Observations of Contraction Twin Boundaries of High-Purity Titanium during Dynamic Loading
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphologies of CTs in Deformed Samples
3.2. Observations of the CT and TB Structure
3.3. Observations of CT and TB Structures
4. Discussion
4.1. Formation of CTs
4.2. Facet Structures of and TBs
5. Conclusions
- (1)
- The CTs are activated during deformation. The statistical analysis shows that CTs are the predominant twinning mode. The change in local stress state at the intersection region of twin variants or CT and grain boundary may activate the CTs.
- (2)
- Facets are observed in both and TBs. The (0001)‖ facet with a tilted angle of ~5.8° is observed in TBs, while the (0001)‖ facet is observed in TBs, and the tilted angle between the (0001) basal plane and pyramidal plane is ~4.8°.
- (3)
- The similar B-Py/Py-B characteristic facets are observed in both the and TB, the (b3, 3) elementary TD, and (b1, ) reassembly TD may reassemble various facets in the TB. Meanwhile, the (b3, 3) TD might be the elementary TD for the TB, which facilitates the growth process of CTs during deformation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Liao, X.Z.; Wang, J.; Nie, J.F.; Jiang, Y.Y.; Wu, P.D. Deformation twinning in hexagonal materials. MRS Bull. 2016, 41, 314–319. [Google Scholar] [CrossRef]
- Sinha, S.; Pukenas, A.; Ghosh, A.; Singh, A.; Skrotzki, W.; Gurao, N.P. Effect of initial orientation on twinning in commercially pure titanium. Philos. Mag. 2017, 97, 775–797. [Google Scholar] [CrossRef]
- Li, Y.J.; Chen, Y.J.; Walmsley, J.C.; Mathinsen, R.H.; Dumoulin, S.; Roven, H.J. Faceted interfacial structure of twins in Ti formed during equal channel angular pressing. Scr. Mater. 2010, 62, 443–446. [Google Scholar]
- Ren, Y.; Zhang, X.Y.; Xia, T.; Sun, Q.; Liu, Q. Microstructural and texture evolution of high-purity titanium under dynamic loading. Mater. Des. 2017, 126, 123–134. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhu, Y.T.; Liu, Q. Deformation twinning in polycrystalline Co during room temperature dynamic plastic deformation. Scr. Mater. 2010, 63, 387–390. [Google Scholar] [CrossRef]
- Gengor, G.; Mohammed, A.S.K.; Sehitoglu, H. Twin interface structure and energetics in HCP materials. Acta Mater. 2021, 219, 117256. [Google Scholar]
- Tu, J.; Zhang, X.Y.; Wang, J.; Sun, Q.; Liu, Q.; Tomé, C.N. Structural characterization of twin boundaries in cobalt. Appl. Phys. Lett. 2013, 103, 051903. [Google Scholar]
- Zhang, X.Y.; Li, B.; Wu, X.L.; Zhu, Y.T.; Ma, Q.; Liu, Q.; Wang, P.T.; Horstemeyer, M.F. Twin boundaries showing very large deviations from the twinning plane. Scr. Mater. 2012, 67, 862–865. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hirth, J.P.; Tomé, C.N. Twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 2009, 57, 5521–5530. [Google Scholar]
- Yaddanapudi, K.; Leu, B.; Kumar, M.A.; Wang, X.; Schoenung, J.M.; Lavernia, E.J.; Rupert, T.J.; Beyerlein, I.J.; Mahajan, S. Accommodation and formation of twins in Mg-Y alloys. Acta Mater. 2021, 204, 116514. [Google Scholar]
- Sun, Q.; Zhang, X.Y.; Yin, R.S.; Ren, Y.; Tan, L. Structural characterization of twin boundaries in deformed cobalt. Scr. Mater. 2015, 108, 109–112. [Google Scholar] [CrossRef]
- McCabe, R.J.; Proust, G.; Cerreta, E.K.; Misra, A. Quantitative analysis of deformation twinning in zirconium. Int. J. Plast. 2009, 25, 454–472. [Google Scholar] [CrossRef]
- Barrett, C.; Martinez, J.; Nitol, M. Faceting and twin-twin interactions in and twins in titanium. Metals 2022, 12, 895. [Google Scholar]
- Morrow, B.M.; McCabe, R.J.; Cerreta, E.K.; Tome, C.N. Observations of the atomic structure of tensile and compressive twin boundaries and twin-twin interactions in Zirconium. Metall. Mater. Trans. A 2014, 45A, 5891–5897. [Google Scholar] [CrossRef]
- Wang, S.; Dang, K.; McCabe, R.J.; Capolungo, L.; Tomé, C.N. Three-dimensional atomic scale characterization of twin boundaries in titanium. Acta Mater. 2021, 208, 116707. [Google Scholar]
- Lainé, S.J.; Knowles, K.M. deformation twinning in commercial purity titanium at room temperature. Philos. Mag. 2015, 95, 2153–2166. [Google Scholar]
- Xu, F.; Zhang, X.; Ni, H.; Liu, Q. deformation twinning in pure Ti during dynamic plastic deformation. Mater. Sci. Eng. A 2012, 541, 190–195. [Google Scholar]
- Li, Y.S.; Tao, N.R.; Lu, K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008, 56, 230–241. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, Q.; Zhao, Y.; Guo, D.; Du, Y. Research progress on slip behavior of α-Ti under quasi-Static loading: A Review. Metals 2022, 12, 1571. [Google Scholar] [CrossRef]
- Xin, C.; Wang, Q.; Ren, J.; Zhang, Y.; Wu, J.; Chen, J.; Zhang, L.; Sang, B.; Li, L. Plastic deformation mechanism and slip transmission behavior of commercially pure Ti during in situ tensile deformation. Metals 2022, 12, 721. [Google Scholar] [CrossRef]
- Lin, T.; Chang, T.; Xie, Q.; Li, C.; Si, X.; Yang, B.; Du, Q.; Wei, D.; Qi, J.; Cao, J. Surface morphology and gradient microstructural evolutions in pure titanium via surface severe plastic deformation. Mater. Charact. 2022, 191, 112114. [Google Scholar] [CrossRef]
- Gong, M.; Hirth, J.P.; Liu, Y.; Shen, Y.; Wang, J. Interface structures and twinning mechanisms of twins in hexagonal metals. Mater. Res. Lett. 2017, 5, 449–464. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Beyerlein, I.J. Atomic structures of symmetric tilt grain boundaries in hexagonal close-packed (hcp) crystals. Metall. Mater. Trans. A 2012, 43A, 3556–3569. [Google Scholar]
- Barrett, C.D.; El Kadiri, H. Fundamentals of mobile tilt grain boundary faceting. Scr. Mater. 2014, 84–85, 15–18. [Google Scholar] [CrossRef]
- Gong, M.; Xu, S.; Xie, D.; Wang, S.; Wang, J.; Schuman, C.; Lecomte, J.-S. Steps and secondary twinning associated with twin in titanium. Acta Mater. 2019, 164, 776–787. [Google Scholar]
- Serra, A.; Bacon, D.J. Modelling the motion of twinning dislocations in the HCP metals. Mater. Sci. Eng. A 2005, 400–401, 496–498. [Google Scholar]
- Ostapovets, A.; Verma, R.; Serra, A. Unravelling the nucleation and growth of twins. Scr. Mater. 2022, 215, 114730. [Google Scholar]
- Pond, R.C.; Hirth, J.P. Defects at surfaces and interfaces. Solid State Phys. 1994, 47, 287–365. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Xu, F.; Lou, C.; Chen, W.; Yang, Q. Observations of Contraction Twin Boundaries of High-Purity Titanium during Dynamic Loading. Metals 2023, 13, 265. https://doi.org/10.3390/met13020265
Ren Y, Xu F, Lou C, Chen W, Yang Q. Observations of Contraction Twin Boundaries of High-Purity Titanium during Dynamic Loading. Metals. 2023; 13(2):265. https://doi.org/10.3390/met13020265
Chicago/Turabian StyleRen, Yi, Feng Xu, Chao Lou, Wei Chen, and Qingshan Yang. 2023. "Observations of Contraction Twin Boundaries of High-Purity Titanium during Dynamic Loading" Metals 13, no. 2: 265. https://doi.org/10.3390/met13020265
APA StyleRen, Y., Xu, F., Lou, C., Chen, W., & Yang, Q. (2023). Observations of Contraction Twin Boundaries of High-Purity Titanium during Dynamic Loading. Metals, 13(2), 265. https://doi.org/10.3390/met13020265