Influence of the Chemical Composition on the Phase Stability and Mechanical Properties of Biomedical Ti-Nb-Mo-Zr Alloys
Abstract
:1. Introduction
Alloy | [Moeq] % | Alloy Manufacturing Route | σe (MPa) | YM (GPa) | Phases Present | Remarks | Ref. |
---|---|---|---|---|---|---|---|
Ti-6Mo | 6 | As cast | - | 64 (1) | α″ | The orthorhombic α″ phase Ti-7.5Mo alloy had the lowest YM of all the phases in the binary Ti-Mo system. Among all β phase alloys, Ti-10Mo had the highest YM and Ti-15Mo had the lowest. | [24] |
Ti-7.5Mo | 7.5 | - | 55 (1) | α″ | |||
Ti-9Mo | 9 | - | 75 (1) | β + α″ | |||
Ti-10Mo | 10 | - | 95 (1) | β | |||
Ti-12.5Mo | 12.5 | - | 82 (1) | β | |||
Ti-15Mo | 15 | - | 71 (1) | β | |||
Ti-20Mo | 20 | - | 85 (1) | β | |||
Ti-8Mo-6Nb-4Zr | 9.68 | ST (80% red). + AT 950 °C/2 h + WQ | 899 | 72 (2) | β | A lower Nb content allowed α″ phase precipitation, as Nb acts as a β-stabilizer element. An increase in Zr favored a reduction in YM, besides a drop in TS as the Nb content decreased. | [31] |
Ti-8Mo-5Nb-3Zr | 9.40 | 947 | 69 (2) | β | |||
Ti-8Mo-4Nb-5Zr | 9.12 | 483 | 52 (2) | β + α″ | |||
Ti-10Mo-3Nb | 10.84 | ST 950 °C/1 h + WQ | - | 105 (2) | β + α′ + ω | In these alloys, an increase in Nb content favored an increase in YM, while no significant changes in hardness were observed. | [32] |
Ti-10Mo-6Nb | 11.68 | - | 122 (2) | ||||
Ti-10Mo-9Nb | 12.52 | - | 120 (2) | ||||
Ti-10Mo | 10 | ST 850 °C + WQ | 690 | 93 (3) | β + ω | After solubilization, an increase in Mo stabilized the β phase, although a reduction in TS and in YM were observed, probably due to the absence of the ω phase. | [33] |
Ti-20Mo | 20 | 428 | 75 (3) | β | |||
Ti-25Nb | 7 | ST 950 °C/1 h + ice water | - | 80 (2) | α″ | An increase in Nb favored a decrease in YM | [29] |
Ti-30Nb | 8.4 | - | 85 (2) | β + α″ | |||
Ti-35Nb | 9.8 | - | 72 (2) | β + α″ | |||
Ti-40Nb | 11.2 | - | 62 (2) | β + α″ | |||
Ti-29Nb-13Ta | 10.98 | CR (75% red.) + AT 845 °C/30 min + WQ | 250 | 64 (3) | β | Zr favored a decrease in YM and an increase in TS. | [8] |
Ti-29Nb-13Ta-4,6Zr | 10.98 | 300 | 50 (3) | ||||
Ti-29Nb-13Ta-4Mo | 14.98 | 620 | 50 (3) | β | An increase in Nb did not cause any significant changes in YM, though caused a slight increase in TS. | ||
Ti-16Nb-13Ta-4Mo | 11.34 | 590 | 47 (3) | ||||
Ti-29Nb-13Ta-4Mo | 14.98 | 620 | 50 (3) | β | The presence of Mo, rather than Sn, favored an increase in TS, and no relevant variation in YM was evidenced. | ||
Ti-29Nb-13Ta-2Sn | 10.98 | 450 | 47 (3) | ||||
Ti-29Nb-13Ta-4,6Zr | 10.98 | 300 | 50 (3) | β | Both alloys presented similar YM. Mo and Zr were efficient in reducing YM, Mo being more efficient in increasing TS. | ||
Ti-29Nb-13Ta-4Mo | 14.98 | 620 | |||||
Ti-30Nb-2Sn | 8.40 | HF (850 °C) + AT 1000 °C/1 h + WQ + 260 °C/4 h + WQ | 500 | 65 (2) | β + α″ | A higher Nb content favored a lower YM. | [34] |
Ti-32.5Nb-6.8Zr-2.7Sn-0.3O | 9.10 | Cold Forging 90% | 1093 | 54 (3) | β | [35] | |
Ti-33.6Nb-4Sn | 9.41 | Cold Forging 91% | - | 40 (3) | β + α″ | [36] | |
Ti-35Nb-5Ta-7Mo | 17.9 | ST 1000 °C/2 h +WQ | 510 | 59 (3) | β | An increase in Nb content to 35% and the presence of Mo favored a decrease in all mechanical properties. | [37] |
Ti-32.5Nb-6.8Zr-2.7Sn-0.3O | 9.10 | ST 1000 °C/1 h + WQ | 829 | 67 (3) | β | [35] |
2. Materials and Methods
3. Results and Discussion
- -
- Young’s modulus decreases with an increase in Mo%, as observed by Li et al. [44] in Ti-26Nb-xMo alloys (x = 0, 2, 4, 6 and 8 wt %).
- -
- Following Kim et al. [45], Young’s modulus gradually decreases with decreasing Nb content from 29 wt % to 24 wt % for both Ti-xNb-4Zr and Ti-xNb-8Zr alloys.
- -
- As reported by Tan et al. [46], microhardness decreases when Nb content increases from 23 wt % to 33 wt % in Ti-xNb-7Zr alloys.
- -
- Chui et al. [4] investigated Ti-Zr-Nb-Mo alloys and also measured an increase in microhardness with increasing Mo content.
- -
- In the same way, Ning et al. [47] concluded that an increase in Zr content reduces the elastic modulus of Ti-35Nb-xZr alloys (0 ≤ x ≤ 10 wt %).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Beta titanium alloys: The lowest elastic modulus for biomedical applications: A review. Int. J. Chem. 2014, 8, 822–827. [Google Scholar]
- Yao, T.T.; Zhang, Y.G.; Yang, L.; Bu, Z.Q.; Li, J.F. A Metastable Ti–Zr–Nb–Al Multi-Principal-Element Alloy with High Tensile Strength and Ductility. Mater. Sci. Eng. A 2022, 851, 143646. [Google Scholar] [CrossRef]
- Stráský, J.; Preisler, D.; Seiner, H.; Bodnárová, L.; Janovská, M.; Košutová, T.; Harcuba, P.; Šalata, K.; Halmešová, K.; Džugan, J.; et al. Achieving High Strength and Low Elastic Modulus in Interstitial Biomedical Ti–Nb–Zr–O Alloys through Compositional Optimization. Mater. Sci. Eng. A 2022, 839, 142833. [Google Scholar] [CrossRef]
- Chui, P.; Jing, R.; Zhang, F.; Li, J.; Feng, T. Mechanical Properties and Corrosion Behavior of β-Type Ti-Zr-Nb-Mo Alloys for Biomedical Application. J. Alloys Compd. 2020, 842, 155693. [Google Scholar] [CrossRef]
- Lee, T.; Lee, S.; Kim, I.S.; Moon, Y.H.; Kim, H.S.; Park, C.H. Breaking the Limit of Young’s Modulus in Low-Cost Ti–Nb–Zr Alloy for Biomedical Implant Applications. J. Alloys Compd. 2020, 828, 154401. [Google Scholar] [CrossRef]
- Pilz, S.; Gustmann, T.; Günther, F.; Zimmermann, M.; Kühn, U.; Gebert, A. Controlling the Young’s Modulus of a ß-Type Ti-Nb Alloy via Strong Texturing by LPBF. Mater. Des. 2022, 216, 110516. [Google Scholar] [CrossRef]
- Frutos, E.; Karlík, M.; Jiménez, J.A.; Langhansová, H.; Lieskovská, J.; Polcar, T. Development of New β/A″-Ti-Nb-Zr Biocompatible Coating with Low Young’s Modulus and High Toughness for Medical Applications. Mater. Des. 2018, 142, 44–55. [Google Scholar] [CrossRef]
- Kuroda, D.; Niinomi, M.; Morinaga, M.; Kato, Y.; Yashiro, T. Design and Mechanical Properties of New β Type Titanium Alloys for Implant Materials. Mater. Sci. Eng. A243 1998, 243, 244–249. [Google Scholar] [CrossRef]
- Nunes, A.R.V.; Borborema, S.; Araújo, L.S.; Dille, J.; Malet, L.; de Almeida, L.H. Production, Microstructure and Mechanical Properties of Cold-Rolled Ti-Nb-Mo-Zr Alloys for Orthopedic Applications. J. Alloys Compd. 2018, 743, 141–145. [Google Scholar] [CrossRef]
- Weng, W.; Biesiekierski, A.; Lin, J.; Ozan, S.; Li, Y.; Wen, C. Development of Beta-Type Ti-Nb-Zr-Mo Alloys for Orthopedic Applications. Appl. Mater. Today 2021, 22, 100968. [Google Scholar] [CrossRef]
- Wu, J.; Tan, X.; An, X.; Zhang, J.; Guo, Y.; Liu, J.; Luo, Y.; Yao, W.; Kong, Q.; Wang, Q. Development of Biomedical Ti-Nb-Zr-Mn Alloys with Enhanced Mechanical Properties and Corrosion Resistance. Mater. Today Commun. 2022, 30, 103027. [Google Scholar] [CrossRef]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-Alloys for Long-Term Implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.V.; Borborema, S.; Araújo, L.S.; de Almeida, L.H.; Kaufman, M.J. Production of a Novel Biomedical β-Type Titanium Alloy Ti-23.6Nb-5.1Mo-6.7Zr with Low Young’s Modulus. Metals 2022, 12, 1588. [Google Scholar] [CrossRef]
- Hanada, S.; Masahashi, N.; Semboshi, S.; Jung, T.K. Low Young’s Modulus of Cold Groove-Rolled β Ti–Nb–Sn Alloys for Orthopedic Applications. Mater. Sci. Eng. A 2021, 802, 140645. [Google Scholar] [CrossRef]
- Hanada, S.; Masahashi, N.; Jung, T.K. Effect of Stress-Induced A″ Martensite on Young’s Modulus of β Ti-33.6Nb-4Sn Alloy. Mater. Sci. Eng. A 2013, 588, 403–410. [Google Scholar] [CrossRef]
- Jung, T.K.; Lee, H.S.; Semboshi, S.; Masahashi, N.; Abumiya, T.; Hanada, S. A New Concept of Hip Joint Stem and Its Fabrication Using Metastable TiNbSn Alloy. J. Alloys Compd. 2012, 536, S582–S585. [Google Scholar] [CrossRef]
- Hanada, S.; Masahashi, N.; Jung, T.K.; Miyake, M.; Sato, Y.S.; Kokawa, H. Effect of Swaging on Young’s Modulus of β Ti–33.6Nb–4Sn Alloy. J. Mech. Behav. Biomed. Mater. 2014, 32, 310–320. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. Titanium and Titanium Alloys—Fundamentals and Applications; DLR—German Aerospace Center—Institute of Materials Research, Wiley: Köln, Germany, 2003; ISBN 3527305343. [Google Scholar]
- Chen, G.; Xiao, Y.; Ji, X.; Liang, X.; Hu, Y.; Cai, Z.; Liu, J.; Tong, Y. Effects of Zr Content on the Microstructure and Performance of TiMoNbZrx High-Entropy Alloys. Metals 2021, 11, 1315. [Google Scholar] [CrossRef]
- Mythili, R.; Paul, V.T.; Saroja, S.; Vijayalakshmi, M.; Raghunathan, V.S. Study of Transformation Behavior in a Ti-4.4 Ta-1.9 Nb Alloy. Mater. Sci. Eng. A 2005, 390, 299–312. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, Q.; Wen, D.; Xu, F.; Chen, G.; Dong, C.; Sun, L.; Liaw, P.K. Effects of Nb and Zr on Structural Stabilities of Ti-Mo-Sn-Based Alloys with Low Modulus. Mater. Sci. Eng. A 2017, 687, 1–7. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, C.; Liaw, P.K. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [β/(α + β)] Phase-Boundary Slopes. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 3440–3447. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.H. A Review on Alloy Design, Biological Response, and Strengthening of β-Titanium Alloys as Biomaterials. Mater. Sci. Eng. C 2021, 121, 111661. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.F.; Ju, C.P.; Lin, J.H.C. Structure and Properties of Cast Binary Ti–Mo Alloys. Biomaterials 1999, 20, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Yang, R.; Li, S.; Hao, Y.L.; Cui, Y.Y.; Niinomi, M.; Guo, Z.X. Wear Characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V Alloys for Biomedical Applications. Wear 2004, 257, 869–876. [Google Scholar] [CrossRef]
- Borborema, S.; de Holanda Ferrer, V.; Rocha, A.d.C.; Cossú, C.M.F.A.; Nunes, A.R.V.; Nunes, C.A.; Malet, L.; de Almeida, L.H. Influence of Nb Addition on A″ and ω Phase Stability and on Mechanical Properties in the Ti-12Mo-XNb Stoichiometric System. Metals 2022, 12, 1508. [Google Scholar] [CrossRef]
- Lee, C.M.; Ju, C.P.; Chern Lin, J.H. Structure-Property Relationship of Cast Ti-Nb Alloys. J. Oral Rehabil. 2002, 29, 314–322. [Google Scholar] [CrossRef]
- Yao, Q.; Sun, J.; Xing, H.; Guo, W.Y. Influence of Nb and Mo Contents on Phase Stability and Elastic Property of β-Type Ti-X Alloys. Trans. Nonferrous Met. Soc. China 2007, 17, 1417–1421. [Google Scholar] [CrossRef]
- Mantani, Y.; Tajima, M. Effect of Ageing on Internal Friction and Elastic Modulus of Ti-Nb Alloys. Mater. Sci. Eng. A 2006, 442, 409–413. [Google Scholar] [CrossRef]
- Vieira Nunes, A.R.; Borborema, S.; Araújo, L.S.; Malet, L.; Dille, J.; Henrique de Almeida, L. Influence of Thermo-Mechanical Processing on Structure and Mechanical Properties of a New Metastable β Ti–29Nb–2Mo–6Zr Alloy with Low Young’s Modulus. J. Alloys Compd. 2020, 820, 153078. [Google Scholar] [CrossRef]
- Nnamchi, P.S.; Obayi, C.S.; Todd, I.; Rainforth, M.W. Mechanical and Electrochemical Characterisation of New Ti-Mo-Nb-Zr Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2016, 60, 68–77. [Google Scholar] [CrossRef]
- Gabriel, S.B.; Dille, J.; Nunes, C.A.; Soares, G.D.A. The Effect of Niobium Content on the Hardness and Elastic Modulus of Heat-Treated Ti-10Mo-XNb Alloys. Mater. Res. 2010, 13, 333–337. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Luo, D.M. Microstructures and Mechanical Properties of Ti-Mo Alloys Cold-Rolled and Heat Treated. Mater. Charact. 2011, 62, 931–937. [Google Scholar] [CrossRef]
- Lopes, E.S.N.; Contieri, R.J.; Button, S.T.; Caram, R. Femoral Hip Stem Prosthesis Made of Graded Elastic Modulus Metastable β Ti Alloy. Mater. Des. 2015, 69, 30–36. [Google Scholar] [CrossRef]
- Lan, C.; Wu, Y.; Guo, L.; Chen, F. Effects of Cold Rolling on Microstructure, Texture Evolution and Mechanical Properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O Alloy for Biomedical Applications. Mater. Sci. Eng. A 2017, 690, 170–176. [Google Scholar] [CrossRef]
- Hanada, S.; Masahashi, N.; Jung, T.K.; Yamada, N.; Yamako, G.; Itoi, E. Fabrication of a High-Performance Hip Prosthetic Stem Using β Ti-33.6Nb-4Sn. J. Mech. Behav. Biomed. Mater. 2014, 30, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Choe, H.C.; Saji, V.S.; Ko, Y.M. Mechanical Properties and Corrosion Resistance of Low Rigidity Quaternary Titanium Alloy for Biomedical Applications. Trans. Nonferrous Met. Soc. China 2009, 19, 862–865. [Google Scholar] [CrossRef]
- Abdel-Hady, M.; Hinoshita, K.; Morinaga, M. General Approach to Phase Stability and Elastic Properties of β-Type Ti-Alloys Using Electronic Parameters. Scr. Mater. 2006, 55, 477–480. [Google Scholar] [CrossRef]
- Abdel-Hady, M.; Fuwa, H.; Hinoshita, K.; Kimura, H.; Shinzato, Y.; Morinaga, M. Phase Stability Change with Zr Content in β-Type Ti-Nb Alloys. Scr. Mater. 2007, 57, 1000–1003. [Google Scholar] [CrossRef]
- Correa, D.R.N.; Vicente, F.B.; Araújo, R.O.; Lourenço, M.L.; Kuroda, P.A.B.; Buzalaf, M.A.R.; Grandini, C.R. Effect of the Substitutional Elements on the Microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo Systems Alloys. J. Mater. Res. Technol. 2015, 4, 180–185. [Google Scholar] [CrossRef]
- Nejezchlebová, J.; Janovská, M.; Seiner, H.; Sedlák, P.; Landa, M.; Šmilauerová, J.; Stráský, J.; Harcuba, P.; Janeček, M. The Effect of Athermal and Isothermal ω Phase Particles on Elasticity of β-Ti Single Crystals. Acta Mater. 2016, 110, 185–191. [Google Scholar] [CrossRef]
- Ho, W.-F. Effect of Omega Phase on Mechanical Properties of Ti-Mo Alloys for Biomedical Applications. J. Med. Biol. Eng. 2008, 28, 47–51. [Google Scholar]
- Ling, J.; Huang, D.; Bai, K.; Li, W.; Yu, Z.; Chen, W. High-Throughput Development and Applications of the Compositional Mechanical Property Map of the β Titanium Alloys. J. Mater. Sci. Technol. 2021, 71, 201–210. [Google Scholar] [CrossRef]
- Li, P.; Ma, X.; Tong, T.; Wang, Y. Microstructural and Mechanical Properties of β-Type Ti–Mo–Nb Biomedical Alloys with Low Elastic Modulus. J. Alloys Compd. 2020, 815, 152412. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, H.Y.; Miyazaki, S. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young’s Modulus in Ti-Nb-Zr Alloys. Materials 2020, 13, 476. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.H.C.; Baghi, A.D.; Ghomashchi, R.; Xiao, W.; Oskouei, R.H. Effect of Niobium Content on the Microstructure and Young’s Modulus of Ti-XNb-7Zr Alloys for Medical Implants. J. Mech. Behav. Biomed. Mater. 2019, 99, 78–85. [Google Scholar] [CrossRef]
- Ning, C.; Ding, D.; Dai, K.; Zhai, W.; Chen, L. The Effect of Zr Content on the Microstructure, Mechanical Properties and Cell Attachment of Ti–35Nb–XZr Alloys. Biomed. Mater. 2010, 5, 45006. [Google Scholar] [CrossRef]
- Yumak, N.; Aslantas, K. A Review on Heat Treatment Efficiency in Metastable b Titanium Alloys: The Role of Treatment Process and Parameters. J. Mater. Res. Technol. 2020, 9, 15360–16280. [Google Scholar] [CrossRef]
- Pilz, S.; Hariharan, A.; Günther, F.; Zimmermann, M.; Gebert, A. Influence of Isothermal Omega Precipitation Aging on Deformation Mechanisms and Mechanical Properties of a β-Type Ti-Nb Alloy. J. Alloys Compd. 2023, 930, 167309. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, S.; Yang, S.; Ke, Y.; Zhang, X.; Zhou, K. Precipitation Behavior of ω Phase and Ω→α Transformation in near β Ti-5al-5mo-5v-1cr-1fe Alloy during Aging Process. Metals 2021, 11, 273. [Google Scholar] [CrossRef]
Alloys Ident. | Alloys (% Mass) | Ti | Nb | Mo | Zr | Bo | Md | [Moeq]% [20] | [Moeq]% [21] | e/a |
---|---|---|---|---|---|---|---|---|---|---|
% Atomic | ||||||||||
1 | Ti-29Nb-2Mo-3Zr | 79.03 | 17.89 | 1.19 | 1.88 | 2.854 | 2.446 | 10.12 | 12.50 | 4.203 |
2 | Ti-29Nb-2Mo-6Zr | 76.75 | 18.20 | 1.22 | 3.84 | 2.861 | 2.456 | 10.12 | 13.43 | 4.206 |
3 | Ti-24Nb-4Mo-3Zr | 81.24 | 14.56 | 2.35 | 1.85 | 2.847 | 2.441 | 10.72 | 12.85 | 4.193 |
4 | Ti-24Nb-4Mo-6Zr | 79.03 | 14.81 | 2.39 | 3.77 | 2.853 | 2.450 | 10.72 | 13.78 | 4.196 |
Alloy | Hardness (HV-0.2) | YM (GPa) | HV/YM |
---|---|---|---|
Ti-29Nb-2Mo-3Zr | 212.2 ± 7.0 | 64 ± 2.0 | 3.31 |
Ti-29Nb-2Mo-6Zr | 228.4 ± 5.6 | 62 ± 2.0 | 3.65 |
Ti-24Nb-4Mo-3Zr | 235.2 ± 4.8 | 60 ± 1.0 | 3.92 |
Ti-24Nb-4Mo-6Zr | 244.8 ± 9.0 | 56 ± 1.0 | 4.37 |
Ti-6Al-4V | 338 ± 6.0 | 118 ± 1.0 | 2.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, A.R.V.; Borborema, S.; Araújo, L.S.; Rodrigues, T.Z.L.; Malet, L.; Dille, J.; de Almeida, L.H. Influence of the Chemical Composition on the Phase Stability and Mechanical Properties of Biomedical Ti-Nb-Mo-Zr Alloys. Metals 2023, 13, 1889. https://doi.org/10.3390/met13111889
Nunes ARV, Borborema S, Araújo LS, Rodrigues TZL, Malet L, Dille J, de Almeida LH. Influence of the Chemical Composition on the Phase Stability and Mechanical Properties of Biomedical Ti-Nb-Mo-Zr Alloys. Metals. 2023; 13(11):1889. https://doi.org/10.3390/met13111889
Chicago/Turabian StyleNunes, Aline Raquel Vieira, Sinara Borborema, Leonardo Sales Araújo, Taissa Zangerolami Lopes Rodrigues, Loïc Malet, Jean Dille, and Luiz Henrique de Almeida. 2023. "Influence of the Chemical Composition on the Phase Stability and Mechanical Properties of Biomedical Ti-Nb-Mo-Zr Alloys" Metals 13, no. 11: 1889. https://doi.org/10.3390/met13111889
APA StyleNunes, A. R. V., Borborema, S., Araújo, L. S., Rodrigues, T. Z. L., Malet, L., Dille, J., & de Almeida, L. H. (2023). Influence of the Chemical Composition on the Phase Stability and Mechanical Properties of Biomedical Ti-Nb-Mo-Zr Alloys. Metals, 13(11), 1889. https://doi.org/10.3390/met13111889