Intermetallic Reaction of the Bonding Interface of TA2/Q235 Explosive Welding Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Microstructure Characterization
2.3. Ti-Fe Binary Phase Diagram
3. Results and Discussion
3.1. Microstructure of the Welding Interface
3.2. TEM and EDS Analysis of the Melting Zone
3.3. TEM and EDS Analysis of the Welding Zone
4. Conclusions
- The bonding interface presented a periodical wave interface, the amplitude and period wavelength was ~300 μm and ~800 μm, respectively. Moreover, some defects, such as voids, microcracks and brittle solidified materials, were formed in the vortex of the bonding zone, where the defects were mainly located in the vortex.
- Nano-grained intermetallic phase formed in the melting zone, which was mainly consisted of TiFe, TiFe2 and part of Ti and Fe oxide (TiO2 and Fe2O3), and the precipitation agglomeration reaction of different phase titanium occurred in the melting zone.
- The formation of the reaction layer was probably essential to improve the bonding strength of welding interface. Melting welding and diffusion welding mainly occurred in the melting region, which mainly consisted of TiFe, TiFe2, Ti and part of Ti and Fe oxide (TiO2, Fe0.90O and Fe2O3) in the melting region.
- Combined with the Ti-Fe binary phase diagram and the principle of diffusion welding, the bonding of the welding interface could be determined as a mixing welding of mechanical mixing, melting, diffusion and solidification that occurred in the mixing zone, and melting welding and diffusion welding mainly occurred in the melting region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasanthi, T.; Sudha, R.C.; Saroja, S. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater. Des. 2016, 93, 180–193. [Google Scholar] [CrossRef]
- Gulenc, B. Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method. Mater. Des. 2008, 29, 275–278. [Google Scholar] [CrossRef]
- Kahraman, N.; Gülenç, B. Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process. J. Mater. Process. Technol. 2005, 169, 67–71. [Google Scholar] [CrossRef]
- Findik, F. Recent developments in explosive welding. Mater. Des. 2011, 32, 1081–1093. [Google Scholar] [CrossRef]
- Kundu, S.; Chatterjee, S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel. Mater. Sci. Eng. A 2008, 480, 316–322. [Google Scholar] [CrossRef]
- Hao, X.; Dong, H.; Xia, Y.; Li, P. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100−xCux high-entropy alloy interlayer. J. Alloys Compd. 2019, 803, 649–657. [Google Scholar] [CrossRef]
- Xia, Y.; Dong, H.; Hao, X.; Li, P.; Li, S. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal. J. Mater. Process. Technol. 2019, 269, 35–44. [Google Scholar] [CrossRef]
- Borchers, C.; Lenz, M.; Deutges, M.; Klein, H.; Gärtner, F.; Hammerschmidt, M.; Kreye, H. Microstructure and mechanical properties ofmedium-carbon steel bonded on low-carbon steel by explosive welding. Mater. Des. 2016, 89, 369–376. [Google Scholar] [CrossRef]
- Rozumek, D.; Kwiatkowski, G. The influence of heat treatment parameters on the cracks growth under cyclic bending in St-Ti clad obtained by explosive welding. Metals 2019, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Prażmowski, M.; Paul, H.; Rozumek, D.; Marcisz, E. Influence of the microstructure near the interface of the fatigue life of explosively welded (carbon steel)/Zr clads. Key Eng. Mater. 2014, 592–593, 704–707. [Google Scholar] [CrossRef]
- Li, J.; Schneiderman, B.; Gilbert, S.M.; Vivek, A.; Yu, Z.; Daehn, G. Process characteristics and interfacial microstructure in spot impact welding of titanium to stainless steel. J. Manuf. Process. 2020, 50, 421–429. [Google Scholar] [CrossRef]
- Zeng, X.-Y.; Wang, Y.-X.; Li, X.-Q.; Li, X.-J.; Zhao, T.-J. Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate. Fusion Eng. Des. 2019, 148, 111292. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, F.; Li, X.; Jiang, S.; Feng, J. Interfacial evolution of explosively welded titanium/steel joint under subsequent EBW process. J. Mater. Process. Technol. 2018, 261, 24–30. [Google Scholar] [CrossRef]
- Chu, Q.; Zhang, M.; Li, J.; Yan, C. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A 2017, 689, 323–331. [Google Scholar] [CrossRef]
- Bataev, I.A.; Lazurenko, D.V.; Tanaka, S.; Hokamoto, K.; Bataev, A.A.; Guo, Y.; Jorge, A.M., Jr. High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Mater. 2017, 135, 277–289. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, R.; Chen, P.; Zhu, L. Microstructure characterization and tensile shear failure mechanism of the bonding interface of explosively welded titanium-steel composite. Mater. Sci. Eng. A 2021, 820, 141559. [Google Scholar] [CrossRef]
- Ha, J.S.; Hong, S.I. Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures. Mater. Sci. Eng. A 2016, 651, 805–809. [Google Scholar] [CrossRef]
- El Refaey, A.; Tillmann, W. Characterization of Titanium/Steel joints brazed in vacuum. Weld. J. 2008, 87, 113–118. [Google Scholar]
- Song, J.; Kostka, A.; Veehmayer, M.; Raabe, D. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Mater. Sci. Eng. A 2011, 528, 2641–2647. [Google Scholar] [CrossRef]
- Yang, M.; Ma, H.; Shen, Z.; Huang, Z.; Tian, Q.; Tian, J. Dissimilar material welding of tantalum foil and Q235 steel plate using improved explosive welding technique. Mater. Des. 2019, 186, 108348. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, R.; Ran, C.; Fan, K.; Xie, J.; Chen, P. Effect of microstructure on mechanical properties of titanium-steel explosive welding interface. Mater. Sci. Eng. A 2022, 830, 142260. [Google Scholar] [CrossRef]
- Blazynski, T.Z.E. (Ed.) Explosive Welding, Forming and Compaction; Springer: Dordrecht, The Netherlands, 2012; ISBN (1983) 978-94-011-9753-3. [Google Scholar]
- Manikandan, P.; Hokamoto, K.; Deribas, A.A.; Raghukandan, K.; Tomoshige, R. Explosive Welding of Titanium/Stainless Steel by Controlling Energetic Conditions. Mater. Trans. 2006, 47, 2049–2055. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Chen, P.; Feng, J.; Ran, C.; Wang, Y.; Zhou, Q.; Zhu, L. Fabrication and characterization of the Mo/cu bimetal with thick Mo layer and high interfacial strength. Int. J. Refract. Met. Hard Mater. 2020, 94, 105383. [Google Scholar] [CrossRef]
- Chen, T.; Wu, Z.L.; Cao, B.S.; Gao, J.; Lei, M.K. Solid state reaction of Fe/Ti nanometer-scale multilayers. Surf. Coat. Technol. 2007, 201, 5059–5062. [Google Scholar] [CrossRef]
- Lei, M.; Wu, Z.; Chen, T.; Cao, B. Microstructural evolution of Fe/Ti multilayers submitted to in situ thermal annealing. Thin Solid Films 2006, 500, 174–179. [Google Scholar] [CrossRef]
- Tanaka, M.O.K. Structural change of Fe:Ti multilayer during annealing in vacuum and hydrogen atmosphere. Int. J. Hydrogen Energy 1999, 24, 891–898. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, G.; Guo, G. Phase Atlas of Common Non—Ferrous Binary Alloys; Chemical Industrial Press: Beijing, China, 2010. [Google Scholar]
- Crossland, B. Explosive Welding of Metals and Its Application; Clarendon Press: Oxford, UK, 1982. [Google Scholar]
- Kacar, R.; Acarer, M. An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel. J. Mater. Process. Technol. 2004, 152, 91–96. [Google Scholar] [CrossRef]
- Gloc, M.; Wachowski, M.; Plocinski, T.; Kurzydlowski, K.J. Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3N obtained by explosive welding. J. Alloys Compd. 2016, 671, 446–451. [Google Scholar] [CrossRef]
- Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing. Thin Solid Film. 2009, 517, 6553–6557. [Google Scholar] [CrossRef]
- Paul, H.; Morgiel, J.; Baudin, T.; Brisset, F.; Prażmowski, M.; Miszczyk, M. Characterization of Explosive Weld Joints by TEM and SEM/EBSD. Arch. Met. Mater. 2014, 59, 1129–1136. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Sun, D.; Gu, X. Nd:YAG laser welding of dissimilar metals of titanium alloy to stainless steel without filler metal based on a hybrid connection mechanism. J. Mater. Res. Technol. 2020, 9, 1662–1672. [Google Scholar] [CrossRef]
- Wang, W.H.; Bai, H.Y.; Zhang, M.; Zhao, J.H.; Zhang, X.Y.; Wang, W.K. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction. Phys. Rev. B 1999, 59, 10811. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Wu, M.F.; Lu, H. Factors influencing formation and growth of coarse Ti Fe compound in Ti Fe eutectic reaction. Sci. Technol. Weld. Join. 2006, 11, 265–270. [Google Scholar] [CrossRef]
- Cao, R.; Feng, Z.; Lin, Q.; Chen, J. Study on cold metal transfer welding–brazing of titanium to copper. Mater. Des. 2013, 56, 165–173. [Google Scholar] [CrossRef]
- Murray, J.L. The Fe-Ti (Iron-Titanium) system. Bull. Alloy. Phase Diagr. 1981, 2, 320–334. [Google Scholar] [CrossRef]
- Kundu, S.; Ghosh, M.; Laik, A.; Bhanumurthy, K.; Kale, G.; Chatterjee, S. Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater. Sci. Eng. A 2005, 407, 154–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Zhou, J.; Sun, D.; Li, H. Experimental and numerical study on microstructure and mechanical properties for laser welding-brazing of TC4 Titanium alloy and 304 stainless steel with Cu-base filler metal. J. Mater. Res. Technol. 2020, 9, 465–477. [Google Scholar] [CrossRef]
Material | Fe | Ti | C | Si | S | P | Mn | O | N |
---|---|---|---|---|---|---|---|---|---|
TA2 | 0.06 | Bal. | 0.01 | - | - | - | - | 0.126 | 0.01 |
Q235 | Bal. | - | 0.22 | 0.35 | 0.045 | 0.045 | 1.4 | - | - |
(1) |
Samples | Elastic Modulus, GPa | Yield Strength, MPa | Tensile Strength, MPa | Elongation, % |
---|---|---|---|---|
TA2 | 103 | 373 | 440–590 | 25 |
Q235 | 210 | 235 | 372–510 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Lu, H.; Zhang, Y.; Guo, Y.; Zhu, L.; Huang, G.; Chen, P. Intermetallic Reaction of the Bonding Interface of TA2/Q235 Explosive Welding Composite. Metals 2023, 13, 571. https://doi.org/10.3390/met13030571
Zhou Q, Lu H, Zhang Y, Guo Y, Zhu L, Huang G, Chen P. Intermetallic Reaction of the Bonding Interface of TA2/Q235 Explosive Welding Composite. Metals. 2023; 13(3):571. https://doi.org/10.3390/met13030571
Chicago/Turabian StyleZhou, Qiang, Honghong Lu, Yudong Zhang, Yansong Guo, Lei Zhu, Guangyan Huang, and Pengwan Chen. 2023. "Intermetallic Reaction of the Bonding Interface of TA2/Q235 Explosive Welding Composite" Metals 13, no. 3: 571. https://doi.org/10.3390/met13030571
APA StyleZhou, Q., Lu, H., Zhang, Y., Guo, Y., Zhu, L., Huang, G., & Chen, P. (2023). Intermetallic Reaction of the Bonding Interface of TA2/Q235 Explosive Welding Composite. Metals, 13(3), 571. https://doi.org/10.3390/met13030571