Advances in Schiff Base and Its Coating on Metal Biomaterials—A Review
Abstract
:1. Introduction
2. Structure, Properties and Classification of Schiff Bases
3. Synthesis of Schiff Base
4. Schiff Base Reaction
5. The Application of Schiff Base on Biomaterials
5.1. Schiff Base and Nano Materials
5.2. Schiff Base and Chitosan
5.3. Schiff Base and Epoxy Resin
5.4. Schiff Base and Others
6. Schiff Base Coating
6.1. Metal Coating
6.2. Biological Coating
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, T.; Gruenewald, A.; Detsch, R.; Boccaccini, A.R.; Vogel, N. Cell Interactions with Size-Controlled Colloidal Monolayers: Toward Improved Coatings in Bone Tissue Engineering. Langmuir 2020, 36, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sheng, S.; Yang, H.; He, Z.; Yang, Y.; Sheng, N.; Fang, H.; Shi, G. Uniform, Anticorrosive, and Antiabrasive Coatings on Metallic Surfaces for Cation-Metal and Cation-pi Interactions. ACS Appl. Mater. Interfaces 2020, 12, 38638–38646. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Qi, H.; He, Y.; Lin, W.; Li, P.; Qin, L.; Hu, Y.; Chen, L.; Liu, Q.; Sun, H.; et al. Strategy of Metal-Polymer Composite Stent To Accelerate Biodegradation of Iron-Based Biomaterials. ACS Appl. Mater. Interfaces 2018, 10, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.I.A.; Sayed, M.; Elshanawany, M.M.; Younis, O.; Ahmed, M.; El-Dean, A.M.K.; Abdel-Wahab, A.M.A.; Wachtveitl, J.; Braun, M.; Fatehi, P.; et al. Base-Free Synthesis and Photophysical Properties of New Schiff Bases Containing Indole Moiety. ACS Omega 2022, 7, 10178–10186. [Google Scholar] [CrossRef]
- Hassan, N.; Hendy, A.; Ebrahim, A.; Tamer, T.M. Synthesis and evaluation of novel O-functionalized aminated chitosan derivatives as antibacterial, antioxidant and anticorrosion for 316L stainless steel in simulated body fluid. J. Saudi Chem. Soc. 2021, 25, 101368. [Google Scholar] [CrossRef]
- Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240. [Google Scholar] [CrossRef]
- Kindi, H.; Willems, C.; Zhao, M.; Menzel, M.; Schmelzer, C.E.H.; Herzberg, M.; Fuhrmann, B.; Gallego-Ferrer, G.; Groth, T. Metal Ion Doping of Alginate-Based Surface Coatings Induces Adipogenesis of Stem Cells. ACS Biomater. Sci. Eng. 2022, 8, 4327–4340. [Google Scholar] [CrossRef]
- Wen, J.G.; Geng, W.; Geng, H.Z.; Zhao, H.; Jing, L.C.; Yuan, X.T.; Tian, Y.; Wang, T.; Ning, Y.J.; Wu, L. Improvement of Corrosion Resistance of Waterborne Polyurethane Coatings by Covalent and Noncovalent Grafted Graphene Oxide Nanosheets. ACS Omega 2019, 4, 20265–20274. [Google Scholar] [CrossRef]
- Fadl, A.M.; Abdou, M.I.; Laila, D.; Sadeek, S.A. Application insights of Schiff base metal complex/SiO2 hybrid epoxy nanocomposite for steel surface coating: Correlation the protective behavior and mechanical properties with material loading. Prog. Org. Coat. 2019, 136, 105226. [Google Scholar] [CrossRef]
- El-Azabawy, O.E.; Higazy, S.A.; Al-Sabagh, A.M.; Abdel-Rahman, A.A.H.; Nasser, N.M.; Khamis, E.A. Studying the temperature influence on carbon steel in sour petroleum media using facilely-designed Schiff base polymers as corrosion inhibitors. J. Mol. Struct. 2023, 1275, 134518. [Google Scholar] [CrossRef]
- Long, W.-J.; Li, X.-Q.; Xu, P.; Feng, G.-L.; He, C. Facile and scalable preparation of carbon dots with Schiff base structures toward an efficient corrosion inhibitor. Diam. Relat. Mater. 2022, 130, 109401. [Google Scholar] [CrossRef]
- Jafari, H.; Ameri, E.; Rezaeivala, M.; Berisha, A. Experimental and theoretical studies on protecting steel against 0.5 M H2SO4 corrosion by new schiff base. J. Indian Chem. Soc. 2022, 99, 100665. [Google Scholar] [CrossRef]
- El-Ghamry, M.A.; Elzawawi, F.M.; Aziz, A.A.A.; Nassir, K.M.; Abu-El-Wafa, S.M. New Schiff base ligand and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes: Spectral investigation, biological applications, and semiconducting properties. Sci. Rep. 2022, 12, 17942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shi, T.; Ding, G.; Punyapitak, D.; Zhu, J.; Guo, D.; Zhang, Z.; Li, J.; Cao, Y. Nanosilica Schiff-Base Copper(II) Complexes with Sustainable Antimicrobial Activity against Bacteria and Reduced Risk of Harm to Plant and Environment. ACS Sustain. Chem. Eng. 2016, 5, 502–509. [Google Scholar] [CrossRef]
- Jia, Y.; Li, J. Molecular assembly of Schiff Base interactions: Construction and application. Chem. Rev. 2015, 115, 1597–1621. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Li, L.; Miao, S.; Li, Y.; Li, Y.; Wang, X.; Huang, Y.; Zhang, T. Direct catalytic hydrogenation of CO(2) to formate over a Schiff-base-mediated gold nanocatalyst. Nat. Commun. 2017, 8, 1407. [Google Scholar] [CrossRef]
- Luo, C.; Li, M.; Yuan, R.; Yang, Y.; Lu, Z.; Ge, L. Biocompatible Self-Healing Coating Based on Schiff Base for Promoting Adhesion of Coral Cells. ACS Appl. Bio Mater. 2020, 3, 1481–1495. [Google Scholar] [CrossRef]
- Zhong, X.; Li, Z.; Shi, R.; Yan, L.; Zhu, Y.; Li, H. Schiff Base-Modified Nanomaterials for Ion Detection: A Review. ACS Appl. Nano Mater. 2022, 5, 13998–14020. [Google Scholar] [CrossRef]
- Negm, N.A.; Altalhi, A.A.; Mohamed, N.E.S.; Kana, M.T.H.A.; Mohamed, E.A. Growth Inhibition of Sulfate-Reducing Bacteria during Gas and Oil Production Using Novel Schiff Base Diquaternary Biocides: Synthesis, Antimicrobial, and Toxicological Assessment. ACS Omega 2022, 7, 40098–40108. [Google Scholar] [CrossRef]
- Wang, X.; Fan, X.; Zeng, M.; Li, C.; Cui, L.; Chen, X.; Zou, Y.; Wang, Z.; Zeng, R. In vitro degradation resistance of glucose and L-cysteine-bioinspired Schiff-base anodic Ca–P coating on AZ31 magnesium alloy. Trans. Nonferr. Met. Soc. China 2022, 32, 1485–1500. [Google Scholar] [CrossRef]
- Verma, R.; Lamba, N.P.; Dandia, A.; Srivastava, A.; Modi, K.; Chauhan, M.S.; Prasad, J. Synthesis of N-Benzylideneaniline by Schiff base reaction using Kinnow peel powder as Green catalyst and comparative study of derivatives through ANOVA techniques. Sci. Rep. 2022, 12, 9636. [Google Scholar] [CrossRef] [PubMed]
- Beyazit, N.; Çakran, H.S.; Cabir, A.; Akışcan, Y.; Demetgül, C. Synthesis, characterization and antioxidant activity of chitosan Schiff base derivatives bearing (-)-gossypol. Carbohydr. Polym. 2020, 240, 116333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, P.; Peng, X.; Chen, S.; Zhang, K. Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. ACS Sustain. Chem. Eng. 2019, 7, 16595–16603. [Google Scholar] [CrossRef]
- Tachibana, Y.; Hayashi, S.; Kasuya, K.I. Biobased Poly(Schiff-Base) Composed of Bifurfural. ACS Omega 2018, 3, 5336–5345. [Google Scholar] [CrossRef]
- Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H.S.; Vikraman, D. In vitro cytotoxicity activity of novel Schiff base ligand-lanthanide complexes. Sci. Rep. 2018, 8, 3054. [Google Scholar] [CrossRef]
- Abd El-Wahab, H.; El-Fattah, M.A.; El-alfy, H.M.Z.; Owda, M.E.; Lin, L.; Hamdy, I. Synthesis and characterisation of sulphonamide (Schiff base) ligand and its copper metal complex and their efficiency in polyurethane varnish as flame retardant and antimicrobial surface coating additives. Prog. Org. Coat. 2020, 142, 105577. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Yang, Y.; Zhong, S.; Zhang, R.; Fang, Y.; Gao, Y.; Cui, X. Schiff Base Aggregation-Induced Emission Luminogens for Sensing Applications: A Review. ACS Sens. 2022, 7, 2521–2536. [Google Scholar] [CrossRef]
- Vikneshvaran, S.; Velmathi, S. Adsorption of L-Tryptophan-derived chiral Schiff bases on stainless steel surface for the prevention of corrosion in acidic environment: Experimental, theoretical and surface studies. Surf. Interfaces 2017, 6, 134–142. [Google Scholar] [CrossRef]
- Hou, C.-C.; Ma, C.; Zhang, S.-N.; Wang, L.-Y.; Wang, K.-X.; Chen, J.-S. Polymeric Schiff Base with Thiophene Rings for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 13802–13807. [Google Scholar] [CrossRef]
- Marvaniya, K.; Maurya, A.; Dobariya, P.; Kaushik, A.; Prakash, P.; Bhargava, J.; Vanamudan, A.; Patel, K.; Kushwaha, S. Polymeric nano-films with spatially arranged compartments for uranium recovery from seawater. Eur. Polym. J. 2022, 178, 111507. [Google Scholar] [CrossRef]
- Ani, F.E.; Ibeji, C.U.; Obasi, N.L.; Kelani, M.T.; Ukogu, K.; Tolufashe, G.F.; Ogundare, S.A.; Oyeneyin, O.E.; Maguire, G.E.M.; Kruger, H.G. Crystal, spectroscopic and quantum mechanics studies of Schiff bases derived from 4-nitrocinnamaldehyde. Sci. Rep. 2021, 11, 8151. [Google Scholar] [CrossRef] [PubMed]
- Thyriyalakshmi, P.; Radha, K.V. Fabrication of chitosan-bis (4-formyl-2 methoxy phenyl carbonate) Schiff base nanoparticles and evaluation of their antioxidant and anticancer properties. Mol. Biol. Rep. 2019, 46, 4333–4347. [Google Scholar] [CrossRef] [PubMed]
- Vadivel, T.; Dhamodaran, M.; Kulathooran, S.; Kavitha, S.; Amirthaganesan, K.; Chandrasekaran, S.; Ilayaraja, S.; Senguttuvan, S. Rhodium(III) complexes derived from complexation of metal with azomethine linkage of chitosan biopolymer Schiff base ligand: Spectral, thermal, morphological and electrochemical studies. Carbohydr. Res. 2020, 487, 107878. [Google Scholar] [CrossRef] [PubMed]
- Clifford, A.; Lee, B.E.J.; Grandfield, K.; Zhitomirsky, I. Biomimetic modification of poly-l-lysine and electrodeposition of nanocomposite coatings for orthopaedic applications. Colloids Surf. B Biointerfaces 2019, 176, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Jehle, F.; Macías-Sánchez, E.; Sviben, S.; Fratzl, P.; Bertinetti, L.; Harrington, M.J. Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases. Nat. Commun. 2020, 11, 862. [Google Scholar] [CrossRef] [PubMed]
- Elshaarawy, R.F.M.; Mustafa, F.H.A.; van Geelen, L.; Abou-Taleb, A.E.A.; Tadros, H.R.Z.; Kalscheuer, R.; Janiak, C. Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants: Fabrication of high-performance economic and ecofriendly anti-biofouling coatings. Carbohydr. Polym. 2017, 172, 352–364. [Google Scholar] [CrossRef]
- Hassan, M.A.; Omer, A.M.; Abbas, E.; Baset, W.M.A.; Tamer, T.M. Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci. Rep. 2018, 8, 11416. [Google Scholar] [CrossRef]
- Han, J.; Wang, H.; Li, Z.; Wang, Z. Preparation of chitosan-modified magnetic Schiff base network composite nanospheres for effective enrichment and detection of hippuric acid and 4-methyl hippuric acid. J. Chromatogr. A 2021, 1652, 462373. [Google Scholar] [CrossRef]
- Manimohan, M.; Paulpandiyan, R.; Pugalmani, S.; Sithique, M.A. Biologically active Co (II), Cu (II), Zn (II) centered water soluble novel isoniazid grafted O-carboxymethyl chitosan Schiff base ligand metal complexes: Synthesis, spectral characterisation and DNA nuclease activity. Int. J. Biol. Macromol. 2020, 163, 801–816. [Google Scholar] [CrossRef]
- Ali, S.S.; Kenawy, E.R.; Sonbol, F.I.; Sun, J.; Al-Etewy, M.; Ali, A.; Liu, H.; El-Zawawy, N.A. Pharmaceutical Potential of a Novel Chitosan Derivative Schiff Base with Special Reference to Antibacterial, Anti-Biofilm, Antioxidant, Anti-Inflammatory, Hemocompatibility and Cytotoxic Activities. Pharm. Res. 2018, 36, 5. [Google Scholar] [CrossRef]
- Malekshah, R.E.; Shakeri, F.; Khaleghian, A.; Salehi, M. Developing a biopolymeric chitosan supported Schiff-base and Cu(II), Ni(II) and Zn(II) complexes and biological evaluation as pro-drug. Int. J. Biol. Macromol. 2020, 152, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Abid, O.U.R.; Mir, S. Assessment of biological activities of chitosan Schiff base tagged with medicinal plants. Biopolymers 2020, 111, e23338. [Google Scholar] [CrossRef] [PubMed]
- Anush, S.M.; Chandan, H.R.; Vishalakshi, B. Synthesis and metal ion adsorption characteristics of graphene oxide incorporated chitosan Schiff base. Int. J. Biol. Macromol. 2019, 126, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Mi, Y.; Cui, J.; Zhang, J.; Tan, W.; Li, Q.; Guo, Z. Determination of chitosan content with Schiff base method and HPLC. Int. J. Biol. Macromol. 2021, 182, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Mazumder, M.A.J.; Singh, A. Chitosan Schiff base: An environmentally benign biological macromolecule as a new corrosion inhibitor for oil & gas industries. Int. J. Biol. Macromol. 2020, 144, 305–315. [Google Scholar]
- Seidi, S.; Majd, M.; Rezazadeh, M.; Shanehsaz, M. Magnetic nanocomposite of chitosan-Schiff base grafted graphene oxide for lead analysis in whole blood. Anal. Biochem. 2018, 553, 28–37. [Google Scholar] [CrossRef]
- Rakhtshah, J.; Yaghoobi, F. Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo[1,2-a]pyridines. Int. J. Biol. Macromol. 2019, 139, 904–916. [Google Scholar] [CrossRef]
- Arnon-Rips, H.; Cohen, Y.; Saidi, L.; Porat, R.; Poverenov, E. Covalent linkage of bioactive volatiles to a polysaccharide support as a potential approach for preparing active edible coatings and delivery systems for food products. Food Chem. 2021, 338, 127822. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, Y.; Lei, F.; Dai, L. A novel and green cellulose-based Schiff base-Cu (II) complex and its excellent antibacterial activity. Carbohydr. Polym. 2020, 230, 115671. [Google Scholar] [CrossRef]
- Zhong, W.; Xiong, Y.; Wang, X.; Yu, T.; Zhou, C. Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111532. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Yu, F.; Zhao, Y.X.; Mo, X.M.; Pan, J.F. In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. Int. J. Biol. Macromol. 2020, 147, 653–666. [Google Scholar] [CrossRef]
- Deng, H.; Huang, K.; Xiu, L.; Sun, W.; Yao, Q.; Fang, X.; Huang, X.; Noreldeen, H.A.A.; Peng, H.; Xie, J.; et al. Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nat. Commun. 2022, 13, 3381. [Google Scholar] [CrossRef]
- Ji, J.; Huang, S.; Liu, S.; Yuan, Y.; Zhao, J.; Zhang, S. A novel biomass-derived Schiff base waterborne epoxy coating for flame retardation and anti-bacteria. Polym. Degrad. Stab. 2022, 199, 109910. [Google Scholar] [CrossRef]
- Zhao, P.; Tian, L.; Guo, Y.; Lv, B.; Mao, X.; Li, T.; Cui, J.; Guo, J.; Yang, B. A facile method to prepare high-performance thermal insulation and flame retardant materials from amine-linked porous organic polymers. Eur. Polym. J. 2022, 162, 110918. [Google Scholar] [CrossRef]
- Atta, A.M.; Shaker, N.O.; Maysour, N.E. Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog. Org. Coat. 2006, 56, 100–110. [Google Scholar] [CrossRef]
- Ma, J.; Li, G.; Hua, X.; Liu, N.; Liu, Z.; Zhang, F.; Yu, L.; Chen, X.; Shang, L.; Ao, Y. Biodegradable epoxy resin from vanillin with excellent flame-retardant and outstanding mechanical properties. Polym. Degrad. Stab. 2022, 201, 109989. [Google Scholar] [CrossRef]
- Li, J.; Weng, Z.; Cao, Q.; Qi, Y.; Lu, B.; Zhang, S.; Wang, J.; Jian, X. Synthesis of an aromatic amine derived from biomass and its use as a feedstock for versatile epoxy thermoset. Chem. Eng. J. 2022, 433, 134512. [Google Scholar] [CrossRef]
- Daraie, M.; Heravi, M.M.; Rangraz, Y.; Besharati, Z. Pd NPs supported on halloysite functionalized with Schiff base as an efficient catalyst for Sonogashira reaction. Sci. Rep. 2021, 11, 6223. [Google Scholar] [CrossRef]
- Raiber, E.A.; Portella, G.; Cuesta, S.M.; Hardisty, R.; Murat, P.; Li, Z.; Iurlaro, M.; Dean, W.; Spindel, J.; Beraldi, D.; et al. 5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells. Nat. Chem. 2018, 10, 1258–1266. [Google Scholar] [CrossRef]
- Muthusamy, S.; Zhu, D.; Rajalakshmi, K.; Zhu, W.; Wang, S.; Lee, K.B.; Zhao, L. Successive Detection of Zinc Ion and Citrate Using a Schiff Base Chemosensor for Enhanced Prostate Cancer Diagnosis in Biosystems. ACS Appl. Bio Mater. 2021, 4, 1932–1941. [Google Scholar] [CrossRef]
- Ge, L.; Li, Z.; Han, M.; Wang, Y.; Li, X.; Mu, C.; Li, D. Antibacterial dialdehyde sodium alginate/epsilon-polylysine microspheres for fruit preservation. Food Chem. 2022, 387, 132885. [Google Scholar] [CrossRef]
- Mo, K.Q.; Ma, X.F.; Wang, H.L.; Zhu, Z.H.; Liu, Y.C.; Zou, H.H.; Liang, F.P. Tracking the Multistep Formation of Ln(III) Complexes with in situ Schiff Base Exchange Reaction and its Highly Selective Sensing of Dichloromethane. Sci. Rep. 2019, 9, 12231. [Google Scholar] [CrossRef]
- Satpati, S.; Suhasaria, A.; Ghosal, S.; Adhikari, U.; Banerjee, P.; Dey, S.; Sukul, D. Anti-corrosive propensity of naturally occurring aldehydes and 1-(3-aminopropyl)imidazole condensed Schiff bases: Comparison on the effect of extended conjugation over electron donating substituents. J. Mol. Struct. 2022, 1268, 133684. [Google Scholar] [CrossRef]
- Emregül, K.C.; Düzgün, E.; Atakol, O. The application of some polydentate Schiff base compounds containing aminic nitrogens as corrosion inhibitors for mild steel in acidic media. Corros. Sci. 2006, 48, 3243–3260. [Google Scholar] [CrossRef]
- Prabhu, R.A.; Venkatesha, T.V.; Shanbhag, A.V.; Kulkarni, G.M.; Kalkhambkar, G.R. Inhibition effects of some Schiff’s bases on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 2008, 50, 3356–3362. [Google Scholar] [CrossRef]
- Ehteshamzade, M.; Shahrabi, T.; Hosseini, M.G. Inhibition of copper corrosion by self-assembled films of new Schiff bases and their modification with alkanethiols in aqueous medium. Appl. Surf. Sci. 2006, 252, 2949–2959. [Google Scholar] [CrossRef]
- Bellal, Y.; Benghanem, F.; Keraghel, S. A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. J. Mol. Struct. 2021, 1225, 129257. [Google Scholar] [CrossRef]
- Cao, Y.; He, J.; Wu, J.; Wang, X.; Lu, W.; Lin, J.; Xu, Y.; Chen, G.; Zeng, B.; Dai, L. A Smart Anticorrosive Epoxy Coating Based on Environmental-Stimuli-Responsive Copolymer Assemblies for Controlled Release of Corrosion Inhibitors. Macromol. Mater. Eng. 2022, 307, 2100983. [Google Scholar] [CrossRef]
- Bonetti, S.; Spengler, R.; Petersen, A.; Aleixo, L.S.; Merlo, A.A.; Tamborim, S.M. Surface-decorated silica with Schiff base as an anticorrosive coating for aluminium alloy 2024-T3. Appl. Surf. Sci. 2019, 475, 684–694. [Google Scholar] [CrossRef]
- Liu, W.; Yan, M.; Zhao, W. Antibacterial-renew dual-function anti-biofouling strategy: Self-assembled Schiff-base metal complex coatings built from natural products. J. Colloid Interface Sci. 2023, 629(Pt. A), 496–507. [Google Scholar] [CrossRef]
- Li, J.; Zhou, P.; Wang, L.; Hou, Y.; Zhang, X.; Zhu, S.; Guan, S. Investigation of Mg-xLi-Zn alloys for potential application of biodegradable bone implant materials. J. Mater. Sci. Mater. Med. 2021, 32, 43. [Google Scholar] [CrossRef] [PubMed]
- Tong, P.; Sheng, Y.; Hou, R.; Iqbal, M.; Chen, L.; Li, J. Recent progress on coatings of biomedical magnesium alloy. Smart Mater. Med. 2022, 3, 104–116. [Google Scholar] [CrossRef]
- Sheng, Y.; Hou, R.; Liu, C.; Xue, Z.; Zhang, K.; Li, J.; Guan, S. Tailoring of biodegradable magnesium alloy surface with Schiff base coating via electrostatic spraying for better corrosion resistance. Metals 2022, 12, 471. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, W.; Chai, Y.; Yin, S.; Li, J.; Guan, S. A compound Schiff base coating on biomedical magnesium alloy for enhanced corrosion resistance and biocompatibility. Smart Mater. Manuf. 2023, 1, 100003. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, H.; Zhang, W.; Qi, H.; Zhang, G.; Qian, J.; Li, X.; Qin, L.; Li, H.; Wang, X.; et al. In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact. Mater. 2021, 6, 1028–1039. [Google Scholar] [CrossRef]
- Wu, H.; Xie, X.; Wang, J.; Ke, G.; Huang, H.; Liao, Y.; Kong, Q. Biological properties of Zn–0.04Mg–2Ag: A new degradable zinc alloy scaffold for repairing large-scale bone defects. J. Mater. Res. Technol. 2021, 13, 1779–1789. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, P.; Cao, X.Q.; Misra, R.D.K.; Wang, W.; Chen, K.Z. Tin-induced microstructural changes and associated corrosion resistance of biodegradable Mg–Zn alloy. Rare Met. 2022, 41, 883–888. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, X.; Li, J.; Wang, L.; Guan, S. A multi-functional MgF2/Polydopamine/Hyaluronan-astaxanthin coating on the biodegradable ZE21B alloy with better corrosion resistance and biocompatibility for cardiovascular application. J. Magnes. Alloy. 2022; in press. [Google Scholar] [CrossRef]
- Han, Z.; Guo, H.; Zhou, Y.; Wang, L.; Zhang, K.; Li, J. Composite coating prepared with ferulic acid to improve the corrosion resistance and blood compatibility of magnesium alloy. Metals 2022, 12, 545. [Google Scholar] [CrossRef]
- Hou, Y.; Witte, F.; Li, J.; Guan, S. The increased ratio of Mg2+/Ca2+ from degrading magnesium alloys directs macrophage fate for functionalized growth of endothelial cells. Smart Mater. Med. 2022, 3, 188–198. [Google Scholar] [CrossRef]
- Su, H.; Xue, G.; Ye, C.; Wang, Y.; Zhao, A.; Huang, N.; Li, J. The effect of anti-CD133/fucoidan bio-coatings on hemocompatibility and EPC capture. J. Biomater. Sci. Polym. Ed. 2017, 28, 2066–2081. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Hsu, Y.I.; Asoh, T.A.; Uyama, H. Poly(methyl methacrylate) surface grafted with poly(2-ethyl-2-oxazoline) using tea polyphenol as linker molecule. Prog. Org. Coat. 2022, 166, 106796. [Google Scholar] [CrossRef]
- Zhu, T.; Jiang, C.; Wu, J.; Wang, M.; Zhu, C.; Zhao, N.; Xu, J. Eco-friendly and one-step modification of poly(vinylidene fluoride) membrane with underwater superoleophobicity for effective emulsion separation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125939. [Google Scholar] [CrossRef]
- Jain-Beuguel, C.; Li, X.; Houel-Renault, L.; Modjinou, T.; Simon-Colin, C.; Gref, R.; Renard, E.; Langloi, V. Water-Soluble Poly(3-hydroxyalkanoate) Sulfonate: Versatile Biomaterials Used as Coatings for Highly Porous Nano-Metal Organic Framework. Biomacromolecules 2019, 20, 3324–3332. [Google Scholar] [CrossRef] [PubMed]
- Foroughnia, A.; Khalaji, A.D.; Kolvari, E.; Koukabi, N. Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: Evaluation of methyl orange removal and antibacterial activity. Int. J. Biol. Macromol. 2021, 177, 83–91. [Google Scholar] [CrossRef]
- Pandit, A.H.; Nisar, S.; Imtiyaz, K.; Nadeem, M.; Mazumdar, N.; Rizvi, M.M.A.; Ahmad, S. Injectable, Self-Healing, and Biocompatible N,O-Carboxymethyl Chitosan/Multialdehyde Guar Gum Hydrogels for Sustained Anticancer Drug Delivery. Biomacromolecules 2021, 22, 3731–3745. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pei, M.; Wan, T.; Yang, H.; Gu, S.; Tao, Y.; Liu, X.; Zhou, Y.; Xu, W.; Xiao, P. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials. Carbohydr. Polym. 2020, 250, 116922. [Google Scholar] [CrossRef]
- Hu, C.; Long, L.; Cao, J.; Zhang, S.; Wang, Y. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. J. 2021, 411, 128564. [Google Scholar] [CrossRef]
- Barik, P.S.K.; Singh, B.N. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Sci. Rep. 2019, 9, 6520. [Google Scholar]
- Elhag, M.; Abdelwahab, H.E.; Mostafa, M.A.; Yacout, G.A.; Nasr, A.Z.; Dambruoso, P.; Sadek, M.M.E. One pot synthesis of new cross-linked chitosan-Schiff’ base: Characterization, and anti-proliferative activities. Int. J. Biol. Macromol. 2021, 184, 558–565. [Google Scholar] [CrossRef]
Type | Examples |
---|---|
Bidentate | |
Tridentate | |
Tetradentate | |
Polydentate |
Type | Schiff Base Coating | MgF2 | Magnesium Hydroxide |
---|---|---|---|
Corrosion resistance | + | + | + |
Shorter preparation time | + | − | − |
Better biocompatibility | + | − | − |
Surface self-healing | + | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Song, Q.; Jin, Y.; Feng, Y.; Li, J.; Zhang, K. Advances in Schiff Base and Its Coating on Metal Biomaterials—A Review. Metals 2023, 13, 386. https://doi.org/10.3390/met13020386
Zhang Z, Song Q, Jin Y, Feng Y, Li J, Zhang K. Advances in Schiff Base and Its Coating on Metal Biomaterials—A Review. Metals. 2023; 13(2):386. https://doi.org/10.3390/met13020386
Chicago/Turabian StyleZhang, Zhiqiang, Qingya Song, Yubin Jin, Yashan Feng, Jingan Li, and Kun Zhang. 2023. "Advances in Schiff Base and Its Coating on Metal Biomaterials—A Review" Metals 13, no. 2: 386. https://doi.org/10.3390/met13020386
APA StyleZhang, Z., Song, Q., Jin, Y., Feng, Y., Li, J., & Zhang, K. (2023). Advances in Schiff Base and Its Coating on Metal Biomaterials—A Review. Metals, 13(2), 386. https://doi.org/10.3390/met13020386