Bio-Concentration and Influence of Environmental Factors on Accumulation of Heavy Metals in Edible Autumn Morel (Morchella galilaea) of Low Elevation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Analysis
2.2. Sample Collection and Analysis
2.3. Quality Control (QC) Analysis
2.4. Translocation Factor
2.5. Plant Transfer Factor
2.6. Daily Intake of Metals
2.7. Health Risk Index HRI
2.8. Statistical Analysis
3. Results and Discussion
3.1. Metals Concentration in the Soil Substrate
3.2. The Fate of Heavy Metals in M. galilaea (Fruiting Body (FB) and Hymenophore (H))
3.3. Translocation Factor
3.4. Plant Transfer Factor (PTF)
3.5. Daily Intake of Metal (DIM)
3.6. Health Risk Index (HRI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kula, İ.; Solak, M.H.; Uğurlu, M.; Işıloğlu, M.; Arslan, Y. Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey. Bull. Environ. Contam. Toxicol. 2011, 87, 276–281. [Google Scholar]
- Badshah, H. Myco-chemical, Nutraceutical and Molecular Studies of Selected Wild Edible Morchella Species of Pakistan. Ph.D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 2019. [Google Scholar]
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Svoboda, L.; Zimmermannova, K.; Kalač, P. Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. Sci. Total Environ. 2000, 246, 61–67. [Google Scholar] [CrossRef]
- Kalač, P. A review of edible mushroom radioactivity. Food Chem. 2001, 75, 29–35. [Google Scholar] [CrossRef]
- Falandysz, J.; Kawano, M.; Świeczkowski, A.; Brzostowski, A.; Dadej, M. Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chem. 2003, 81, 21–26. [Google Scholar]
- Vetter, J. Arsenic content of some edible mushroom species. Eur. Food Res. Technol. 2004, 219, 71–74. [Google Scholar] [CrossRef]
- Mleczek, M.; Magdziak, Z.; Goliński, P.; Siwulski, M.; Stuper-Szablewska, K. Concentrations of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Sci. Pol. Technol. Aliment. 2013, 12, 203–214. [Google Scholar]
- Isildak, O.; Turkekul, I.; Elmastas, M.; Aboul-Enein, H.Y. Bioaccumulation of Heavy Metals in Some Wild-Grown Edible Mushrooms. Anal. Lett. 2007, 40, 1099–1116. [Google Scholar] [CrossRef]
- Krupa, P.; Kozdrój, J. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J. Microbiol. Biotechnol. 2004, 20, 427–430. [Google Scholar] [CrossRef]
- Aloupi, M.; Koutrotsios, G.; Koulousaris, M.; Kalogeropoulos, N. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicol. Environ. Saf. 2012, 78, 184–194. [Google Scholar]
- Árvay, J.; Demková, L.; Hauptvogl, M.; Michalko, M.; Bajčan, D.; Stanovič, R.; Trebichalský, P. Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems. Ecotoxicol. Environ. Saf. 2017, 144, 236–244. [Google Scholar] [CrossRef]
- Borovička, J.; Braeuer, S.; Sácký, J.; Kameník, J.; Goessler, W.; Trubač, J.; Kotrba, P. Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci. Total Environ. 2019, 648, 1570–1581. [Google Scholar] [CrossRef]
- Kalac, P. Edible Mushrooms: Chemical Composition and Nutritional Value; Academic Press: Cambridge, MA, USA, 2016; Chapter 2. [Google Scholar]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. Vol. 2011, 213, 113–136. [Google Scholar]
- Shah, M.T.; Ara, J.; Muhammad, S.; Khan, S.; Tariq, S. Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan. J. Geochem. Explor. 2012, 118, 60–67. [Google Scholar] [CrossRef]
- Newbound, M.; Mccarthy, M.A.; Lebel, T. Fungi and the urban environment: A review. Landsc. Urban Plan. 2010, 96, 138–145. [Google Scholar] [CrossRef]
- Petkovšek, S.A.S.; Pokorny, B. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Sci. Total. Environ. 2013, 443, 944–954. [Google Scholar] [CrossRef]
- Amin, N.U.; Hussain, A.; Alamzeb, S.; Begum, S. Accumulation of heavy metals inedible parts of vegetables irrigated with wastewater and their daily intake to adults and children, District Mardan, Pakistan. Food Chem. 2013, 136, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol. Environ. Saf. 2014, 100, 53–60. [Google Scholar] [CrossRef]
- Badshah, H.; Khan, M.U.; Mumtaz, A.S. Elucidating Heavy Metals Concentration and Distribution in Wild Edible Morels and the Associated Soil at Different Altitudinal Zones of Pakistan: A Health Risk Implications Study. Biol. Trace Elem. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Jarup, L. Hazards of heavy metal contamination. Brit. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Oskarsson, A.; Widell, A.; Olsson, M.; Grawé, K. Cadmium in food chain and health effects in sensitive population groups. Biometals 2004, 17, 531–534. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cadmium, Environmental Health Criteria; WHO: Geneva, Switzerland, 1992; Volume 134.
- Badshah, H.; Qureshi, R.A.; Khan, J.; Ullah, F.; Fahad, S.; Ullah, F.; Khan, N. Pharmacological screening of Morchella esculenta (L.) Pers., Calvatia gigantea (Batsch ex Pers.) Lloyd and Astraeus hygrometricus Pers., mushroom collected from South Waziristan (FATA.). J. Med. Plants Res. 2012, 6, 1853–1859. [Google Scholar]
- Badshah, H.; Ullah, F.; Khan, M.U.; Mumtaz, A.S.; Malik, R.N. Pharmacological activities of selected wild mushrooms in South Waziristan (FATA), Pakistan. S. Afr. J. Bot. 2015, 97, 107–110. [Google Scholar] [CrossRef]
- Hamayun, M.; Khan, S.A.; Ahmad, H.; Shin, D.H.; Lee, I.J. Morel collection and marketing: A case study from the Hindu-Kush mountain region of Swat, Pakistan. Lyonia 2006, 11, 7–13. [Google Scholar]
- Alam, I.; Alam, M.; Khan, A.; Haq, S.; Ayaz, A.; Jalal, A.; Bhat, J.A. Biochar supplementation regulates growth and heavy metal accumulation in tomato grown in contaminated soils. Physiol. Plant. 2021, 173, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.E.; Grimshaw, H.M.; Rowland, A.P. Chemical Analysis. Methods in Plant Ecology; Moore, P.D., Chapman, S.B., Eds.; Blackwell Scientific Publications: Boston, MA, USA, 1986; pp. 285–344. [Google Scholar]
- Li, N.Y.; Fu, Q.L.; Zhuang, P.; Guo, B.; Zou, B.; Li, Z.A. Effect of fertilizers on Cd uptake of Amaranth hypochondriacus, a high biomass, fast growing and easily cultivated Cd hyperaccumulator. Int. J. Phytoremediation 2012, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.; Probst, A.; Probst, J.L.; Ulrich, E. Heavy metal distribution in some French forest soil: Evidence for atmospheric contamination. Sci. Total Environ. 2003, 312, 195–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elekes, C.C.; Busuioc, G. Influence of chemical composition of soil on metal accumulation in edible mushroom species of russula genus. Rev. Roum. Chim. 2013, 58, 629–637. [Google Scholar]
- Jan, F.A.; Ishaq, M.; Khan, S.; Ihsanullah, I.; Ahmad, I.; Shakirullah, M. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (Lower Dir). J. Hazard. Mat. 2010, 179, 612–621. [Google Scholar] [CrossRef]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Micro J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Soffianian, A.; Madani, E.S.; Arabi, M. Risk assessment of heavy metal soil pollution through principal components analysis and false color composition in Hamadan Province, Iran. Environ. Syst. Res. 2014, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.B.; Donaldson, E.C.; Kaste, J.M.; Friedland, A.J. Forest floor lead, copper and zinc concentrations across the northeastern United States: Synthesizing spatial and temporal responses. Sci. Total. Environ. 2015, 505, 851–859. [Google Scholar] [CrossRef]
- Frankowska, A.; Ziółkowska, J.; Bielawski, L.; Falandysz, J. Profile and bioconcentration of minerals by King Bolete (Boletus edulis) from the Płocka Dale in Poland. Food Addit. Contam. Part B 2010, 3, 1–6. [Google Scholar] [CrossRef]
- Falandysz, J.; Frankowska, A.; Mazur, A. Mercury and its bioconcentration factors in King Bolete (Boletus edulis) Bull. Fr. J Environ. Sci. Health A 2007, 42, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Appl. Microbiol. Biotechnol. 2012, 97, 477–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.C.; Zhang, M.Y.; Shang, X.D.; Chen, M.J.; Tan, Q. An axenic culture system for fruiting body formation by an edible bolete phylogenetically related to culinary-medicinal penny bun mushroom, Boletus edulis Bull.:Fr. strains from China. Int. J. Med. Mushrooms 2011, 13, 387–395. [Google Scholar] [CrossRef]
- Bahemuka, T.E.; Mubofu, E.B. Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chem. 1999, 66, 63–66. [Google Scholar] [CrossRef]
- WHO. Toxicological Evaluation of Certain Food Additives; WHO Food Additive Series No. 683; World Health Organization: Geneva, Switzerland, 1982.
- Haider, S.; Naithani, V.; Barthwal, J.; Kakkar, P. Heavy metal content in some therapeutically important medicinal plants. Bull. Environ. Contam. Toxicol. 2004, 72, 119–127. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Verma, S.; Dubey, R. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003, 164, 645–655. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, J.; Li, T.; Li, J.Q.; Wang, Y.Z.; Liu, H.G. Variations in Element Levels Accumulated in Different Parts of Boletus edulis Collected from Central Yunnan Province, China. J. Chem. 2015, 2015, 372152. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 2018, 255, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Chudzyński, K.; Falandysz, J. Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere 2008, 73, 1230–1239. [Google Scholar] [CrossRef]
- Kułdo, E.; Jarzyńska, G.; Gucia, M.; Falandysz, J. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. Chem. Pap. 2014, 68, 484–492. [Google Scholar] [CrossRef]
- FAO; World Health Organization (WHO). Joint FAO/NACA/WHO Study Group on Food Safety Issues Associated with Products from Aquaculture. In Food Safety Issues Associated with Products from Aquaculture: Report of a Joint FAO/NACA/WHO Study Group; World Health Organization: Geneva, Switzerland, 1999; Volume 883. [Google Scholar]
- USEPA/IRIS, United States, Environmental Protection Agency, Integrated Risk Information System. 2006. Available online: http://www.epa.gov/iris/substS (accessed on 1 January 2023).
- United States Environmental Protection Agency (USEPA). Methods for Evaluating Wetland Condition: Introduction to Biological Assessment; Office of Water: Washington, DC, USA, 2002; EPA-822-R-02-014.
- Fang, Y.; Sun, X.; Yang, W.; Ma, N.; Xin, Z.; Fu, J.; Hu, Q. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 2014, 151, 379. [Google Scholar] [CrossRef]
S.No | Statistics | Cu | Zn | Ni | Pb | Mn |
---|---|---|---|---|---|---|
S1 | Min | 15.99 | 59.14 | 15.99 | 14.19 | 14.00 |
Max | 22.54 | 61.42 | 38.37 | 25.98 | 26.27 | |
S2 | Min | 46.44 | 59.05 | 22.54 | 15.98 | 17.53 |
Max | 48.94 | 67.15 | 48.59 | 38.89 | 37.23 | |
S3 | Min | 23.44 | 59.15 | 20.02 | 22.97 | 7.05 |
Max | 45.44 | 66.14 | 49.48 | 49.93 | 17.43 | |
S4 | Min | 21.44 | 58.35 | 1.32 | 8.89 | 12.43 |
Max | 42.44 | 60.35 | 42.28 | 29.67 | 39.00 | |
S5 | Min | 34.44 | 58.89 | 46.44 | 11.78 | 27.41 |
Max | 40.44 | 60.84 | 41.00 | 15.42 | 40.32 | |
S6 | Min | 30.44 | 59.92 | 48.94 | 17.31 | 8.33 |
Max | 31.44 | 63.93 | 49.69 | 22.31 | 17.22 | |
S7 | Min | 12.94 | 58.94 | 47.77 | 7.10 | 4.27 |
Max | 26.44 | 59.61 | 49.06 | 23.17 | 6.29 | |
S8 | Min | 8.44 | 58.66 | 38.72 | 25.67 | 2.47 |
Max | 14.44 | 59.80 | 48.77 | 33.67 | 5.02 | |
S9 | Min | 6.94 | 58.50 | 23.44 | 22.34 | 21.78 |
Max | 12.44 | 58.73 | 48.89 | 45.45 | 31.09 | |
S10 | Min | 10.44 | 58.32 | 45.44 | 15.09 | 19.18 |
Max | 12.94 | 58.71 | 50.61 | 59.28 | 40.08 | |
S11 | Min | 1.49 | 58.32 | 37.79 | 21.99 | 22.18 |
Max | 15.94 | 59.14 | 49.39 | 50.43 | 37.14 | |
S12 | Min | 16.44 | 58.74 | 3.59 | 29.98 | 20.15 |
Max | 20.44 | 59.61 | 49.39 | 39.66 | 27.16 | |
S13 | Min | 2.04 | 58.84 | 21.44 | 29.00 | 20.14 |
Max | 24.44 | 60.14 | 48.61 | 39.00 | 37.15 | |
S14 | Min | 14.44 | 59.83 | 34.94 | 20.01 | 17.18 |
Max | 25.44 | 60.74 | 41.70 | 29.69 | 29.19 | |
S15 | Min | 18.44 | 59.14 | 40.69 | 23.32 | 27.15 |
Max | 25.94 | 62.61 | 49.70 | 26.00 | 37.15 |
(a) | ||||||
S.No | Statistics | Cu | Zn | Ni | Pb | Mn |
Mc1 | Min | 9.0 | 29.6 | 32.0 | 1.3 | 9.9 |
Max | 9.9 | 31.8 | 36.7 | 2.4 | 11.9 | |
Mc2 | Min | 9.8 | 29.9 | 30.6 | 1.3 | 13.9 |
Max | 10.0 | 32.9 | 33.87 | 2.6 | 16.9 | |
Mc3 | Min | 9.1 | 30.1 | 21.5 | 1.0 | 1.8 |
Max | 9.9 | 32.2 | 38.4 | 1.3 | 5.9 | |
Mc4 | Min | 9.3 | 30.9 | 29.5 | 1.1 | 2.8 |
Max | 9.9 | 31.9 | 36.19 | 3.4 | 12.9 | |
Mc5 | Min | 9.8 | 30.9 | 21.7 | 1.6 | 4.0 |
Max | 9.8 | 33.0 | 26.574 | 3.7 | 10.8 | |
Mc6 | Min | 9.7 | 30.0 | 26.1 | 1.5 | 0.8 |
Max | 9.9 | 31.0 | 36.124 | 2.4 | 5.8 | |
Mc7 | Min | 9.4 | 29.9 | 29.7 | 2.2 | 1.0 |
Max | 10.0 | 32.0 | 30.1886 | 2.4 | 3.0 | |
Mc8 | Min | 9.6 | 31.2 | 26.7 | 1.3 | 1.8 |
Max | 9.7 | 31.9 | 36.784 | 1.5 | 2.8 | |
Mc9 | Min | 9.2 | 29.7 | 25.1 | 1.3 | 0.8 |
Max | 10.0 | 30.2 | 35.094 | 1.7 | 2.8 | |
Mc10 | Min | 9.9 | 29.5 | 29.5 | 0.4 | 0.8 |
Max | 10.0 | 33.0 | 36.049 | 1.3 | 4.8 | |
Mc11 | Min | 9.9 | 30.1 | 26.1 | 1.3 | 8.0 |
Max | 10.0 | 31.2 | 36.094 | 1.6 | 20.0 | |
Mc12 | Min | 9.9 | 29.9 | 26.1 | 1.2 | 7.0 |
Max | 9.9 | 30.9 | 32.914 | 1.6 | 16.0 | |
Mc13 | Min | 1.1 | 31.1 | 21.5 | 1.2 | 3.7 |
Max | 10.1 | 31.3 | 31.544 | 1.6 | 7.0 | |
Mc14 | Min | 9.9 | 29.1 | 25.6 | 1.2 | 1.7 |
Max | 14.1 | 31.1 | 30.694 | 1.9 | 7.7 | |
Mc15 | Min | 9.0 | 29.1 | 26.2 | 1.4 | 1.7 |
Max | 10.0 | 29.5 | 36.7 | 1.7 | 3.7 | |
(b) | ||||||
Statistics | Cu | Zn | Ni | Pb | Mn | |
M1 | Min | 7.8 | 28 | 11.679 | 0.1 | 1 |
Max | 8.8 | 28.4 | 18.2 | 1 | 3 | |
M2 | Min | 7 | 28.1 | 16.094 | 1.1 | 1 |
Max | 8.8 | 28.8 | 20.094 | 1.1 | 3 | |
M3 | Min | 7 | 28.1 | 11.744 | 0.1 | 1 |
Max | 9 | 28.8 | 16.244 | 1.2 | 2 | |
M4 | Min | 6 | 28.3 | 14.744 | 0.2 | 1 |
Max | 8.2 | 28.8 | 20.244 | 2 | 3 | |
M5 | Min | 2.1 | 28.1 | 11.744 | 0.1 | 1.2 |
Max | 19 | 28.5 | 19.544 | 0.9 | 2 | |
M6 | Min | 3 | 27.8 | 1.249 | 0.2 | 1.2 |
Max | 9.6 | 28.7 | 17.244 | 0.3 | 4.1 | |
M7 | Min | 3.1 | 27.9 | 10.644 | 0.2 | 1.1 |
Max | 8.2 | 28.1 | 18.444 | 0.5 | 2.2 | |
M8 | Min | 2.9 | 27.8 | 11.744 | 0.8 | 1 |
Max | 4 | 28.9 | 16.194 | 0.4 | 2.1 | |
M9 | Min | 5 | 29 | 10.544 | 0.1 | 1 |
Max | 6 | 28.5 | 12.699 | 0.9 | 3.1 | |
M10 | Min | 2.3 | 28.6 | 15.794 | 0.1 | 1.1 |
Max | 7 | 29.2 | 16.944 | 0.9 | 2.3 | |
M11 | Min | 4.1 | 27.7 | 7.744 | 0.1 | 1.2 |
Max | 3.1 | 29.1 | 16.749 | 1 | 1.2 | |
M12 | Max | 5.4 | 28.8 | 18.964 | 0.2 | 3.1 |
MS13 | Min | 3.7 | 28.9 | 10.674 | 0.1 | 1.2 |
Max | 4.2 | 29 | 19.689 | 0.9 | 6.2 | |
MS14 | Min | 4 | 28.7 | 15.799 | 0.1 | 1.1 |
Max | 5 | 29.1 | 16.914 | 0.8 | 2.2 | |
MS15 | Min | 0.1 | 28 | 12.344 | 0.1 | 0.2 |
Max | 9 | 29 | 15.849 | 0.7 | 1.2 | |
(c) | ||||||
ANOVA | ||||||
Sum of Squares | df | Mean Square | F | Sig. p < 0.001 | ||
Cu | Between Groups | 2392.054 | 2 | 1196.027 | 23.341 | 0.000 |
Within Groups | 2152.109 | 42 | 51.241 | |||
Total | 4544.163 | 44 | ||||
Zn | Between Groups | 9103.554 | 2 | 4551.777 | 6687.857 | 0.000 |
Within Groups | 28.585 | 42 | 0.681 | |||
Total | 9132.139 | 44 | ||||
Ni | Between Groups | 48,408.539 | 2 | 24,204.270 | 131.368 | 0.000 |
Within Groups | 7738.393 | 42 | 184.247 | |||
Total | 56,146.932 | 44 | ||||
Pb | Between Groups | 7604.721 | 2 | 3802.361 | 77.972 | 0.000 |
Within Groups | 2048.167 | 42 | 48.766 | |||
Total | 9652.888 | 44 | ||||
Mn | Between Groups | 4263.520 | 2 | 2131.760 | 60.514 | 0.000 |
Within Groups | 1479.564 | 42 | 35.228 | |||
Total | 5743.084 | 44 |
Zn | Ni | Pb | Mn | Cu | |
---|---|---|---|---|---|
M1 | 1.02 | 1.22 | 9.82 | 9.69 | 1.59 |
M2 | 0.72 | 1.09 | 7.50 | 2.14 | 1.46 |
M3 | 2.59 | 1.35 | 2.42 | 0.76 | 7.50 |
M4 | 0.99 | 1.25 | 3.37 | 1.21 | 1.08 |
M5 | 1.89 | 1.23 | 2.99 | 0.79 | 0.22 |
M6 | 1.72 | 1.84 | 1.43 | 0.02 | 0.12 |
M7 | 0.96 | 1.27 | 2.13 | 1.46 | 0.49 |
M8 | 1.55 | 1.08 | 0.95 | 1.75 | 0.13 |
M9 | 1.21 | 1.18 | 0.85 | 0.16 | 0.51 |
M10 | 1.82 | 1.31 | 1.13 | 0.56 | 0.60 |
M11 | 1.64 | 1.00 | 3.26 | 1.35 | 0.82 |
M12 | 1.65 | 1.21 | 7.68 | 1.01 | 0.63 |
M13 | 0.96 | 0.70 | 10.87 | 3.25 | 0.60 |
M14 | 1.58 | 0.76 | 3.06 | 4.99 | 0.53 |
M15 | 1.82 | 1.34 | 2.66 | 2.91 | 0.03 |
PTF | Zn | Ni | Pb | Mn | Cu |
---|---|---|---|---|---|
Fruiting body | |||||
M1 | 0.57 | 0.63 | 0.45 | 0.42 | 0.22 |
M2 | 0.51 | 0.69 | 0.36 | 0.15 | 0.01 |
M3 | 0.56 | 0.97 | 0.29 | 0.06 | 0.00 |
M4 | 1.15 | 0.75 | 0.55 | 0.11 | 0.02 |
M5 | 0.72 | 0.85 | 0.93 | 0.27 | 0.02 |
M6 | 0.72 | 2.90 | 0.94 | 0.02 | 0.02 |
M7 | 0.47 | 1.13 | 0.32 | 0.60 | 0.04 |
M8 | 2.02 | 1.86 | 0.78 | 0.23 | 0.03 |
M9 | 1.92 | 2.50 | 0.91 | 0.14 | 0.14 |
M10 | 2.12 | 1.24 | 1.38 | 0.34 | 0.14 |
M11 | 1.49 | 1.36 | 0.49 | 1.25 | 0.27 |
M12 | 0.92 | 0.84 | 0.30 | 1.62 | 0.13 |
M13 | 0.46 | 0.33 | 0.29 | 5.20 | 0.15 |
M14 | 0.71 | 0.47 | 3.19 | 5.57 | 0.12 |
M15 | 1.02 | 0.80 | 4.06 | 5.13 | 0.08 |
Hymenophore | |||||
M1 | 0.56 | 0.52 | 0.05 | 0.04 | 0.14 |
M2 | 0.72 | 0.64 | 0.05 | 0.07 | 0.00 |
M3 | 0.22 | 0.72 | 0.12 | 0.08 | 0.00 |
M4 | 1.17 | 0.60 | 0.16 | 0.09 | 0.02 |
M5 | 0.38 | 0.69 | 0.31 | 0.34 | 0.09 |
M6 | 0.42 | 1.58 | 0.66 | 0.75 | 0.18 |
M7 | 0.49 | 0.89 | 0.15 | 0.41 | 0.08 |
M8 | 1.31 | 1.71 | 0.82 | 0.13 | 0.21 |
M9 | 1.59 | 2.12 | 1.07 | 0.89 | 0.28 |
M10 | 1.17 | 0.95 | 1.22 | 0.62 | 0.23 |
M11 | 0.91 | 1.35 | 0.15 | 0.93 | 0.33 |
M12 | 0.56 | 0.70 | 0.04 | 1.60 | 0.20 |
M13 | 0.49 | 0.47 | 0.03 | 1.60 | 0.25 |
M14 | 0.45 | 0.61 | 1.04 | 1.11 | 0.22 |
M15 | 0.56 | 0.60 | 1.53 | 1.76 | 2.35 |
DIM (mg/kg-Day) | Zn | Ni | Pb | Mn | Cu |
---|---|---|---|---|---|
M1 | 9.40 × 10−5 | 2.60 × 10−4 | 5.61 × 10−5 | 1.70 × 10−5 | 1.12 × 10−5 |
M2 | 6.72 × 10−5 | 1.83 × 10−4 | 7.32 × 10−5 | 8.19 × 10−6 | 8.54 × 10−7 |
M3 | 1.23 × 10−4 | 2.85 × 10−4 | 3.67 × 10−5 | 3.64 × 10−6 | 2.70 × 10−7 |
M4 | 7.28 × 10−5 | 2.84 × 10−4 | 5.88 × 10−5 | 5.71 × 10−6 | 1.84 × 10−6 |
M5 | 7.02 × 10−5 | 2.55 × 10−4 | 8.44 × 10−5 | 1.16 × 10−5 | 2.02 × 10−6 |
M6 | 1.01 × 10−4 | 4.03 × 10−4 | 6.55 × 10−5 | 5.08 × 10−7 | 1.66 × 10−6 |
M7 | 6.62 × 10−5 | 2.36 × 10−4 | 4.96 × 10−5 | 2.05 × 10−5 | 2.12 × 10−6 |
M8 | 1.14 × 10−4 | 1.79 × 10−4 | 7.63 × 10−5 | 5.17 × 10−6 | 6.75 × 10−7 |
M9 | 1.12 × 10−4 | 2.94 × 10−4 | 5.92 × 10−5 | 5.58 × 10−6 | 3.15 × 10−6 |
M10 | 1.06 × 10−4 | 2.35 × 10−4 | 6.10 × 10−5 | 1.29 × 10−5 | 3.78 × 10−6 |
M11 | 1.15 × 10−4 | 2.10 × 10−4 | 5.97 × 10−5 | 2.43 × 10−5 | 6.57 × 10−6 |
M12 | 1.05 × 10−4 | 2.58 × 10−4 | 6.46 × 10−5 | 2.49 × 10−5 | 5.46 × 10−6 |
M13 | 7.45 × 10−5 | 1.48 × 10−4 | 6.55 × 10−5 | 8.41 × 10−5 | 5.58 × 10−6 |
M14 | 1.01 × 10−4 | 1.70 × 10−4 | 9.39 × 10−5 | 1.16 × 10−4 | 6.25 × 10−6 |
M15 | 1.07 × 10−4 | 1.78 × 10−4 | 9.16 × 10−5 | 8.57 × 10−5 | 4.09 × 10−6 |
Hymenophore | |||||
M1 | 9.21 × 10−5 | 2.14 × 10−4 | 5.71 × 10−6 | 1.75 × 10−6 | 7.02 × 10−6 |
M2 | 9.37 × 10−5 | 1.68 × 10−4 | 9.76 × 10−6 | 3.82 × 10−6 | 5.85 × 10−7 |
M3 | 4.75 × 10−5 | 2.11 × 10−4 | 1.52 × 10−5 | 4.77 × 10−6 | 3.60 × 10−8 |
M4 | 7.38 × 10−5 | 2.28 × 10−4 | 1.74 × 10−5 | 4.72 × 10−6 | 1.71 × 10−6 |
M5 | 3.72 × 10−5 | 2.07 × 10−4 | 2.82 × 10−5 | 1.46 × 10−5 | 9.04 × 10−6 |
M6 | 5.87 × 10−5 | 2.19 × 10−4 | 4.57 × 10−5 | 2.34 × 10−5 | 1.41 × 10−5 |
M7 | 6.87 × 10−5 | 1.85 × 10−4 | 2.33 × 10−5 | 1.40 × 10−5 | 4.32 × 10−6 |
M8 | 7.34 × 10−5 | 1.65 × 10−4 | 8.04 × 10−5 | 2.95 × 10−6 | 5.31 × 10−6 |
M9 | 9.25 × 10−5 | 2.50 × 10−4 | 6.96 × 10−5 | 3.50 × 10−5 | 6.21 × 10−6 |
M10 | 5.82 × 10−5 | 1.79 × 10−4 | 5.39 × 10−5 | 2.33 × 10−5 | 6.25 × 10−6 |
M11 | 7.04 × 10−5 | 2.09 × 10−4 | 1.83 × 10−5 | 1.79 × 10−5 | 8.01 × 10−6 |
M12 | 6.39 × 10−5 | 2.13 × 10−4 | 8.41 × 10−6 | 2.46 × 10−5 | 8.63 × 10−6 |
M13 | 7.80 × 10−5 | 2.12 × 10−4 | 6.03 × 10−6 | 2.59 × 10−5 | 9.31 × 10−6 |
M14 | 6.42 × 10−5 | 2.23 × 10−4 | 3.07 × 10−5 | 2.32 × 10−5 | 1.19 × 10−5 |
M15 | 5.88 × 10−5 | 1.33 × 10−4 | 3.45 × 10−5 | 2.94 × 10−5 | 1.25 × 10−4 |
Zn | Ni | Pb | Mn | Cu | |
---|---|---|---|---|---|
M1 | 3.13 × 10−4 | 1.30 × 10−2 | 1.40 × 10−2 | 5.15 × 10−4 | 2.79 × 10−2 |
M2 | 2.24 × 10−4 | 9.14 × 10−3 | 1.83 × 10−2 | 2.48 × 10−4 | 2.14 × 10−3 |
M3 | 4.10 × 10−4 | 1.43 × 10−2 | 9.19 × 10−3 | 1.10 × 10−4 | 6.75 × 10−4 |
M4 | 2.43 × 10−4 | 1.42 × 10−2 | 1.47 × 10−2 | 1.73 × 10−4 | 4.61 × 10−3 |
M5 | 2.34 × 10−4 | 1.27 × 10−2 | 2.11 × 10−2 | 3.50 × 10−4 | 5.06 × 10−3 |
M6 | 3.38 × 10−4 | 2.01 × 10−2 | 1.64 × 10−2 | 1.54 × 10−5 | 4.16 × 10−3 |
M7 | 2.21 × 10−4 | 1.18 × 10−2 | 1.24 × 10−2 | 6.20 × 10−4 | 5.30 × 10−3 |
M8 | 3.79 × 10−4 | 8.96 × 10−3 | 1.91 × 10−2 | 1.57 × 10−4 | 1.69 × 10−3 |
M9 | 3.72 × 10−4 | 1.47 × 10−2 | 1.48 × 10−2 | 1.69 × 10−4 | 7.87 × 10−3 |
M10 | 3.53 × 10−4 | 1.18 × 10−2 | 1.53 × 10−2 | 3.91 × 10−4 | 9.44 × 10−3 |
M11 | 3.84 × 10−4 | 1.05 × 10−2 | 1.49 × 10−2 | 7.36 × 10−4 | 1.64 × 10−2 |
M12 | 3.51 × 10−4 | 1.29 × 10−2 | 1.62 × 10−2 | 7.54 × 10−4 | 1.37 × 10−2 |
M13 | 2.48 × 10−4 | 7.41 × 10−3 | 1.64 × 10−2 | 2.55 × 10−3 | 1.39 × 10−2 |
M14 | 3.38 × 10−4 | 8.48 × 10−3 | 2.35 × 10−2 | 3.51 × 10−3 | 1.56 × 10−2 |
M15 | 3.56 × 10−4 | 8.91 × 10−3 | 2.29 × 10−2 | 2.60 × 10−3 | 1.02 × 10−2 |
Hymenophore | |||||
M1 | 3.07 × 10−4 | 1.07 × 10−2 | 1.43 × 10−3 | 5.32 × 10−5 | 1.75 × 10−2 |
M2 | 3.12 × 10−4 | 8.40 × 10−3 | 2.44 × 10−3 | 1.16 × 10−4 | 1.46 × 10−3 |
M3 | 1.58 × 10−4 | 1.05 × 10−2 | 3.79 × 10−3 | 1.44 × 10−4 | 8.99 × 10−5 |
M4 | 2.46 × 10−4 | 1.14 × 10−2 | 4.36 × 10−3 | 1.43 × 10−4 | 4.27 × 10−3 |
M5 | 1.24 × 10−4 | 1.04 × 10−2 | 7.05 × 10−3 | 4.44 × 10−4 | 2.26 × 10−2 |
M6 | 1.96 × 10−4 | 1.09 × 10−2 | 1.14 × 10−2 | 7.10 × 10−4 | 3.52 × 10−2 |
M7 | 2.29 × 10−4 | 9.27 × 10−3 | 5.81 × 10−3 | 4.25 × 10−4 | 1.08 × 10−2 |
M8 | 2.45 × 10−4 | 8.26 × 10−3 | 2.01 × 10−2 | 8.95 × 10−5 | 1.33 × 10−2 |
M9 | 3.08 × 10−4 | 1.25 × 10−2 | 1.74 × 10−2 | 1.06 × 10−3 | 1.55 × 10−2 |
M10 | 1.94 × 10−4 | 8.95 × 10−3 | 1.35 × 10−2 | 7.05 × 10−4 | 1.56 × 10−2 |
M11 | 2.35 × 10−4 | 1.05 × 10−2 | 4.58 × 10−3 | 5.44 × 10−4 | 2.00 × 10−2 |
M12 | 2.13 × 10−4 | 1.06 × 10−2 | 2.10 × 10−3 | 7.44 × 10−4 | 2.16 × 10−2 |
M13 | 2.60 × 10−4 | 1.06 × 10−2 | 1.51 × 10−3 | 7.84 × 10−4 | 2.33 × 10−2 |
M14 | 2.14 × 10−4 | 1.12 × 10−2 | 7.67 × 10−3 | 7.02 × 10−4 | 2.97 × 10−2 |
M15 | 1.96 × 10−4 | 6.67 × 10−3 | 8.62 × 10−3 | 8.91 × 10−4 | 3.13 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badshah, H.; Nisa, S.U.; Ali, M.A.; Alwahibi, M.S.; Kamal, A.; Kaleem, M.; Khan, A.; Khan, S.M.; Mumtaz, A.S. Bio-Concentration and Influence of Environmental Factors on Accumulation of Heavy Metals in Edible Autumn Morel (Morchella galilaea) of Low Elevation. Metals 2023, 13, 472. https://doi.org/10.3390/met13030472
Badshah H, Nisa SU, Ali MA, Alwahibi MS, Kamal A, Kaleem M, Khan A, Khan SM, Mumtaz AS. Bio-Concentration and Influence of Environmental Factors on Accumulation of Heavy Metals in Edible Autumn Morel (Morchella galilaea) of Low Elevation. Metals. 2023; 13(3):472. https://doi.org/10.3390/met13030472
Chicago/Turabian StyleBadshah, Hussain, Surat Un Nisa, Mohammad Ajmal Ali, Mona S. Alwahibi, Asif Kamal, Muhammad Kaleem, Anwarzeb Khan, Shujaul Mulk Khan, and Abdul Samad Mumtaz. 2023. "Bio-Concentration and Influence of Environmental Factors on Accumulation of Heavy Metals in Edible Autumn Morel (Morchella galilaea) of Low Elevation" Metals 13, no. 3: 472. https://doi.org/10.3390/met13030472