A Methodology to Define the Niyama Criterion Reinforced with the Solid Fraction Analysis: Application to Sand Casting of Steel Bars
Abstract
:1. Introduction
2. Materials and Methods
FEM Simulation of Solid Fraction during the Solidification
3. Description of the Methodology Employed for Ny Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hardin, R.A.; Beckermann, C. Effect of Porosity on Deformation, Damage, and Fracture of Cast Steel. Metall. Mater. Trans. A 2013, 44, 5316–5332. [Google Scholar] [CrossRef]
- Hardin, R.A.; Beckermann, C. Effect of Porosity on the Stiffness of Cast Steel. Metall. Mater. Trans. A 2007, 38, 2992–3006. [Google Scholar] [CrossRef]
- Hardin, R.A.; Beckermann, C. Prediction of the Fatigue Life of Cast Steel Containing Shrinkage Porosity. Metall. Mater. Trans. A 2009, 40, 581–597. [Google Scholar] [CrossRef]
- Campbell, J. Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2015; ISBN 9780444635099. [Google Scholar]
- Miguel-Eguía, V.; Manjabacas-Tendero, M.C.; Medina-Ríos, N. Prediction of the Effectiveness of the Feeding System of Carbon Steel Sand Castings Using the Solid Fraction Criterion. Application to Square Bars. Int. J. Mater Product Tech. 2016, 53, 28–41. [Google Scholar] [CrossRef]
- Tavakoli, R. On the Prediction of Shrinkage Defects by Thermal Criterion Functions. Int. J. Adv. Manuf. Tech. 2014, 74, 569–579. [Google Scholar] [CrossRef]
- Lourenço, A.R. Numerical Modelling of Shrinkage Defects Induced by the Feeding Flow in Aluminium Castings. Ph.D. Thesis, University of Gent, Gent, Belgium, 2007. Available online: https://repositorio-aberto.up.pt/bitstream/10216/122834/2/358133.pdf (accessed on 25 August 2023).
- Niyama, E.; Uchida, T.; Morikawa, M.; Saito, S. A Method of Shrinkage Prediction and its Application to Steel Casting Practice. Int. Cast Met. J. 1982, 7, 52–63. [Google Scholar]
- Khaled, I. Prediction of Shrinkage Porosity in Ti-46Al-8Nb Tilt-Casting Using the Niyama Criterion Function. Int. J. Metalcast. 2013, 7, 35–42. [Google Scholar] [CrossRef]
- Ivanina, E.S.; Monastyrskiy, V.P.; Ershov, M.Y. Quantitative Estimation of Formation of Shrinkage Porosity by the Niyama Criterion. Inorg. Mater. Appl. Res. 2022, 13, 100–105. [Google Scholar] [CrossRef]
- Abootorabi, A.; Korojy, B.; Jabbareh, M.A. Effect of Mould Design on the Niyama Criteria during Solidification of CH3C 80t Ingot. Ironmak. Steelmak. 2020, 47, 722–730. [Google Scholar] [CrossRef]
- Carlson, K.D.; Beckermann, C. Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2009, 40, 163–175. [Google Scholar] [CrossRef]
- Dwulat, R.; Janerka, K. Evaluation of the Metallurgical Quality of Nodular Cast Iron in the Production Conditions of a Foundry. J. Manuf. Mater. Process. 2023, 7, 18. [Google Scholar] [CrossRef]
- Ignaszak, Z. Discussion on Usability of the Niyama Criterion for Porosity Predicting in Cast Iron Castings. Arch. Foundry Eng. 2017, 17, 196–204. [Google Scholar] [CrossRef]
- Díez-Rodríguez, D. Gradient Based Porosity Calculation in Casting Simulation. Master´s. Thesis, Poli-technical University of Catalunya, Barcelona, Spain, 2017. Available online: https://upcommons.upc.edu/bitstream/handle/2117/113965/DanielDiez-TFM.pdf (accessed on 25 August 2023).
- Carlson, K.D.; Ou, S.; Hardin, R.A.; Beckermann, C. Development of New Feeding-Distance Rules Using Casting Simulation: Part I. Methodology. Metall. Mater. Trans. B 2002, 33, 731–740. [Google Scholar] [CrossRef]
- Ou, S.; Carlson, K.D.; Hardin, R.A.; Beckermann, C. Development of New Feeding-Distance Rules Using Casting Simulation: Part II. The New Rules. Metall. Mater. Trans. B 2002, 33, 741–755. [Google Scholar] [CrossRef]
- Jain, N.; Carlson, K.D.; Beckermann, C. Round Robin Study to Assess Variations in Casting Simulation Niyama Criterion Predictions. In Proceedings of the 61st SFSA Technical and Operating Conference; paper 5.5.; Steel Founders’ Society of America, Chicago, IL, USA, 2007; Available online: https://user.engineering.uiowa.edu/~becker/documents.dir/sfsa/2007-5.5_niyama.pdf (accessed on 12 September 2023).
- Ding, H.; Jin, X.; Chen, T.; Li, H. Study on Casting Defect Control of Austenitic 304 Complex Structural Parts. Int. J. Met. 2023, 17, 1427–1438. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, J.; Wang, L.; Zhang, Z.; Zhang, H.; Xia, X. Research and Development of Gating and Riser Process Optimization Integrated System for Steel Casting. Int. J. Met. 2023, 17, 2452–2468. [Google Scholar] [CrossRef]
- You, L.; Yao, L.; Li, X.; Jia, G.; Lv, G. Numerical Simulation and Casting Process Optimization of Cast Steel Node. International J. Adv. Manuf. Tech. 2023, 126, 5215–5225. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Fang, X.; Li, B.; Yang, Y.; Fang, L.; Hu, Z. Numerical Simulation and Optimization of Shell Mould Casting Process for Leaf Spring Bracket. China Foundry 2020, 17, 35–41. [Google Scholar] [CrossRef]
- Beeley, P. Foundry Technology, 2nd ed.; Butterworth-Heinemann: Madras, India, 2001. [Google Scholar]
- Jain, P.L. Principles of Foundry Technology, 5th ed.; Tata McGraw-Hill: New Delhi, India, 2009. [Google Scholar]
- Wlodawer, R. Directional Solidification of Steel Castings; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Campbell, J. Castings, 2nd ed.; Elsevier Butterworth-Heinemann: Cornwall, UK, 2003. [Google Scholar]
- Campbell, J. Castings Practice. The 10 Rules of Castings; Elsevier Buttherworth-Heinemann: King’s Lynn, UK, 2004. [Google Scholar]
- Steel Founders’ Society of America. Feeding & Risering Guidelines for Steel Castings; Steel Founders’ Society of America: Crystal Lake, IL, USA, 2001. [Google Scholar]
- Altair, Altair Inspire Cast Version 2022.1.1; Altair Engineering Inc.: Troy, MI, USA, 2022.
- Spittle, J.A.; Brown, S.G.R.; Sullivan, J.G. Application of Criteria Functions to the Prediction of Microporosity Levels in Castings. In Proceedings of the Fourth Decennial International Conference on Solidification Processing, Sheffield, UK, 7–10 July 1997; pp. 251–255. [Google Scholar]
- Viswanathan, S.; Apelian, D.; Donahue R., J.; DasGupta, B.; Gywn, M.; Jorstad, J.L.; Monroe, R.W.; Sahoo, M.; Prucha, T.E.; Twarog, D. ASM Handbook, 9th ed.; ASM International: Materials Park, OH, USA, 2008; Volume 15. [Google Scholar]
- Pellini, W.S. Factors which Determine Riser Adequacy and Feeding Range. Am. Foundrymen’S Soc. Trans. 1953, 61, 61–80. [Google Scholar]
- Li, J.; Chen, R.; Ma, Y.; Ke, W. Characterization and Prediction of Microporosity Defect in Sand Cast WE54 Alloy Castings. J. Mater. Sci. Technol. 2014, 30, 991–997. [Google Scholar] [CrossRef]
- Carlson, K.D.; Beckermann, C. Use of the Niyama Criterion to Predict Shrinkage-Related Leaks in High-Nickel Steel and Nickel-Based Alloy Castings. In Proceedings of the 62nd SFSA Technical and Operating Conference; Steel Founders’ Society of America, Crystal Lake, IL, USA, 2008; Available online: https://user.engineering.uiowa.edu/~becker/documents.dir/sfsa/2008-5.6_nileakers.pdf (accessed on 10 August 2023).
- Kang, M.; Gao, H.; Wang, J.; Ling, L.; Sun, B. Prediction of Microporosity in Complex Thin-Wall Castings with the Dimensionless Niyama Criterion. Materials 2013, 6, 1789–1802. [Google Scholar] [CrossRef] [PubMed]
- Liotti, E.; Previtali, B. Study of the Validity of the Niyama Criteria Function Applied to the Alloy AlSi7Mg. La Metall. Ital. 2006, 9, 33–37. [Google Scholar]
- Jeancolas, M. Donnés Générales Sur Le Masselottage Des Piéces Molées En Sable. Fonderie 1961, 341, 43–56. [Google Scholar]
Thermal Conductivity W/(m K) | Conductive Heat Transfer Coefficient W/(m2 K) | Convective Heat Transfer Coefficient W/(m2 K) |
---|---|---|
0.5 from 298.15 to 473.15 K | 400 | 1000 |
0.51 at 673.15 K | ||
0.59 at 973.15 K | ||
0.77 at 1273.2 K |
C | Si | Mn | P | S |
---|---|---|---|---|
≤0.10 | Traces | 0.30–0.60 | 0.045 | 0.045 |
Thermal Conductivity (W/(mK) |
---|
27.6 at 1123 K |
27.2 at 1223 K |
28.85 at 1323 K |
29.85 at 1423 K |
29.7 at 1523 K |
29.85 at 1723 K |
30 at 1873 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjabacas, M.C.; Miguel, V. A Methodology to Define the Niyama Criterion Reinforced with the Solid Fraction Analysis: Application to Sand Casting of Steel Bars. Metals 2023, 13, 1777. https://doi.org/10.3390/met13101777
Manjabacas MC, Miguel V. A Methodology to Define the Niyama Criterion Reinforced with the Solid Fraction Analysis: Application to Sand Casting of Steel Bars. Metals. 2023; 13(10):1777. https://doi.org/10.3390/met13101777
Chicago/Turabian StyleManjabacas, María Carmen, and Valentín Miguel. 2023. "A Methodology to Define the Niyama Criterion Reinforced with the Solid Fraction Analysis: Application to Sand Casting of Steel Bars" Metals 13, no. 10: 1777. https://doi.org/10.3390/met13101777
APA StyleManjabacas, M. C., & Miguel, V. (2023). A Methodology to Define the Niyama Criterion Reinforced with the Solid Fraction Analysis: Application to Sand Casting of Steel Bars. Metals, 13(10), 1777. https://doi.org/10.3390/met13101777