Effect of Superhydrophobic Surface on Corrosion Resistance of Magnesium-Neodymium Alloy in Artificial Hand Sweat
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, W.; Birbilis, N.; Sha, G.; Wang, Y.; Daniels, J.E.; Xiao, Y.; Ferry, M. A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. 2015, 14, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Ando, D.; Sutou, Y.; Koike, J. A lightweight shape-memory magnesium alloy. Science 2016, 353, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Trang, T.; Zhang, J.; Kim, J.; Zargaran, A.; Hwang, J.; Suh, B.; Kim, N. Designing a magnesium alloy with high strength and high formability. Nat. Commun. 2018, 855, 143901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proust, G. Processing magnesium at room temperature. Science 2019, 365, 30–31. [Google Scholar] [CrossRef]
- Feng, H.; Wang, G.; Jin, W.; Zhang, X.; Huang, Y.; Gao, A.; Wu, H.; Wu, G.; Chu, P. Systematic study of inherent anti-bacterial properties of magnesium-based biomaterials. ACS Appl. Mater. Interfaces 2016, 8, 9662–9673. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Sun, J. Improved corrosion resistance of magnesium alloy in simulated concrete pore solution by hydrothermal treatment. Scanning 2020, 2020, 4860256. [Google Scholar] [CrossRef]
- Cao, F.; Song, G.; Atrens, A. Corrosion and Passivation of Magnesium Alloys. Corros. Sci. 2016, 111, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, X.; Wu, S.; Yeung, K.; Zheng, Y.; Chu, P. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater. 2016, 45, 2–30. [Google Scholar] [CrossRef]
- Wu, G.; Ibrahim, J.; Chu, P. Surface design of biodegradable magnesium alloys—A review. Surf. Coat. Technol. 2013, 233, 2–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, G.; Ouyang, Y.; He, X.; Hu, B.; Zhang, J.; Wu, Z. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D. Appl. Surf. Sci. 2009, 255, 7773–7779. [Google Scholar] [CrossRef]
- Shang, W.; Zhan, X.; Wen, Y.; Li, Y.; Zhang, Z.; Wu, F.; Wang, C. Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy. Chem. Eng. Sci. 2019, 207, 1299–1308. [Google Scholar] [CrossRef]
- Harada, Y.; Kumai, S. Effect of ceramics coating using sol–gel processing on corrosion resistance and age hardening of AZ80 magnesium alloy substrate. Surf. Coat. Technol. 2013, 228, 59–67. [Google Scholar] [CrossRef]
- Chiu, L.; Chen, C.; Yang, C. Improvement of corrosion properties in an aluminum-sprayed AZ31 magnesium alloy by a post-hot pressing and anodizing treatment. Surf. Coat. Technol. 2005, 191, 181–187. [Google Scholar] [CrossRef]
- Surmeneva, M.; Vladescu, A.; Cotrut, C.; Tyurin, A.; Pirozhkova, T.; Shuvarin, I.; Elkin, B.; Oehr, C.; Surmenev, R. Effect of parylene C coating on the antibiocorrosive and mechanical properties of different magnesium alloys. Appl. Surf. Sci. 2018, 427, 617–627. [Google Scholar] [CrossRef]
- Alphonse, M.; Raja, V.; Gupta, M. Optimization of plasma nitrided, liquid nitrided & PVD TiN coated H13-D2 friction drilling tool on AZ31B magnesium alloy. Mater. Today Proc. 2021, 46, 9520–9528. [Google Scholar]
- Wu, G. Fabrication of Al and Al/Ti coatings on magnesium alloy by sputtering. Mater. Lett. 2007, 61, 3815–3817. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Peng, X.; Li, L.; Feng, H.; Gao, B.; Huo, K.; Chu, P. Mitigation of corrosion on magnesium alloy by predesigned surface corrosion. Sci. Rep. 2015, 5, 17399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, X.; Yang, Y.; Zheng, M.; Wang, J.; Liu, C.; Sun, J.; Wu, G. Enhanced corrosion resistance of magnesium-neodymium alloy in simulated concrete pore solution by predesigned corrosion product. Mater. Today Commun. 2022, 32, 104027. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, Y.; Wang, J.; Shi, X. One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance. Appl. Surf. Sci. 2017, 422, 566–573. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, W.; Zhang, W.; Xu, L.; Xue, Y.; Li, W. Fabrication of Ni–Co/Cu super-hydrophobic coating with improved corrosion resistance. Mater. Chem. Phys. 2022, 277, 125503. [Google Scholar] [CrossRef]
- Hui, J.; O’Dell, Z.J.; Rao, A.; Riley, K.R. In situ quantification of silver nanoparticle dissolution kinetics in simulated sweat using linear sweep stripping voltammetry. Environ. Sci. Technol. 2019, 53, 13117–13125. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Gu, Z.; Tang, Q.; Hong, A.; Xu, Z.; Dai, Y.; Bian, X.; Lou, H.; Mortimer, M.; Baalousha, M.; et al. Chemical transformations of nanoscale zinc oxide in simulated sweat and its impact on the antibacterial efficacy. J. Hazard. Mater. 2021, 410, 124568. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, X.; Wu, G.; Wang, C.; Chu, P. Praseodymium-surface-modified magnesium alloy: Retardation of corrosion in artificial hand sweat. Mater. Lett. 2016, 163, 85–89. [Google Scholar] [CrossRef]
- Zhou, W.; Shan, D.; Han, E.; Ke, W. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corros. Sci. 2008, 50, 329–337. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, B.; Hou, Y.; Duan, G.; Yang, L.; Zhang, B.; Zhang, T.; Wang, F. Revisiting the cracking of chemical conversion coating on magnesium alloys. Corros. Sci. 2021, 178, 109069. [Google Scholar] [CrossRef]
- Xu, B.; Sun, J.; Han, J.; Yang, Z.; Zhou, H.; Xiao, L.; Xu, S.; Han, Y.; Ma, A.; Wu, G. Effect of hierarchical precipitates on corrosion behavior of fine-grain magnesium-gadolinium-silver alloy. Corros. Sci. 2022, 194, 109924. [Google Scholar] [CrossRef]
- Wu, H.; Shi, Z.; Zhang, X.; Qasim, A.; Xiao, S.; Zhang, F.; Wu, Z.; Wu, G.; Ding, K.; Chu, P. Achieving an acid resistant surface on magnesium alloy via bio-inspired design. Appl. Surf. Sci. 2019, 478, 150–161. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, R.; Lin, C.; Wang, L.; Chen, X.; Chen, D. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31. J. Mater. Sci. Technol. 2020, 41, 43–55. [Google Scholar] [CrossRef]
- Wu, G.; Zhao, Y.; Zhang, X.; Ibrahim, J.; Chu, P. Self-protection against corrosion of aged magnesium alloy in simulated physiological environment. Corros. Sci. 2013, 68, 279–285. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, S.; Chen, D.; Qasim, A.; Ding, K.; Wu, G.; Chu, P. Effects of diamond-like carbon film on the corrosion behavior of NdFeB permanent magnet. Surf. Coat. Technol. 2017, 312, 66–74. [Google Scholar] [CrossRef]
- Hua, L.; Sun, J.; Wu, G. Enhancing corrosion resistance of hydrothermally-treated magnesium-aluminum alloys by preprocessed metallurgical microstructure. Thin Solid Film. 2022, 752, 139247. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, G.; Mao, L.; Niu, J.; Ding, W. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys. Mater. Lett. 2012, 66, 209–211. [Google Scholar] [CrossRef]
- Mao, L.; Shen, L.; Niu, J.; Zhang, J.; Ding, W.; Wu, Y.; Fan, R.; Yuan, G. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Nanoscale 2013, 5, 9517–9522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yuan, G.; Mao, L.; Niu, J.; Fu, P.; Ding, W. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy. J. Mech. Behav. Biomed. 2012, 7, 77–86. [Google Scholar] [CrossRef]
- Zong, Y.; Yuan, G.; Zhang, X.; Mao, L.; Niu, J.; Ding, W. Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution. Mater. Sci. Eng. B 2012, 177, 395–401. [Google Scholar] [CrossRef]
- Qin, H.; Zhao, Y.; An, Z.; Cheng, M.; Wang, Q.; Cheng, T.; Wang, Q.; Wang, J.; Jiang, Y.; Zhang, X.; et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy. Biomaterials 2015, 53, 211–220. [Google Scholar] [CrossRef]
- Zai, W.; Su, Y.; Man, H.; Lian, J.; Li, G. Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy. Appl. Surf. Sci. 2019, 492, 314–327. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, S.; Yu, B.; Lu, X.; Chen, X.; Zhang, T.; Wang, F. Ratio of total acidity to pH value of coating bath: A new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys. Corros. Sci. 2019, 150, 279–295. [Google Scholar]
- Lv, Y.; Sun, S.; Zhang, X.; Lu, X.; Dong, Z. Construction of multi-layered Zn-modified TiO2 coating by ultrasound-auxiliary micro-arc oxidation: Microstructure and biological property. Mater. Sci. Eng. C 2021, 131, 112487. [Google Scholar] [CrossRef]
- Liu, X.; He, H.; Zhang, T.; Ouyang, L.; Zhang, Y.; Yuan, S. Superhydrophobic and self-healing dual-function coatings based on mercaptabenzimidazole inhibitor-loaded magnesium silicate nanotubes for corrosion protection of AZ31B magnesium alloys. Chem. Eng. J. 2021, 404, 127106. [Google Scholar] [CrossRef]
- She, Z.; Li, Q.; Wang, Z.; Li, L.; Chen, F.; Zhou, J. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy. ACS Appl. Mater. Interfaces 2012, 4, 4348–4356. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, P.; Zhang, D. Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment. Corros. Sci. 2015, 91, 287–296. [Google Scholar] [CrossRef]
Sample | MA | MA/CM | MA/UC | MA/UC/CM | |
---|---|---|---|---|---|
Rs (Ω·cm2) | 42 ± 6 | 55 ± 21 | 37 ± 2 | 44 ± 1 | |
Qf | Yf (Ω−1∙cm−2∙sn) | / | / | (1.42 ± 0.36) × 10−5 | (1.76 ± 0.01) × 10−6 |
nf | / | / | 0.60 ± 0.02 | 0.83 ± 0.02 | |
Rpore (Ω·cm2) | 7 ± 4 | 31 ± 3 | |||
Qdl | Yd (Ω−1∙cm−2∙sn) | (1.41 ± 0.10) × 10−3 | (5.14 ± 0.73) × 10−4 | (7.72 ± 2.81) × 10−4 | (8.31 ± 0.09) × 10−6 |
ndl | 0.75 ± 0.18 | 0.70 ± 0.23 | 0.45 ± 0.05 | 0.81 ± 0.01 | |
Rct (Ω·cm2) | 781 ± 92 | 1566 ± 125 | 555 ± 389 | 5105 ± 753 | |
Qdiff | Ydiff (Ω−1∙cm−2∙sn) | (1.38 ± 0.09) × 10−5 | (5.31 ± 0.77) × 10−6 | (2.81 ± 0.18) × 10−5 | (2.99 ± 1.81) × 10−3 |
ndiff | (1.41 ± 0.10) × 10−3 | 0.80 ± 0.26 | 0.98 ± 0.02 | 0.91 ± 0.01 | |
Rdiff (Ω·cm2) | 713 ± 48 | 1668 ± 216 | 2204 ± 433 | 1172 ± 346 | |
Rp (Ω·cm2) | 1494 ± 45 | 3234 ± 322 | 2766 ± 45 | 7339 ± 1188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Sun, J.; Wu, G. Effect of Superhydrophobic Surface on Corrosion Resistance of Magnesium-Neodymium Alloy in Artificial Hand Sweat. Metals 2023, 13, 219. https://doi.org/10.3390/met13020219
Liu C, Sun J, Wu G. Effect of Superhydrophobic Surface on Corrosion Resistance of Magnesium-Neodymium Alloy in Artificial Hand Sweat. Metals. 2023; 13(2):219. https://doi.org/10.3390/met13020219
Chicago/Turabian StyleLiu, Changyang, Jiapeng Sun, and Guosong Wu. 2023. "Effect of Superhydrophobic Surface on Corrosion Resistance of Magnesium-Neodymium Alloy in Artificial Hand Sweat" Metals 13, no. 2: 219. https://doi.org/10.3390/met13020219