Research Progress on the Creep Resistance of High-Temperature Titanium Alloys: A Review
Abstract
:1. Introduction
2. Creep Research on High-Temperature Titanium Alloys
2.1. Creep Phenomenon and Law
2.2. Classical Creep Theory
3. Factors Affecting Creep Behavior of High-Temperature Titanium Alloys
3.1. Creep Parameters
3.2. Alloy Composition
Alloy | Tensile Property at Room Temperature | Tensile Property at Room Temperature after 600 °C/100 h Thermal Exposure | Creep Resistance at 600 °C/150 MPa/100 h | Microstructure | ||||||
---|---|---|---|---|---|---|---|---|---|---|
UTS /MPa | YS /MPa | EI /% | RA /% | UTS /MPa | YS /MPa | EI /% | RA /% | εr /% | ||
Ti1100 [83] | 1094 | 1008 | 8.8 | 11 | 1119 | 1038 | 5.2 | 7.6 | 0.09 | Lamellar |
IMI834 [84,85,86] | 1089 | 983 | 8.5 | 17.5 | 1129 | 1045 | 3.2 | - | 0.1 | Bimodal |
1041 | 959 | 8.5 | 13 | - | - | - | - | 0.07 | Lamellar | |
BT36 [79] | 1100 | 1049 | 15.1 | 36.3 | - | - | - | - | - | Equiaxed |
1142 | 1085 | 13.4 | 36.5 | - | - | - | - | 0.2 | Bimodal | |
1159 | 1054 | 9.7 | 18.7 | - | - | - | - | 0.146 | Lamellar | |
Ti60 [87] | 1060 | 1010 | 11 | 24 | 1120 | 1050 | 7 | 8 | 0.1 | Bimodal |
1080 | 1020 | 9 | 15 | 1100 | 1040 | 4 | 7 | 0.076 | Lamellar | |
Ti600 [88,89] | 1070 | 965 | 15 | 24 | 1070 | 995 | 6 | 15 | 0.099 | Bimodal |
1060 | 955 | 11 | 19 | 1090 | 1010 | 6 | 13 | 0.081 | Lamellar |
3.2.1. α Stable Element
3.2.2. Neutral Element
3.2.3. Isomorphic β Stable Element
3.2.4. Eutectoid β Stable Element
3.2.5. Rare Earth Elements
3.3. Microstructure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Deng, T.S.; Zhang, Y.H.; Liang, Y.Q.; Li, R.X.; Dong, T.H. Review on the creep resistance of high-temperature titanium alloy. Trans. Indian Inst. Met. 2021, 74, 215–222. [Google Scholar] [CrossRef]
- Lavisse, L.; Berger, P.; Kanjer, A.; Optasanu, V.; Gorny, C.; Peyre, P.; François, M.; Montesin, T.; Marco De Lucas, M.C. Tracking the role of nitrogen in the improvement of the high temperature oxidation resistance of titanium by mechanical treatments. Corros. Sci. 2022, 197, 110080. [Google Scholar] [CrossRef]
- Liu, F.L.; Chen, Y.; He, C.; Li, L.; Wang, C.; Li, H.Z.; Zhang, H.; Wang, Q.Y.; Liu, Y.J. Tensile and very high cycle fatigue behaviors of a compressor blade titanium alloy at room and high temperatures. Mater. Sci. Eng. A 2021, 811, 141049. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke Jr, E.A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Chen, C.L.; Shang, D.G.; Xiao, N.M.; Li, X.W.; Sha, A.X.; Li, J.; Li, J.X.; Tang, Z.Q.; Han, Z.Y.; Guo, Y.E.; et al. Fatigue life prediction of Ti60 titanium alloy under very high cycle loading at different temperatures. Int. J. Fatigue 2023, 176, 107838. [Google Scholar] [CrossRef]
- Yu, R.H.; Li, X.; Li, W.J.; Chen, J.T.; Guo, X.; Li, J.H. Application of four different models for predicting the high-temperature flow behavior of TG6 titanium alloy. Mater. Today Commun. 2021, 26, 102004. [Google Scholar] [CrossRef]
- Ochonogor, O.F.; Esther, T.A.; Nyembwe, D. A review on the effect of creep and microstructural change under elevated temperature of Ti6Al4V alloy for turbine engine application. Mater. Today Proc. 2017, 4, 250–256. [Google Scholar] [CrossRef]
- Sridhar, B.R.; Raghunath, B.J.; Ramachandra, K.; Nafde, W.G. Measurement of residual stresses due to shot peening on titanium alloys IMI-318 and IMI-685 by hole drilling method. In Proceedings of the Australian Aeronautical Conference, Melbourne, Australia, 9–11 October 1989; pp. 161–167. [Google Scholar]
- Evans, R.W.; Hull, R.J.; Wilshire, B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834. J. Mater. Process Technol. 1996, 56, 492–501. [Google Scholar] [CrossRef]
- Gogia, A.K. High-temperature titanium alloys. Defence Sci. J. 2005, 55, 149–173. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Chen, Y.N.; Zhang, X.M.; Zeng, W.D.; Wang, L. Phase Transformation and Heat Treatment of Titanium Alloy; Central South University Press: Changsha, China, 2012. [Google Scholar]
- Zhang, Z.X.; Fan, J.K.; Tang, B.; Kou, H.C.; Wang, J.; Wang, X.; Wang, S.Y.; Wang, Q.J.; Chen, Z.Y.; Li, J.S. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65. J. Mater. Sci. Technol. 2020, 49, 56–69. [Google Scholar] [CrossRef]
- Li, G.; Sun, C.Q. High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue. J. Mater. Sci. Technol. 2022, 122, 128–140. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Cai, L.; Zhang, Y.C.; Sun, R.; Li, X.L.; Imran Lashari, M.; Hamid, U.; Ding, X.M.; Wang, P. Microstructure based cracking behavior and life assessment of titanium alloy under very-high-cycle fatigue with elevated temperatures. Int. J. Fatigue 2022, 161, 106914. [Google Scholar] [CrossRef]
- Wen, P.C.; Yuan, L.J.; Tao, R.; Li, J.; Li, D. First-principles investigation of interaction between surface oxygen and other alloy atoms in α-Ti (0001) for designing high-temperature titanium alloy. Appl. Surf. Sci. 2022, 604, 154535. [Google Scholar] [CrossRef]
- Valenza, T.C.; Chao, P.; Weber, P.K.; Neill, O.K.; Marquis, E.A. Protective role of silicon in the high-temperature oxidation of titanium. Corros. Sci. 2023, 217, 111110. [Google Scholar] [CrossRef]
- Badea, L.; Surand, M.; Ruau, J.; Viguier, B. Creep behavior of Ti-6Al-4V from 450 °C to 600 °C. Univ. Polytech. Buchar. Sci. Bull. Ser. B 2014, 76, 185–196. [Google Scholar]
- Fröbel, U.; Stark, A.; Paul, J.; Pyczak, F. Assessment of the capability of Zr, Y, La, Gd, Dy, C, and Si to enhance the creep strength of gamma titanium aluminide alloys based on their effect on flow stress and thermal activation parameters. Intermetallics 2023, 162, 108018. [Google Scholar] [CrossRef]
- Yang, D.Y.; Tian, W.Q.; Zhang, X.Q.; Si, K.; Li, J.Q. Creep behavior of near α high temperature Ti-6.6Al-4.6Sn-4.6Zr-0.9Nb-1.0Mo-0.32Si alloy. Front. Mater. 2021, 8, 682831. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Xu, L.J.; Liang, Z.Q.; Cao, S.Z.; Yang, J.K.; Xiao, S.L.; Tian, J.; Chen, Y.Y. Effect of solution treatment and aging on microstructure, tensile properties and creep behavior of a hot-rolled β high strength titanium alloy with a composition of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe-0.1B-0.1C. Mater. Sci. Eng. A 2021, 823, 141728. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Xiao, S.L.; Wang, X.S.; Guo, Y.F.; Yang, J.H.; Xu, L.J.; Chen, Y.Y. High temperature creep behavior of an as-cast near-α Ti-6Al-4Sn-4Zr-0.8Mo-1Nb-1W-0.25Si alloy. Mater. Sci. Eng. A 2021, 803, 140487. [Google Scholar] [CrossRef]
- Zhang, J.S. High Temperature Deformation and Fracture of Materials; Science Press: Beijing, China, 2007. [Google Scholar]
- Kassner, M.E.; Kumar, P.; Blum, W. Harper-Dorn creep. Int. J. Plast. 2007, 23, 980–1000. [Google Scholar] [CrossRef]
- Ginter, T.J.; Chaudhury, P.K.; Monhamed, F.A. An investigation of Harper-Dorn creep at large strains. Acta Mater. 2001, 49, 263–272. [Google Scholar] [CrossRef]
- Huang, M.Z.; Shi, D.K. Mechanical Properties of Metals; Xi’an Jiaotong University Press: Xi’an, China, 1986. [Google Scholar]
- Tatsuya, K.; Tetsuya, M.; Eiichi, S.; Kazuhiko, K. Suppression of ambient-temperature creep in CP-Ti by cold-rolling. Mater. Sci. Eng. A 2009, 510–511, 364–367. [Google Scholar]
- Chokshi, A.H. An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina. J. Mater. Sci. 1990, 25, 3221–3228. [Google Scholar] [CrossRef]
- Stevens, R.N. Grain-boundary sliding in metals. Metall. Rev. 1966, 11, 129–142. [Google Scholar] [CrossRef]
- Blum, W.; Eisenlohr, P. Dislocation mechanics of creep. Mater. Sci. Eng. A 2009, 510–511, 7–13. [Google Scholar] [CrossRef]
- Roylance, D. The dislocation basis of yield and creep. In Modules in Mechanics of Materials; Massachusetts Institute of Technology: Cambridge, MA, USA, 2001; pp. 1999–2001. [Google Scholar]
- Langdon, T.G.; Mohamed, F.A. A simple method of constructing an Ashby-type deformation mechanism map. J. Mater. Sci. 1978, 13, 1282–1290. [Google Scholar] [CrossRef]
- Malakondaiah, G.; Rao, P.R. Creep of alpha-titanium at low stresses. Acta Metall. 1981, 29, 1263–1275. [Google Scholar] [CrossRef]
- Jaffee, R.I.; Burte, H.M. Titanium Science and Technology; Springer: New York, NY, USA, 1973. [Google Scholar]
- Blum, W.; Maier, W. Harper-Dorn Creep—A Myth? Phys. Status Solidi 1999, 171, 467–474. [Google Scholar] [CrossRef]
- Praveen, K.; Michael, E.K.; Wolfgang, B.; Philip, E.; Terence, G.L. New observations on high-temperature creep at very low stresses. Mater. Sci. Eng. A 2009, 510–511, 20–24. [Google Scholar]
- Blum, W. On the validity of the natural creep law at low stresses. Materialia 2021, 15, 100958. [Google Scholar] [CrossRef]
- Ashby, M.F. Boundary defects, and atomistic aspects of boundary sliding and diffusional creep. Surf. Sci. 1972, 31, 498–542. [Google Scholar] [CrossRef]
- Raj, R.; Ashby, M.F. On grain boundary sliding and diffusional creep. Metall. Trans. 1971, 2, 1113–1127. [Google Scholar] [CrossRef]
- Arzt, E.; Ashby, M.F.; Verrall, R.A. Interface controlled diffusional creep. Acta Metall. 1983, 31, 1977–1989. [Google Scholar] [CrossRef]
- Herring, C. Diffusional viscosity of a polycrysralline solid. J. Appl. Phys. 1950, 21, 437–445. [Google Scholar] [CrossRef]
- Coble, R.L. A model for boundary-diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 1963, 34, 1679–1682. [Google Scholar] [CrossRef]
- Zeng, L.Y.; Yang, G.J.; Hong, Q.; Zhao, Y.Q. High temperature creep behavior of Ti-600 alloy. Trans. Mater. Heat Treat. 2011, 32, 81–85. [Google Scholar]
- Viswanathan, G.B.; Vasudevan, V.K.; Mills, M.J. Modification of the jogged-screw model for creep of γ-TiAl. Acta Mater. 1999, 47, 1399–1411. [Google Scholar] [CrossRef]
- Viswanathan, G.B.; Karthikeyan, S.; Hayes, R.W.; Mills, M.J. Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation. Acta Mater. 2002, 50, 4965–4980. [Google Scholar] [CrossRef]
- Morrow, B.M.; Kozar, R.W.; Anderson, K.R.; Mills, M.J. An examination of the use of the Modified Jogged-Screw model for predicting creep behavior in Zircaloy-4. Acta Mater. 2013, 61, 4452–4460. [Google Scholar] [CrossRef]
- Rosenhain, W.; Humfrey, J.C.W. The crystalline structure of iron at high temperatures. Proc. R. Soc. A 1910, 83, 200–209. [Google Scholar]
- Wood, W.A.; Wilms, G.R.; Rachinger, W.A. Three basic stages in the mechanism of deformation of metals at different temperatures and strain-rates. J. Inst. Met. 1951, 79. [Google Scholar]
- Langdon, T.G. Grain boundary sliding as a deformation mechanism during creep. Philos. Mag. 1970, 22, 689–700. [Google Scholar] [CrossRef]
- Rudinger, K.; Fischer, D. Relationship between primary alpha content, tensile properties and high cycle fatigue behavior of Ti-6Al-4V. Jpn. Titanium’80 Sci. Technol. 1985, 21–23. [Google Scholar]
- Zhang, J.S. Material Strength; Harbin Institute of Technology Press: Harbin, China, 2004. [Google Scholar]
- Lagneborg, R. Bypassing of dislocations past particles by a climb mechanism. Scr. Metall. 1973, 7, 605–613. [Google Scholar] [CrossRef]
- Arzt, E.; Ashby, M.F. Threshold stresses in materials containing dispersed particles. Scr. Metall. 1982, 16, 1285–1290. [Google Scholar] [CrossRef]
- Ebeling, E.; Ashby, M.F. The hardening of copper single crystals by electron irradiation. Philos. Mag. 1966, 13, 805–834. [Google Scholar] [CrossRef]
- Cho, W.; Jones, J.W.; Allison, J.E.; Donlon, W.T. Creep behavior of Ti-6242: The effect of microstructure and silicon content. In Proceedings of the Sixth World Conference on Titanium, Cannes, France, 6–9 June 1988; pp. 187–192. [Google Scholar]
- Es-Souni, M. Primary, secondary and anelastic creep of a high temperature near α-Ti alloy Ti6242Si. Mater. Charact. 2000, 45, 153–164. [Google Scholar] [CrossRef]
- Balasundar, I.; Raghu, T.; Kashyap, B.P. Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α+β regime. Mater. Sci. Eng. A 2014, 609, 241–249. [Google Scholar] [CrossRef]
- Bania, P.J.; Hall, J.A. Creep studies of Ti-6242-Si alloy. Titan. Sci. Technol. 1985, 2371–2378. [Google Scholar]
- Zhao, Y.Q.; Zhu, K.Y.; Li, Z.C.; Wu, Q.Z. Thermal stability of the Ti811 alloy. Rare Metal Mat. Eng. 1997, 26, 35–39. [Google Scholar]
- Li, X.X.; Xia, C.Q.; Qi, Y.L.; Wang, Z.H.; Niu, G.S.; Sun, W. Study on high temperature tensile creep behavior of TC6 titanium alloy. Rare Metal Mat. Eng. 2013, 42, 1901–1904. [Google Scholar]
- Qi, Y.L. Study on Thermal Stability and High Temperature Creep Bahavior of TC11 Titanium Alloy; Central South University: Changsha, China, 2012. [Google Scholar]
- Zong, Y.Y.; Liu, P.; Guo, B.; Shan, D.B. Investigation on high temperature short-term creep and stress relaxation of titanium alloy. Mater. Sci. Eng. A 2015, 620, 172–180. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhao, Y.Q.; Zhou, L. High temperature creep behavior of Ti40 burn resistant titanium. Rare Metal Mat. Eng. 2003, 32, 117–120. [Google Scholar]
- Xin, S.W. Study on Thermal Strength of Ti40 Burn Resistant Titanium Alloy; Northwestern Polytechnical University: Xi’an, China, 2008. [Google Scholar]
- Zhao, Z.B. Crystal Orientation of α Phase in Ti60 Alloy; University of Chinese Academy of Sciences: Beijing, China, 2014. [Google Scholar]
- Zhao, Y.Q. Research and development of titanium alloys. Titanium 2005, 22, 1–7. [Google Scholar]
- Zhao, L. Study on Silicide and Original β Grain Size Control in Ti-60A Alloy; Institute of Metal Research, Chinese Academy of Sciences: Shenyang, China, 2008. [Google Scholar]
- Kim, Y.-K.; Park, S.-H.; Yu, J.-H.; Almangour, B.; Lee, K.-A. Improvement in the high-temperature creep properties via heat treatment of Ti-6Al-4V alloy manufactured by selective laser melting. Mater. Sci. Eng. A 2018, 715, 33–40. [Google Scholar] [CrossRef]
- Bekir, A.M. Microstructural Evolution during Ageing Treatment of Metastable Titanium Alloy Ti-17; Technische Universität Wien: Vienna, Austria, 2012. [Google Scholar]
- Alluaibi, M.H.I.; Cojocaru, E.M.; Rusea, A.; Șerban, N.; Coman, G.; Cojocaru, V.D. Microstructure and mechanical properties evolution during solution and ageing treatment for a hot deformed, above β-transus, ti-6246 alloy. Metals 2020, 10, 1114. [Google Scholar] [CrossRef]
- Kharia, K.K.; Rack, H.J. Martensitic phase transformations in IMI 550 (Ti-4Al-4Mo-2Sn-0.5Si). Metall. Mater. Trans. A 2001, 32, 671–679. [Google Scholar] [CrossRef]
- Ghasemi, E.; Zarei-Hanzaki, A.; Farabi, E.; Tesař, K.; Jäger, A.; Rezaee, M. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development. J. Alloys Compd. 2017, 695, 1706–1718. [Google Scholar] [CrossRef]
- Peng, H.L.; Li, X.F.; Xu, C.; Jian, J.; Luo, J.F.; Xiong, W.; Jun, C. Effect of grain size on high-temperature stress relaxation behavior of fine-grained TC4 titanium alloy. Trans. Nonferr. Metal. Soc. 2020, 30, 668–677. [Google Scholar] [CrossRef]
- Gu, Y.; Zeng, F.H.; Qi, Y.L.; Xia, C.Q.; Xiong, X. Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550 °C. Mater. Sci. Eng. A 2013, 575, 74–85. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Yin, Z.; Yin, L.; Huang, L. Formation and characteristics of bilamellar microstructure in Ti6242S titanium alloy under dual heat treatment. Mater. Charact. 2022, 187, 111835. [Google Scholar] [CrossRef]
- Rosenberger, A.H.; Madsen, A.; Ghonem, H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100. J. Mater Eng. Perform. 1995, 4, 182–187. [Google Scholar] [CrossRef]
- Hamdy, M.M.; Waterhouse, R.B. The fretting fatigue behaviour of the titanium alloy IMI 829 at temperatures up to 600 °C. Fatigue Fract. Eng. Mater. Struct. 1982, 5, 267–274. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, W.D.; Ma, X.; Zhou, J.H.; Wang, X.Y.; Wang, T. Study of fatigue properties of forged BT25 titanium alloy based on fractographic and quantitative microstructural analysis. Mater. Sci. Technol. 2015, 31, 212–219. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, F.; Huang, A.J.; Li, G.P. In situ observation of the grain evolution in BT18Y titanium alloy. Rare Metal Mat. Eng. 2005, 34, 428–429. [Google Scholar]
- Hao, M.Y.; Cai, J.M.; Du, J. The effect of heat treatment on microstructure and properties of BT36 high temperature alloy. J. Aeronau. Mater. 2003, 23, 14–17. [Google Scholar]
- Liu, Z.G.; Li, P.J.; Xiong, L.T.; Liu, T.Y.; He, L.J. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy. Mater. Sci. Eng. A 2017, 680, 259–269. [Google Scholar] [CrossRef]
- Li, W.Y.; Chen, Z.Y.; Liu, J.R.; Zhu, S.X.; Sui, G.X.; Wang, Q.J. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate. J. Mater. Sci. Technol. 2019, 35, 790–798. [Google Scholar] [CrossRef]
- Spigarelli, S.; Paoletti, C.; Cabibbo, M.; Cerri, E.; Santecchia, E. On the creep performance of the Ti-6Al-4V alloy processed by Additive Manufacturing. Addit. Manuf. 2022, 49, 102520. [Google Scholar] [CrossRef]
- Cui, W.F.; Zhou, L.; Luo, G.Z.; Bian, W.M. Effect of yttrium on thermal stability and creep behavior of Ti-1100 high temperature titanium alloy. J. Chin. Soc. Rare Earth 1998, 16, 46–50. [Google Scholar]
- Cui, W.F.; Bian, W.M.; Luo, G.Z.; Hong, Q.; Zhou, L. Effect of thermal exposure on microstructure and tensile properties of IMI834 high temperature titanium alloy. J. Aeronau. Mater. 1997, 17–22. [Google Scholar]
- Guo, J.Z.; Liu, X.H.; Liu, D.; Zhang, L.J.; Zhou, Z.B.; Wu, T.D. Effect of thermal treatment on microstructure and properties of high temperature titanium alloy for IMI834 casting. World Non-Ferrous Met. 2019, 1–3. [Google Scholar]
- Mishra, H.; Ghosal, P.; Nandy, T.K.; Sagar, P.K. Influence of Fe and Ni on creep of near α-Ti alloy IMI834. Mater. Sci. Eng. A 2005, 399, 222–231. [Google Scholar] [CrossRef]
- Jia, W.J.; Zeng, W.D.; Liu, J.R.; Zhou, Y.G.; Wang, Q.J. Influence of thermal exposure on the tensile properties and microstructures of Ti60 titanium alloy. Mater. Sci. Eng. A 2011, 530, 511–518. [Google Scholar] [CrossRef]
- Guo, P.; Hong, Q.; Zhao, Y.Q.; Qi, Y.L.; Xin, S.W. Mechanical properties of Ti600 high temperature titanium alloy. Trans. Nonferr. Met. Soc. 2010, 20, 36–39. [Google Scholar]
- Zeng, L.Y.; Hong, Q.; Yang, G.J.; Zhao, Y.Q.; Qi, Y.L.; Guo, P. Tensile and creep properties of Ti-600 alloy. Trans. Nonferr. Metal. Soc. 2007, 17, 522–525. [Google Scholar]
- Wu, Z.W.; Qiu, C.L.; Venkatesh, V.; Fraser, H.L.; Williams, R.E.A.; Viswanathan, G.B.; Thomas, M.; Nag, S.; Banerjee, R.; Loretto, M.H. The influence of precipitation of alpha2 on properties and microstructure in timetal 6-4. Metall. Mater. Trans. A 2013, 44, 1706–1713. [Google Scholar] [CrossRef]
- Zhu, X.H. Study on long-term microstructure stability of near α type high temperature titanium alloy Ti600; Northeastern University: Shenyang, China, 2019. [Google Scholar]
- Rosenberg, H.W. Titanium alloying in theory and practice. In The Science, Technology and Application of Titanium; Elsevier: Amsterdam, The Netherlands, 1970; pp. 851–859. [Google Scholar]
- Li, D.; Liu, Y.Y.; Wan, X.J. Study on thermal stability of titanium alloys I. electron concentration rule of Ti3X phase formation. Acta Metall. Sinica 1984, 20, A375–A382. [Google Scholar]
- Li, D.; Liu, Y.Y. Study on thermal stability of titanium alloys II. behavior of transition elements in Ti3X phase formation. Acta Metall. Sinica 1984, 20, A384–A389. [Google Scholar]
- Li, D.; Wan, X.J. Study on thermal stability of titanium alloys III. thermal stability criteria and their applications. Acta Metall. Sinica 1984, 20, A391–A397. [Google Scholar]
- Xin, S.W.; Zhao, Y.Q.; Zeng, W.D.; Wu, H.; Yang, H.Y.; Li, Q. Effect of Al element on thermal strength of Ti-V-Cr burn resistant titanium alloy. Rare Metal Mat. Eng. 2007, 36, 1613–1616. [Google Scholar]
- Lunt, D.; Busolo, T.; Xu, X.; Quinta Da Fonseca, J.; Preuss, M. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy. Acta Mater. 2017, 129, 72–82. [Google Scholar] [CrossRef]
- Li, H.; Mason, D.E.; Yang, Y.; Bieler, T.; Crimp, M.; Boehlert, C. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728 K. Philos. Mag. 2013, 93, 2875–2895. [Google Scholar] [CrossRef]
- Neeraj, T.; Mills, M.J. Short-range order (SRO) and its effect on the primary creep behavior of a Ti-6wt.% Al alloy. Mater. Sci. Eng. A 2001, 319, 415–419. [Google Scholar] [CrossRef]
- Xin, S.W.; Hong, Q.; Lu, Y.F.; Xi, Z.P.; Guo, P.; Qi, Y.L.; Zeng, L.Y. The relationship between precipitates and creep properties of Ti600 high temperature titanium alloy. Trans. Nonferr. Met. Soc. 2010, 20, 2142–2147. [Google Scholar]
- Zhang, S.Z.; Xu, H.Z.; Li, G.P.; Liu, Y.Y.; Yang, R. Effect of carbon and aging treatment on precipitation of ordered α2 in Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd alloy. Mater. Sci. Eng. A 2005, 408, 290–296. [Google Scholar] [CrossRef]
- Jiang, B.B.; Wen, D.H.; Wang, Q.; Che, J.D.; Dong, C.; Liaw, P.K.; Xu, F.; Sun, L.X. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance. J. Mater. Sci. Technol. 2019, 35, 1008–1016. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Fu, Y.; Li, J.; Xiao, W.L.; Zhao, X.Q.; Ma, C.L. Effects of tungsten addition on the microstructural stability and properties of Ti-6.5Al-2Sn-4Hf-2Nb-based high temperature titanium alloys. J. Mater. Sci. Technol. 2021, 93, 147–156. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, S.Z.; Liu, J.R.; Li, S.J.; Sun, T.; Li, J.P.; Gao, Y.; Yang, R.; Hu, Q.M. Interaction between Al and other alloying atoms in α-Ti for designing high temperature titanium alloy. Comput. Mater. Sci. 2021, 197, 110620. [Google Scholar] [CrossRef]
- Sun, F.S.; Lavernia, E.J. Creep behavior of nonburning Ti-35V-15Cr-xC alloys. J. Mater. Eng. Perform. 2005, 14, 784–787. [Google Scholar] [CrossRef]
- Chen, W.; Boehlert, C.J.; Payzant, E.A.; Howe, J.Y. The effect of processing on the 455 °C tensile and fatigue behavior of boron-modified Ti-6Al-4V. Int. J. Fatigue 2010, 32, 627–638. [Google Scholar] [CrossRef]
- Chandravanshi, V.; Sarkar, R.; Kamat, S.V.; Nandy, T.K. Effects of thermomechanical processing and heat treatment on the tensile and creep properties of boron-modified near alpha titanium alloy Ti-1100. Metall. Mater. Trans. A 2012, 44, 201–211. [Google Scholar] [CrossRef]
- Boehlert, C.J.; Chen, W. The elevated-temperature creep behavior of Boron-modified Ti-6Al-4V alloys. Mater. Trans. 2009, 50, 1690–1703. [Google Scholar] [CrossRef]
- Chen, W.; Boehlert, C.J.; Howe, J.Y.; Payzant, E.A. Elevated-temperature mechanical behavior of as-cast and wrought Ti-6Al-4V-1B. Metall. Mater. Trans. A 2011, 42, 3046–3061. [Google Scholar] [CrossRef]
- Seagle, S.R.; Hall, G.S.; Bomberger, H.B. High temperature properties of Ti-6Al-2Sn-4Zr-2Mo-0.09Si. Met. Eng. Q. 1975, 15, 48–55. [Google Scholar]
- Singh, A.K.; Roy, T.; Ramachandra, C. Microstructural stability on aging of an α+ β titanium alloy: Ti-6Al-1.6 Zr-3.3Mo-0.30Si. Metall. Mater. Trans. A 1996, 27, 1167–1173. [Google Scholar] [CrossRef]
- Madsen, A.; Andrieu, E.; Ghonem, H. Microstructural changes during aging of a near-α titanium alloy. Mater. Sci. Eng. A 1993, 171, 191–197. [Google Scholar] [CrossRef]
- Flower, H.M.; Swann, P.R.; West, D.R.F. Silicide precipitation in the Ti-Zr-Al-Si system. Metall. Trans. 1971, 2, 3289–3297. [Google Scholar] [CrossRef]
- Fu, B.G.; Wang, H.W.; Zou, C.M.; Wei, Z.J. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys. Mater. Charact. 2015, 99, 17–24. [Google Scholar] [CrossRef]
- Narayana, P.L.; Kim, S.-W.; Hong, J.-K.; Reddy, N.S.; Yeom, J.-T. Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650 °C. Mater. Sci. Eng. A 2018, 718, 287–291. [Google Scholar] [CrossRef]
- Worsnop, F.F.; Lea, S.L.M.; Ilavsky, J.; Rugg, D.; Dye, D. Crystallographic ordering of Al and Sn in α-Ti. Scripta. Mater. 2023, 226, 115221. [Google Scholar] [CrossRef]
- Barboza, M.J.R.; Perez, E.a.C.; Medeiros, M.M.; Reis, D.a.P.; Nano, M.C.A.; Neto, F.P.; Silva, C.R.M. Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites. Mater. Sci. Eng. A 2006, 428, 319–326. [Google Scholar] [CrossRef]
- Xin, S.W.; Zhao, Y.Q.; Zeng, W.D.; Wu, H.; Yang, H.Y.; Li, Q. Effect of V element on thermal strength of Ti-V-Cr burn resistant titanium alloy. Rare Metal Mat. Eng. 2007, 36, 2031–2035. [Google Scholar]
- Zhao, Y.Q.; Liu, B.N. Effect of alloy composition on properties of Ti811 alloy bar. Rare Metal Mat. Eng. 1994, 23, 59–64. [Google Scholar]
- Simonelli, M.; Zou, Z.Y.; Barriobero-Vila, P.; Tse, Y.Y. The development of ultrafine grain structure in an additively manufactured titanium alloy via high-temperature microscopy. Materialia 2023, 30, 101856. [Google Scholar] [CrossRef]
- Huang, S.S.; Ma, Y.J.; Qiu, J.K.; Wang, H.; Lei, J.F. Enhanced ambient temperature creep resistance of α/β-Ti alloys induced by minor Fe. Mater. Sci. Eng. A 2017, 705, 169–175. [Google Scholar] [CrossRef]
- Hayes, R.W.; Viswanathan, G.B.; Mills, M.J. Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure. Acta Mater. 2002, 50, 4953–4963. [Google Scholar] [CrossRef]
- Xin, S.W.; Zhao, Y.Q.; Zeng, W.D. Effect mechanism of V and Cr on mechanical properties of Ti40 burn resistant titanium alloy. Trans. Nonferr. Met. Soc. 2008, 18, 1216–1222. [Google Scholar]
- Zhao, Y.Q. Study on Deformation Mechanism and Burn Resistant Mechanism of Ti40 Burn Resistant Titanium Alloy; Northeastern University: Shenyang, China, 1998. [Google Scholar]
- Liu, Z.M.; Xin, S.W.; Zhao, Y.Q.; Zhu, P.L.; Dang, B.H.; Zhang, S.Y.; Zhou, W. Effect of thermal exposure on microstructure evolution and mechanical properties of TC25G alloy. Materials 2023, 16, 4462. [Google Scholar] [CrossRef]
- Yue, K.; Liu, J.R.; Yang, R.; Wang, Q.J. Primary and steady creep of Ti65 alloy. Chin. J. Mate. Res. 2020, 34, 151–160. [Google Scholar]
- Zhao, E.T.; Sun, S.C.; Zhang, Y. Recent advances in silicon containing high temperature titanium alloys. J. Mater. Res. Technol. 2021, 14, 3029–3042. [Google Scholar] [CrossRef]
- Paton, N.E.; Mahoney, M.W. Creep of titanium-silicon alloys. Metall. Trans. A 1976, 7, 1685–1694. [Google Scholar] [CrossRef]
- Fentiman, W.P.; Goosey, R.E.; Hubbard, R.T.J.; Smith, M.D. The Science Technology and Application of Titanium; Pergoman Press: London, UK, 1970. [Google Scholar]
- Anti, M.L.; Collado, C.V.; Mouzon, J.; Åkerfeldt, P.; Pederson, R. Effect of silicon on creep properties of titanium 6Al-2Sn-4Zr-2Mo alloy. In Proceedings of the Matec Web of Conferences, Nantes, France, 10–14 June 2019. [Google Scholar]
- Singh, A.K.; Ramachandra, C. Characterization of silicides in high-temperature titanium alloys. J. Mater. Sci. 1997, 32, 229–234. [Google Scholar] [CrossRef]
- Guo, R.; Liu, B.; Xu, R.J.; Cao, Y.K.; Qiu, J.W.; Chen, F.; Yan, Z.Q.; Liu, Y. Microstructure and mechanical properties of powder metallurgy high temperature titanium alloy with high Si content. Mater. Sci. Eng. A 2020, 777, 138993. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, J.R.; Wang, Q.J.; Yang, R. Effect of precipitation on creep and durability of Ti60 titanium alloy. Chin. J. Mate. Res. 2009, 23, 1–5. [Google Scholar]
- Zhang, Z.X.; Fan, J.K.; Li, R.F.; Kou, H.C.; Chen, Z.Y.; Wang, Q.J.; Zhang, H.L.; Wang, J.; Gao, Q.; Li, J.S. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet. J. Mater. Sci. Technol. 2021, 75, 265–275. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Kong, F.T.; Chen, Y.Y.; Wang, X.P. Effect of nano-Y2O3 addition on the creep behavior of an as-cast near-α titanium alloy. Mater. Charact. 2021, 178, 111249. [Google Scholar] [CrossRef]
- Xiao, W.L.; Ping, D.H.; Murakami, H.; Yamabe-Mitarai, Y. Microstructure and oxidation behavior of Ti-6Al-2Zr-1Mo-1V-based alloys with Sc addition. Mater. Sci. Eng. A 2013, 580, 266–272. [Google Scholar] [CrossRef]
- Yang, Y.F.; Luo, S.D.; Schaffer, G.B.; Qian, M. Impurity scavenging, microstructural refinement and mechanical properties of powder metallurgy titanium and titanium alloys by a small addition of cerium silicide. Mat. Sci. Eng. A 2013, 573, 166–174. [Google Scholar] [CrossRef]
- Han, P.; Li, B.L.; Yin, J.M.; Liu, T.; Nie, Z.R. Effect of Er on creep properties of a near α high temperature titanium alloy. Sci. Technol. Eng. 2012, 12, 4124–4127. [Google Scholar]
- Deng, T.S.; Li, S.; Liang, Y.Q.; Lu, S.; Zhang, Y.H. Effect of scandium and silicon addition on the microstructure and mechanical properties of Ti-6Al-4V alloy. J. Mater. Res. Technol. 2020, 9, 5676–5688. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Li, G.P.; Li, D.; Wang, Q.J.; Guan, S.X. Thermal stability of rare earth-rich phase in high temperature titanium alloy. J. Rare Earths 1998, 16, 46–50. [Google Scholar]
- Li, G.P.; Li, D.; Liu, Y.Y.; Guan, S.X.; Wang, Q.J.; Ping, D.H.; Hu, Z.Q. Microstructure of second-phase particles in Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy. Metall. Mater. Trans. A 1997, 28, 1595–1605. [Google Scholar] [CrossRef]
- Li, G.P.; Liu, Y.Y.; Li, D.; Hu, Z.Q. Interaction between dislocations and Nd-rich phase particles in meltquenched Ti-5AI-4Sn-2Zr-1Mo-0.25Si-1Nd alloy. J. Mater. Sci. Lett. 1995, 14, 1386–1387. [Google Scholar] [CrossRef]
- Tang, M.F. Study on Microstructure and High Temperature Properties of Ti600 Alloy; Northeastern University: Shenyang, China, 2010. [Google Scholar]
- Deng, J.; Wu, Z.L.; Yang, G.J.; Chen, D.J.; Huang, H.L.; Zheng, Y.Q.; Duan, W.S.; Luo, G.Z. A rare earth modified advanced high temperature titanium alloy. J. Aeronaut. Mater. 1990, 1–7. [Google Scholar]
- Tang, Q.H.; Qi, P.; Wang, T.B.; Hu, J.F.; Yin, J.M.; Li, B.L.; Nie, Z.R. Formation mechanism of lamellar bimodal microstructure and mechanical property in the high temperature near α titanium alloy. J. Alloys. Compd. 2023, 938, 168289. [Google Scholar] [CrossRef]
- Mcandrew, J.B.; Kessler, H.D. Ti-36 pct Al as a base for high temperature alloys. J. Met. 1956, 8, 1348–1353. [Google Scholar] [CrossRef]
- Liu, P.W.; Han, Y.F.; Qiu, P.K.; Xu, F.S.; Chen, Y.; Du, L.H.; Huang, G.F.; Mao, J.W.; Lu, W.J. Isothermal deformation and spheroidization mechanism of (TiB+La2O3)/Ti composites with different initial structures. Mater. Charact. 2018, 146, 15–24. [Google Scholar] [CrossRef]
- Fu, G.B. Effect of Alloying Elements on Microstructure and Properties of Cast Ti-1100 Alloy; Harbin Institute of Technology: Harbin, China, 2015. [Google Scholar]
- Zhao, Z.B.; Wang, Q.J.; Liu, J.R.; Yang, R. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60. Acta Mater. 2017, 131, 305–314. [Google Scholar] [CrossRef]
- Joseph, S.; Lindley, T.C.; Dye, D. Dislocation interactions and crack nucleation in a fatigued near-alpha titanium alloy. Int. J. Plast. 2018, 110, 38–56. [Google Scholar] [CrossRef]
- Russo, P. Influence of Ni and Fe on the creep of beta annealed Ti-6242S. Titanium’95 Sci. Technol. 1996, 1075–1082. [Google Scholar]
- Gey, N.; Bocher, P.; Uta, E.; Germain, L.; Humbert, M. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure. Acta Mater. 2012, 60, 2647–2655. [Google Scholar] [CrossRef]
- Wang, L.; Fan, X.G.; Zhan, M.; Jiang, X.Q.; Zeng, X.; Liang, Y.F.; Zheng, H.J.; Zhao, A.M. The heterogeneous globularization related to crystal and geometrical orientation of two-phase titanium alloys with a colony microstructure. Mater. Des. 2020, 186, 108338. [Google Scholar] [CrossRef]
- Zhou, D.D.; Zeng, W.D.; Xu, J.W.; Wang, S.M.; Chen, W. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure. Mater. Charact. 2019, 151, 103–111. [Google Scholar] [CrossRef]
- Xin, S.W. Induction and discussion of solid-state phase transformation in titanium alloys (VIII)—Design of tristate structure using three types of α phase. Titanium 2022, 39, 44–48. [Google Scholar]
- Hosseini, R.; Morakabati, M.; Abbasi, S.M.; Hajari, A. Development of a trimodal microstructure with superior combined strength, ductility and creep-rupture properties in a near alpha titanium alloy. Mater. Sci. Eng. A 2017, 696, 155–165. [Google Scholar] [CrossRef]
- Li, J.X.; Wang, L.Q.; Qin, J.N.; Chen, Y.F.; Lu, W.J.; Di, Z. Effect of microstructure on high temperature properties of in situ synthesized (TiB+La2O3)/Ti composite. Mater. Charact. 2012, 66, 93–98. [Google Scholar] [CrossRef]
- Grabovetskaya, G.P.; Zabudchenko, O.V.; Mishin, I.P.; Ratochka, I.V.; Lykova, O.N. Effect of Structural and Phase State on the Creep of an Ultrafine-Grained Ti–Al–V–Mo Titanium Alloy. Phys. Met. Metall. 2019, 120, 499–505. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kilmametov, A.R.; Ivanisenko, Y.; Gornakova, A.S.; Mazilkin, A.A.; Kriegel, M.J.; Fabrichnaya, O.B.; Baretzky, B.; Hahn, H. Phase Transformations in Ti–Fe Alloys Induced by High-Pressure Torsion. Adv. Eng. Mater. 2015, 17, 1835–1841. [Google Scholar] [CrossRef]
- Grabovetskaya, G.P.; Ratochka, I.V.; Mishin, I.P.; Zabudchenko, O.V.; Lykova, O.N. Evolution of the Structural-Phase State of a Ti–Al–V–Mo Alloy During Severe Plastic Deformation and SubSequent Annealing. Russ. Phys. J. 2016, 59, 109–115. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C. Titanium; Springer: Heidelberg, Germany, 2007. [Google Scholar]
Country | Alloy Grade | Nominal Composition | Alloy Type | Service Temperature/°C | Year |
---|---|---|---|---|---|
U.S.A | Ti-64 | Ti-6Al-4V | α + β | 300 | 1954 |
Ti-811 | Ti-8Al-1Mo-1V | Near α | 425 | 1961 | |
Ti-6246 | Ti-6Al-2Sn-4Zr-6Mo | α + β | 450 | 1966 | |
Ti-6242 | Ti-6Al-2Sn-4Zr-2Mo | Near α | 450 | 1967 | |
Ti-6242S | Ti-6Al-2Sn-4Zr-2Mo-0.1Si | Near α | 520 | 1974 | |
Ti1100 | Ti-6Al-2.8Sn-4Zr-0.4Mo-0.45Si | Near α | 600 | 1988 | |
U.K. | IMI550 | Ti-4Al-2Sn-4Mo-0.5Si | α + β | 425 | 1956 |
IMI679 | Ti-2Al-11Sn-5Zr-1Mo-0.2Si | Near α | 450 | 1961 | |
IMI685 | Ti-6Al-5Zr-0.5Mo-0.25Si | Near α | 520 | 1969 | |
IMI829 | Ti-5.5Al-3.5Sn-3Zr-0.3Mo-0.3Si-1Nb | Near α | 580 | 1976 | |
IMI834 | Ti-5.8Al-4Sn-3.5Zr-0.5Mo-0.35Si-0.7Nb-0.06C | Near α | 600 | 1984 | |
Russia | BT321 | Ti-6.5Al-2.5Mo-0.3Si-0.5Fe-1.5Cr | α + β | 400–450 | 1957 |
BT8 | Ti-6.5Al-3.5Mo-0.2Si | α + β | 500 | 1958 | |
BT9 | Ti-6.5Al-2Zr-3.5Mo-0.3Si | α + β | 500–550 | 1958 | |
BT18 | Ti-8Al-8Zr-0.6Mo-1Nb-0.22Si-0.15Fe | Near α | 550–600 | 1963 | |
BT18Y | Ti-6.5Al-2.5Sn-4Zr-0.7Mo-1Nb-0.25Si | Near α | 550–600 | 1963 | |
BT25 | Ti-6.8Al-2Sn-1.7Zr-2Mo-1W-0.2Si | α + β | 500–550 | 1971 | |
BT25Y | Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si | α + β | 500–550 | 1971 | |
BT36 | Ti-6.2Al-2Sn-3.6Zr-0.7Mo-5W-0.15Si | Near α | 600 | 1992 | |
China | TC4 | Ti-6Al-4V | α + β | 300–400 | 1965 |
TC6 | Ti-6Al-2.5Mo-0.3Si-0.5Fe-1.5Cr | α + β | 450 | 1965 | |
TC9 | Ti-6.5Al-2.5Sn-3.5Mo-0.3Si | α + β | 500 | 1965 | |
TC11 | Ti-6.5Al-1.5Zr-3.5Mo-0.3Si | α + β | 500 | 1979 | |
Ti-53311S | Ti-5.5Al-3.5Sn-3Zr-1Mo-0.3Si-1Nb | Near α | 550 | 1986 | |
Ti55 | Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd | Near α | 550 | 1986 | |
Ti60 | Ti-5.8Al-4.8Sn-2Zr-1Mo-0.35Si-0.85Nd | Near α | 600 | 1994 | |
Ti600 | Ti-6Al-2.8Sn-4Zr-0.5Mo-0.4Si-0.1Y | Near α | 600 | 1994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xin, S.; Zhao, Y. Research Progress on the Creep Resistance of High-Temperature Titanium Alloys: A Review. Metals 2023, 13, 1975. https://doi.org/10.3390/met13121975
Liu Z, Xin S, Zhao Y. Research Progress on the Creep Resistance of High-Temperature Titanium Alloys: A Review. Metals. 2023; 13(12):1975. https://doi.org/10.3390/met13121975
Chicago/Turabian StyleLiu, Zhuomeng, Shewei Xin, and Yongqing Zhao. 2023. "Research Progress on the Creep Resistance of High-Temperature Titanium Alloys: A Review" Metals 13, no. 12: 1975. https://doi.org/10.3390/met13121975
APA StyleLiu, Z., Xin, S., & Zhao, Y. (2023). Research Progress on the Creep Resistance of High-Temperature Titanium Alloys: A Review. Metals, 13(12), 1975. https://doi.org/10.3390/met13121975