feldman, P.; Rama, S.; Norman, S.; Del Duca, M. Electrode life of aluminium resistance spot welding in automotive applications: A survey. Sci. Technol. Weld. Join. 2017, 22, 22–40. [Google Scholar] [CrossRef]
- Florea, R.S.; Bammann, D.J.; Yeldell, A.; Solanki, K.N.; Hammi, Y. Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy. Mater. Des. 2013, 45, 456–465. [Google Scholar] [CrossRef]
- Kapil, A.; Lee, T.; Vivek, A.; Bockbrader, J.; Abke, T.; Daehn, G. Benchmarking strength and fatigue properties of spot impact welds. J. Mater. Process Technol. 2018, 255, 219–233. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Zhu, Z.; Li, Y.; Chen, H. Fracture mechanism of aluminum/steel laser-arc welded-brazed joints during quasi-static tensile and dynamic fatigue tests. Eng. Fail. Anal. 2023, 152, 107461. [Google Scholar] [CrossRef]
- Bally, J.; de Waele, W.; Verleysen, P.; Gubeljak, N.; Hertelé, S. Characterisation of weld heterogeneity through hardness mapping and miniature tensile testing. Int. J. Sustain. Constr. Des. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Khraishi, T.; Shen, Y.-L. Investigation of the effect of indentation spacing, edge distance and specimen thickness on the measurement of hardness. J. Mech. Sci. Technol. 2023, 37, 687–696. [Google Scholar] [CrossRef]
- Phani, P.S.; Oliver, W.C. A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing. Mater. Des. 2019, 164, 107563. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Carle, D.; Blount, G. The suitability of aluminium as an alternative material for car bodies. Mater. Des. 1999, 20, 267–272. [Google Scholar] [CrossRef]
- Chabok, A.; Cao, H.; van der Aa, E.; Pei, Y. New insights into the fracture behavior of advanced high strength steel resistance spot welds. J. Mater. Process. Technol. 2022, 301, 117433. [Google Scholar] [CrossRef]
- Kumar, A.; Sundarrajan, S. Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy. Int. J. Adv. Manuf. Technol. 2009, 42, 118–125. [Google Scholar] [CrossRef]
- Yang, M.; Ruan, Z.; Lin, H.; Li, K.; Yang, M.; Wang, Z.; Lan, X.; Xie, Y.; Xiao, Y.; Yan, Q. Quantified effect of quench rate on the microstructures and mechanical properties of an Al–Mg–Si alloy. J. Mater. Res. Technol. 2023, 24, 6753–6761. [Google Scholar] [CrossRef]
- Pereira, A.M.; Ferreira, J.A.M.; Antunes, F.V.; Bártolo, P.J. Assessment of the fatigue life of aluminium spot-welded and weld-bonded joints. J. Adhes. Sci. Technol. 2014, 28, 1432–1450. [Google Scholar] [CrossRef]
- Ghatei-Kalashami, A.; Zhang, S.; Shojaee, M.; Midawi, A.R.H.; Goodwin, F.; Zhou, N.Y. Failure behavior of resistance spot welded advanced high strength steel: The role of surface condition and initial microstructure. J. Mater. Process. Technol. 2022, 299, 117370. [Google Scholar] [CrossRef]
- Khan, M.K.; Fitzpatrick, M.E.; Hainsworth, S.V.; Edwards, L. Effect of residual stress on the nanoindentation response of aerospace aluminium alloys. Comput. Mater. Sci. 2011, 50, 2967–2976. [Google Scholar] [CrossRef]
- Fadaeifard, F.; Pakmanesh, M.R.; Esfahani, M.S.; Matori, K.A.; Chicot, D. Nanoindentation analysis of friction stir welded 6061-T6 Al alloy in as-weld and post weld heat treatment. Phys. Met. Metallogr. 2019, 120, 483–491. [Google Scholar] [CrossRef]
Mechanical Properties | Chemical Compositions (wt%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Material | YS (MPa) | UTS (MPa) | EL (%) | Cu | Si | Fe | Mn | Mg | Zn | Cr | Ti | Al |
A5022-O | 130 | 280 | 28 | 0.33 | 0.06 | 0.09 | 0.12 | 4.4 | 0.01 | 0.03 | 0.03 | Bal. |
A6014-T4 | 80 | 160 | 17 | 0.12 | 0.68 | 0.16 | 0.07 | 0.6 | 0.02 | 0.01 | 0.02 | Bal. |
A5022-O | A6014-T4 | |||||||
---|---|---|---|---|---|---|---|---|
Heat treatment | As welded | 1 cycle PB | 2 cycles PB | 3 cycles PB | As welded | 1 cycle PB | 2 cycles PB | 3 cycles PB |
Maximum load (kN) | 2.51 ± 0.06 | 2.44 ± 0.03 | 2.44 ± 0.06 | 2.44 ± 0.01 | 3.29 ± 0.16 | 3.25 ± 0.08 | 2.95 ± 0.01 | 2.88 ± 0.05 |
Displacement (mm) | 1.01 ± 0.03 | 1.11 ± 0.02 | 1.07 ± 0.02 | 1.02 ± 0.02 | 0.83 ± 0.02 | 0.90 ± 0.01 | 0.79 ± 0.01 | 0.76 ± 0.01 |
Normalized strength (MPa) | 112.61 | 109.40 | 109.37 | 109.38 | 77.01 | 76.07 | 69.07 | 67.32 |
Energy absorption (J) | 1.72 ± 0.08 | 1.80 ± 0.04 | 1.70 ± 0.07 | 1.64 ± 0.07 | 2.06 ± 0.08 | 2.15 ± 0.06 | 1.70 ± 0.03 | 1.61 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-g.; Han, S.-c.; Park, C.; Jung, Y.; Jun, T.-S.; Lee, T. Effects of Paint Baking Heat Treatments on Mechanical Properties and Microstructure of Resistance Spot-Welded A5022-O and A6014-T4 Alloys. Metals 2023, 13, 1697. https://doi.org/10.3390/met13101697
Park H-g, Han S-c, Park C, Jung Y, Jun T-S, Lee T. Effects of Paint Baking Heat Treatments on Mechanical Properties and Microstructure of Resistance Spot-Welded A5022-O and A6014-T4 Alloys. Metals. 2023; 13(10):1697. https://doi.org/10.3390/met13101697
Chicago/Turabian StylePark, Hong-geun, Seung-chang Han, Chanhoon Park, Younil Jung, Tea-Sung Jun, and Taeseon Lee. 2023. "Effects of Paint Baking Heat Treatments on Mechanical Properties and Microstructure of Resistance Spot-Welded A5022-O and A6014-T4 Alloys" Metals 13, no. 10: 1697. https://doi.org/10.3390/met13101697
APA StylePark, H. -g., Han, S. -c., Park, C., Jung, Y., Jun, T. -S., & Lee, T. (2023). Effects of Paint Baking Heat Treatments on Mechanical Properties and Microstructure of Resistance Spot-Welded A5022-O and A6014-T4 Alloys. Metals, 13(10), 1697. https://doi.org/10.3390/met13101697