The Al-Fe Intermetallic Compounds and the Atomic Diffusion Behavior at the Interface of Aluminum-Steel Welded Joint
Abstract
:1. Introduction
2. Experiment Methods and Model of Atomic Diffusion
2.1. Material and Experiment
2.2. Establishment of the Molecular Dynamics Model
2.2.1. Initial Conditions
2.2.2. Boundary Condition
2.2.3. System Setup
2.2.4. Atomic Potential Energy
3. Results and Analysis
3.1. Evolution of Interfacial IMC Microstructure
3.2. Effect of Temperature on Atomic Interdiffusion
3.3. Diffusion Coefficient
4. Discussion
5. Conclusions
- The Al-Fe IMC layer which includes Fe2Al5 and Fe4Al13 phases was formed at the welded interface. The thickness of IMC layer increases with the increase of linear heat input, and some cracks were formed at high heat input.
- The diffusion MSD of Al and Fe atoms increases with the increase of simulation temperature and time, and the vacancy diffusion mechanism is the main mechanism for the diffusion of Al and Fe atoms.
- In the IMC configuration of Al-Fe system, Fe atoms hardly diffuse across the interface, and the atomic diffusion is mainly from Al crystal structure into the IMC configuration, and the Al diffusion coefficient is much higher than that of Fe.
- After tracing the Al atom path trajectory, it was found that Al atoms diffuse mainly along the vertical interface direction.
Author Contributions
Funding
Conflicts of Interest
References
- Shull, R.; Okamoto, H.; Beck, P. Transition from ferromagnetism to mictomagnetism in Fe-Al alloys. Solid State Commun. 1976, 20, 863–868. [Google Scholar] [CrossRef]
- Huffman, G.; Fisher, R. Mössbauer studies of ordered and cold-worked Fe-Al alloys containing 30 to 50 at.% aluminum. J. Appl. Phys. 1967, 38, 735–742. [Google Scholar] [CrossRef]
- Martinsen, K.; Hu, S.; Carlson, B. Joining of dissimilar materials. CIRP Ann. Manuf. Technol. 2015, 64, 679–699. [Google Scholar] [CrossRef]
- Chen, N.; Wang, H.-P.; Carlson, B.E.; Sigler, D.R.; Wang, M. Fracture mechanisms of Al/steel resistance spot welds in coach peel and cross tension testing. J. Mater. Process. Technol. 2018, 252, 348–361. [Google Scholar] [CrossRef]
- Song, J.; Lin, S.; Yang, C.; Fan, C. Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint. J. Alloys Compd. 2009, 488, 217–222. [Google Scholar] [CrossRef]
- Borrisutthekul, R.; Yachi, T.; Miyashita, Y.; Mutoh, Y. Sup-pression of intermetallic reaction layer formation by control-ling heat flow in dissimilar welding of steel–aluminium alloy. Mater. Sci. Eng. A 2007, 467, 108–113. [Google Scholar] [CrossRef]
- Mathieu, A.; Pontevicci, S.; Viala, J.; Cicala, E.; Mattei, S.; Grevey, D. Laser brazing of a steel = aluminium assembly with hot filler wire (88% Al, 12% Si). Mater. Sci. Eng. A 2006, 435–436, 19–28. [Google Scholar] [CrossRef]
- Sierra, G.; Peyre, P.; Deschaux Beaume, F.; Stuart, D.; Fras, G. Steel to aluminium key-hole laser welding. Mater. Sci. Eng. A 2007, 447, 197–208. [Google Scholar] [CrossRef]
- Zhang, C.-H.; Huang, S.; Shen, J.; Chen, N.-X. Structural and mechanical properties of Fe-Al compounds: An atomistic study by EAM simulation. Intermetallics 2014, 52, 86–91. [Google Scholar] [CrossRef]
- Khalid, M.Z.; Friis, J.; Ninive, P.H.; Marthinsen, K.; Strandlie, A. DFT calculations based insight into bonding character and strength of Fe2Al5 and Fe4Al13 intermetallics at Al-Fe joints. Procedia Manuf. 2018, 15, 1407–1415. [Google Scholar] [CrossRef]
- Burkhardt, U.; Grin, Y.; Ellner, M.; Peters, K. Structure refinement of the ironaluminum phase with the approximate composition Fe2Al5. Acta Crystallogr. B 1994, 50, 313–316. [Google Scholar] [CrossRef]
- Richards, R.W.; Jones, R.D.; Clements, P.D.; Clarke, H. Metallurgy of continuous hot dip aluminizing. Int. Mater. Rev. 1994, 39, 191–212. [Google Scholar] [CrossRef]
- Gebhardt, E.; Obrowski, W. Reaktionen von festem Eisen mit Schmelzen aus Aluminium und Aluminiumlegierungen. Int. J. Mater. Res. 1953, 44, 154–160. [Google Scholar] [CrossRef]
- Maki, J.; Suehiro, M.; Ikematsu, Y. Alloying Reaction of Aluminized Steel Sheet. ISIJ Int. 2010, 50, 1205–1210. [Google Scholar] [CrossRef]
- Karlsson, J.; Norman, P.; Kaplan, A.F.; Rubin, P.; Lamas, J.; Yáñez, A. Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding. Appl. Surf. Sci. 2011, 257, 7501–7506. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, Y.; Kim, J. CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets. Trans. Nonferrous Met. Soc. China 2011, 21, 47–53. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, Z.; Liu, L. Study on Downhill Welding Mild Steel Using Laser-MAG Hybrid Welding. Mater. Manuf. Process. 2012, 27, 1178–1183. [Google Scholar] [CrossRef]
- Zhang, W.; Hua, X.; Liao, W.; Li, F.; Wang, M. Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon–helium mixtures. Opt. Laser Technol. 2013, 56, 158–166. [Google Scholar] [CrossRef]
- Chang, W.-S.; Rajesh, S.; Chun, C.-K.; Kim, H.-J. Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy. J. Mater. Sci. Technol. 2011, 27, 199–204. [Google Scholar] [CrossRef]
- Bang, H.; Bang, H.; Jeon, G.H.; Oh, I.H.; Ro, C.S. Gas tung-sten arc welding assisted hybrid friction stir welding of dis-similar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Mater. Des. 2012, 37, 48–55. [Google Scholar] [CrossRef]
- Yu, X.; Huang, J.; Yang, T.; Fan, D. The Growth Behavior for Intermetallic Compounds at the Interface of Aluminum-Steel Weld Joint. Materials 2022, 15, 3563. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Yakou, T. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater. Sci. Eng. A 2002, 338, 44–53. [Google Scholar] [CrossRef]
- Bouche, K.; Barbier, F.; Coulet, A. Intermetallic compound layer growth between solid iron and molten aluminum. Mater. Sci. Eng. A 1998, 249, 167–175. [Google Scholar] [CrossRef]
- Huang, J.; He, J.; Yu, X.; Li, C.; Fan, D. The study of mechanical strength for fusion-brazed butt joint between aluminum alloy and galvanized steel by arc-assisted laser welding. J. Manuf. Process. 2017, 25, 126–133. [Google Scholar] [CrossRef]
- Hansson, T.; Oostenbrink, C.; van Gunsteren, W.F. Molecular dynamics simulations. Curr. Opin. Struct. Biol. 2002, 12, 190–196. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Studies in molecular dynamics. I. General method. J. Chem. Phys. 1959, 31, 459–466. [Google Scholar] [CrossRef]
- Geysermans, P.; Gorse, D.; Pontikis, V. Molecular dynamics study of the solid–liquid interface. J. Chem. Phys. 2000, 113, 6382–6389. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Hockney, R.W. The potential calculation and some applications. Methods Comput. Phys. 1970, 9, 136. [Google Scholar]
- Costanza, G.; Crupi, V.; Guglielmino, E.; Sili, A.; Tata, M.E. Metallurgical characterization of an explosion welded aluminum/steel joint. Metall. Ital. 2016, 11, 17–22. [Google Scholar]
- Deng, S.; Yuan, R.; Tang, X.; Lu, F. Migration behavior of IMC layer in twin-spot laser welding-brazing of aluminum to steel. Mater. Des. 2020, 188, 108489. [Google Scholar] [CrossRef]
- Xue, J.; Li, Y.; Chen, H.; Zhu, Z. Effects of heat input on wettability, interface microstructure and properties of Al/steel butt joint in laser-metal inert-gas hybrid welding-brazing. J. Mater. Process. Technol. 2018, 255, 47–54. [Google Scholar] [CrossRef]
- Ma, J.; Harooni, M.; Carlson, B.; Kovacevic, R. Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding. Mater. Des. 2014, 58, 390–401. [Google Scholar] [CrossRef]
- Zhang, H.T.; Feng, J.C.; He, P.; Hackl, H. Interfacial microstructure, and mechanical properties of aluminium–zinc-coated steel joints made by a modified metal inert gas welding–brazing process. Mater. Charact. 2007, 58, 588–592. [Google Scholar] [CrossRef]
Atomic System | Atomic Motion Form | Integral Step (ps) |
---|---|---|
General atomic system | Moving | 10−14 |
Rigid molecule | Moving, rotating | 5 × 10−15 |
Soft molecule, limited bond length | Moving, rotating, twisting | 2 × 10−15 |
Soft molecule, unlimited bond length | Moving, rotating, twisting, vibrating | 10−15 or 5 × 10−16 |
Parameters | Fe | IMC | Al |
---|---|---|---|
Sizes | 84 Å × 71 Å × 30 Å | 84 Å × 71 Å × 25 Å | 84 Å × 71 Å × 127 Å |
Points Step | 2 fs | ||
Heating rate | 1 K/fs |
Parameters | a (Å) | b (Å) | c (Å) | α | β | γ |
---|---|---|---|---|---|---|
Sizes | 7.6559 ± 0.0008 | 6.4154 ± 0.0006 | 4.2184 ± 0.0004 | 90° | 90° | 90° |
Location | Al | Fe | Mg | Mn |
---|---|---|---|---|
A | 71.95 | 28.05 | - | - |
B | 75.45 | 24.26 | 0.29 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, T.; Yu, X.; Huang, J. The Al-Fe Intermetallic Compounds and the Atomic Diffusion Behavior at the Interface of Aluminum-Steel Welded Joint. Metals 2023, 13, 334. https://doi.org/10.3390/met13020334
Zhang Y, Zhao T, Yu X, Huang J. The Al-Fe Intermetallic Compounds and the Atomic Diffusion Behavior at the Interface of Aluminum-Steel Welded Joint. Metals. 2023; 13(2):334. https://doi.org/10.3390/met13020334
Chicago/Turabian StyleZhang, Yinglong, Tianxiang Zhao, Xiaoquan Yu, and Jiankang Huang. 2023. "The Al-Fe Intermetallic Compounds and the Atomic Diffusion Behavior at the Interface of Aluminum-Steel Welded Joint" Metals 13, no. 2: 334. https://doi.org/10.3390/met13020334
APA StyleZhang, Y., Zhao, T., Yu, X., & Huang, J. (2023). The Al-Fe Intermetallic Compounds and the Atomic Diffusion Behavior at the Interface of Aluminum-Steel Welded Joint. Metals, 13(2), 334. https://doi.org/10.3390/met13020334