Synthesis and Characterisation of CeO2 Coatings on the AZ31 Alloy for Corrosion Protection and In Vitro Biocompatibility of MC3T3-E1 Pre-Osteoblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Anodisation Process
2.3. Cerium Chemical Conversion Coating
2.4. Characterisation Techniques
2.4.1. Electrochemical Characterisation
2.4.2. Structural and Surface Characterisation
2.4.3. SEM–EDS Characterisation
2.4.4. Cell Viability
3. Results and Discussion
3.1. Electrochemical Characterisation
3.1.1. Anodisation
3.1.2. EIS Results (Anodisation)
3.1.3. Polarisation Curve Results (Anodisation)
3.2. Cerium Chemical Conversion Coatings
3.2.1. EIS Results
3.2.2. Polarisation Curves Results
3.3. Morphology
3.4. Crystal Structure of Passive Film and CeO2 on AZ31
3.5. Biocompatibility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakano, T. Mechanical properties of metallic biomaterials. In Metals for Biomedical Devices; Elsevier: Amsterdam, The Netherlands, 2010; pp. 71–98. [Google Scholar] [CrossRef]
- Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials 2015, 8, 5744–5794. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.E.; Verdelis, K.; Maiti, S.; Pal, S.; Chung, W.L.; Chou, D.-T.; Kumta, P.N.; Almarza, A.J. Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater. 2014, 10, 2323–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, G.; Behnamghader, A.; Mozafari, M. Cellular response to metal implants. In Handbook of Biomaterials Biocompatibility; Elsevier: Amsterdam, The Netherlands, 2020; pp. 453–471. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, Y.; Huo, K.; Tao, H.; Tang, G.; Chu, P.K. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008, 4, 2008–2015. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.V.S.; Singh, S.; Prasad, S.B. A review on the corrosion process in magnesium. AIP Conf. Proc. 2021, 2341, 040008. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Chen, J.; Tan, L.; Yu, X.; Etim, I.P.; Ibrahim, M.; Yang, K. Mechanical properties of magnesium alloys for medical application: A review. J. Mech. Behav. Biomed. Mater. 2018, 87, 68–79. [Google Scholar] [CrossRef]
- Qin, Y.; Wen, P.; Guo, H.; Xia, D.; Zheng, Y.; Jauer, L.; Poprawe, R.; Voshage, M.; Schleifenbaum, J.H. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater. 2019, 98, 3–22. [Google Scholar] [CrossRef]
- Echeverry-Rendon, M.; Allain, J.P.; Robledo, S.M.; Echeverria, F.; Harmsen, M.C. Coatings for biodegradable magnesium-based supports for therapy of vascular disease: A general view. Mater. Sci. Eng. C 2019, 102, 150–163. [Google Scholar] [CrossRef]
- Amukarimi, S.; Mozafari, M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm 2021, 2, 123–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, W.; Liu, J.; Wang, L.; Tang, Y.; Wang, K. A review on magnesium alloys for biomedical applications. Front. Bioeng. Biotechnol. 2022, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Cuartas-Marulanda, D.; Cardozo, L.F.; Restrepo-Osorio, A.; Fernández-Morales, P. Natural Coatings and Surface Modifications on Magnesium Alloys for Biomedical Applications. Polymers 2022, 14, 5297. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.; Brunner, J.G.; Kollmannsberger, P.; Jaafar, L.; Fabry, B.; Virtanen, S. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater. 2009, 5, 2783–2789. [Google Scholar] [CrossRef]
- Li, L.; Gao, J.; Wang, Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 2004, 185, 92–98. [Google Scholar] [CrossRef]
- Rahman, M.; Dutta, N.K.; Choudhury, N.R. Magnesium Alloys With Tunable Interfaces as Bone Implant Materials. Front. Bioeng. Biotechnol. 2020, 8, 564. [Google Scholar] [CrossRef]
- Loukil, N. Alloying Elements of Magnesium Alloys: A Literature Review. In Magnesium Alloys Structure and Properties; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Hughes, A.E.; Gorman, J.D.; Paterson, P.J.K. The characterisation of Ce-Mo-based conversion coatings on Al-alloys: Part I. Corros. Sci. 1996, 38, 1957–1976. [Google Scholar] [CrossRef]
- Lu, V.M.; McDonald, K.L. Lanthanum nanoparticles to target the brain: Proof of biodistribution and biocompatibility with adjuvant therapies. Nanomedicine 2020, 15, 2107–2117. [Google Scholar] [CrossRef]
- Brabu, B.; Haribabu, S.; Revathy, M.; Anitha, S.; Thangapandiyan, M.; Navaneethakrishnan, K.R.; Gopalakrishnan, C.; Murugan, S.S.; Kumaravel, T.S. Biocompatibility studies on lanthanum oxide nanoparticles. Toxicol. Res. 2015, 4, 1037–1044. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, X.; Chen, P.; Xiao, P.; Zhou, W.; Li, Y. Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance. Ceram. Int. 2022, 48, 24131–24143. [Google Scholar] [CrossRef]
- Huang, P.; Zou, B.; Zhang, Y.; Niu, X.; Wang, Y. Synthesis of rare earth silicate thermal barrier coating materials (YxYb2-xSiO5) and application on the surface of titanium alloy. Inorg. Chem. Commun. 2022, 135, 109129. [Google Scholar] [CrossRef]
- Mousavi, B.; Farvizi, M.; Rahimipour, M.R.; Pan, W. Comparison of the hot corrosion behavior of the LZ, CSZ and LZ/CSZ composite thermal barrier coating. Surf. Coat. Technol. 2022, 437, 128324. [Google Scholar] [CrossRef]
- El Shafei, K.; Al Nasiri, N. Corrosion behaviour of rare-earth monosilicates in CMAS exposure. Corros. Sci. 2022, 202, 110312. [Google Scholar] [CrossRef]
- Haider, S.K.; Kim, D.; Kang, Y.S. Four-step eco-friendly energy efficient recycling of contaminated Nd2Fe14B sludge and coercivity enhancement by reducing oxygen content. Sci. Rep. 2021, 11, 22255. [Google Scholar] [CrossRef]
- Hinton, B.R.W. Corrosion inhibition with rare earth metal salts. J. Alloys. Compd. 1992, 180, 15–25. [Google Scholar] [CrossRef]
- Olivier, M.; Lanzutti, A.; Motte, C.; Fedrizzi, L. Influence of oxidizing ability of the medium on the growth of lanthanide layers on galvanized steel. Corros. Sci. 2010, 52, 1428–1439. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Mamidipally, S.B.; Schmutz, P.; Guan, H. Active Corrosion Protection in Ce-Modified Hydrotalcite Conversion Coatings. Corrosion 2002, 58, 3–14. [Google Scholar] [CrossRef]
- Czekanska, E.; Stoddart, M.; Richards, R.; Hayes, J. In search of an osteoblast cell model for in vitro research. Eur. Cell. Mater. 2012, 24, 1–17. [Google Scholar] [CrossRef]
- Fagali, N.S.; Madrid, M.A.; Maceda, B.T.P.; Fernández, M.E.L.; Puerto, R.M.L.; de Mele, M.F.L. Effect of degradation products of iron-bioresorbable implants on the physiological behavior of macrophages in vitro. Metallomics 2020, 12, 1841–1850. [Google Scholar] [CrossRef]
- Salman, S.A.; Mori, R.; Ichino, R.; Okido, M. Effect of Anodizing Potential on the Surface Morphology and Corrosion Property of AZ31 Magnesium Alloy. Mater. Trans. 2010, 51, 1109–1113. [Google Scholar] [CrossRef] [Green Version]
- Feliu, S. Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges. Metals 2020, 10, 775. [Google Scholar] [CrossRef]
- Jang, Y.; Collins, B.; Sankar, J.; Yun, Y. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: An improved understanding of magnesium corrosion. Acta Biomater. 2013, 9, 8761–8770. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, J.; Slouková, K.; Minda, J.; Drábiková, J.; Fintová, S.; Doležal, P.; Wasserbauer, J. Influence of the Composition of the Hank’s Balanced Salt Solution on the Corrosion Behavior of AZ31 and AZ61 Magnesium Alloys. Metals 2017, 7, 465. [Google Scholar] [CrossRef] [Green Version]
- Ruhi, G.; Modi, O.P.; Singh, I.B. Corrosion behaviour of nano structured sol-gel alumina coated 9Cr–1Mo ferritic steel in chloride bearing environments. Surf. Coat. Technol. 2009, 204, 359–365. [Google Scholar] [CrossRef]
- Tomcsányi, L.; Varga, K.; Bartik, I.; Horányi, H.; Maleczki, E. Electrochemical study of the pitting corrosion of aluminium and its alloys—II. Study of the interaction of chloride ions with a passive film on aluminium and initiation of pitting corrosion. Electrochim. Acta 1989, 34, 855–859. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Z.; Dai, J.; Li, X.; Bai, J.; Huang, Z.; Guo, C.; Xue, F.; Chu, C. The influence of alternating cyclic dynamic loads with different low frequencies on the bio-corrosion behaviors of AZ31B magnesium alloy in vitro. Bioact. Mater. 2022, 7, 263–274. [Google Scholar] [CrossRef]
- Chelliah, N.M.; Padaikathan, P.; Kumar, R. Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer’s solution. J. Magnes. Alloy. 2019, 7, 134–143. [Google Scholar] [CrossRef]
- Jayaraj, J.; Rajesh, K.R.; Raj, S.A.; Srinivasan, A.; Ananthakumar, S.; Dhaipule, N.G.K.; Kalpathy, S.K.; Pillai, U.T.S.; Mudali, U.K. Investigation on the corrosion behavior of lanthanum phosphate coatings on AZ31 Mg alloy obtained through chemical conversion technique. J. Alloys. Compd. 2019, 784, 1162–1174. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Farooq, A.; Tayyab, K.B.; Malik, A.; Kamran, M.; Kim, J.-G.; Li, C.; Hamad, K.; Jun, T.-S. Corrosion behavior of AZ31 magnesium alloy with calcium addition. Corros. Sci. 2022, 199, 110205. [Google Scholar] [CrossRef]
- Pham, D.N.; Hiromoto, S.; Kobayashi, E.M.O. Influence of substrate microstructure on hydroxyapatite coating and corrosion behavior of coated Mg Zn alloys. Surf. Coat. Technol. 2021, 421, 127414. [Google Scholar] [CrossRef]
- Yao, Q.-S.; Zhang, F.; Song, L.; Zeng, R.-C.; Cui, L.-Y.; Li, S.-Q.; Wang, Z.-L.; Han, E.-H. Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy. J. Alloys. Compd. 2018, 764, 913–928. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Shi, L.; Zhang, F.; Li, S.; Zeng, R. Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys. Mater. Lett. 2019, 237, 14–18. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Brundavanam, S.; Fawcett, D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. Am. J. Biomed. Eng. 2013, 2, 218–240. [Google Scholar] [CrossRef] [Green Version]
- Kamde, M.A.; Mahton, Y.; Ohodnicki, J.; Roy, M.; Saha, P. Effect of cerium-based conversion coating on corrosion behavior of squeeze cast Mg-4 wt% Y alloy in 0.1 M NaCl solution. Surf. Coat. Technol. 2021, 421, 127451. [Google Scholar] [CrossRef]
- Scholes, F.H.; Soste, C.; Hughes, A.E.; Hardin, S.G.; Curtis, P.R. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Appl. Surf. Sci. 2006, 253, 1770–1780. [Google Scholar] [CrossRef]
- Payandeh, M. Rheocasting of Aluminium Alloys: Slurry Formation, Microstructure, and Properties; Jönköping University, School of Engineering: Jönköping, Sweden, 2015. [Google Scholar]
- Carter, S.-S.D.; Barbe, L.; Tenje, M.; Mestres, G. Exploring microfluidics as a tool to evaluate the biological properties of a titanium alloy under dynamic conditions. Biomater. Sci. 2020, 8, 6309–6321. [Google Scholar] [CrossRef]
- Sammons, R. Biological responses to hydroxyapatite. In Hydroxyapatite (Hap) for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 53–83. [Google Scholar] [CrossRef]
- Peron, M.; Skaret, P.C.; Fabrizi, A.; Varone, A.; Montanari, R.; Roven, H.J.; Ferro, P.; Berto, F.; Torgersen, J. The effect of Equal Channel Angular Pressing on the stress corrosion cracking susceptibility of AZ31 alloy in simulated body fluid. J. Mech. Behav. Biomed. Mater. 2020, 106, 103724. [Google Scholar] [CrossRef]
- Gonzalez, J.; Lamaka, S.V.; Mei, D.; Scharnagl, N.; Feyerabend, F.; Zheludkevich, M.L.; Willumeit-Römer, R. Mg Biodegradation Mechanism Deduced from the Local Surface Environment under Simulated Physiological Conditions. Adv. Healthc. Mater. 2021, 10, 2100053. [Google Scholar] [CrossRef]
- Hsu, C.; Nazari, M.H.; Li, Q.; Shi, X. Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating. Mater. Chem. Phys. 2019, 225, 426–432. [Google Scholar] [CrossRef]
Anodized Time NaOH 1 M; 3 V | Sample Label |
---|---|
N/A | AZ31 |
30 min | AZ31OHa |
60 min | AZ31OHb |
Sample | Concentration of CeCl3·7H2O | ||
---|---|---|---|
0.001 M | 0.01 M | 0.1 M | |
AZ31OHb | AZ31OH-CeO2a | AZ31OH-CeO2b | AZ31OH-CeO2c |
Solution | Composition (g/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|
NaCl | KCl | CaCl2 | MgSO4·7H2O | MgCl2·6H2O | Na2HPO4·2H2O | KH2PO4 | D-glucose | NaHCO3 | |
HBSS | 8 | 0.4 | 0.14 | 0.1 | 0.1 | 0.06 | 0.06 | 1 | 0.35 |
Sample | AZ31 | AZ31OHa | AZ31OHb |
---|---|---|---|
Rs (Ω·cm2) | 78 | 80 | 100 |
CPEAZ31OH (Ω−1·sn/cm2) | -- | 6 × 10−6 | 8 × 10−7 |
η | -- | 0.83 | 0.85 |
CPEcorr.prod (Ω−1·sn/cm2) | 2 × 10−6 | -- | -- |
η | 0.75 | -- | -- |
Rcorr.prod (Ω·cm2) | 40 | -- | -- |
RAZ31OHb (Ω·cm2) | -- | -- | 8500 |
CPEdl (Ω−1·sn/cm2) | 1 × 10−6 | -- | 2 × 10−7 |
η | 0.98 | -- | 0.93 |
Rct (Ω·cm2) | 3690 | 8350 | 10,000 |
CPEL (Ω−1·sn/cm2) | −5 × 10−6 | -- | -- |
η | 0.40 | -- | -- |
RL (Ω·cm2) | −2000 | -- | -- |
L (H cm2) | 0.05 | -- | -- |
χ2 | 9.30x−2 | 4.91x−3 | 2.36x−3 |
Sample | AZ31 | AZ31OHb | AZ31OH-CeO2a | AZ31OH-CeO2b | AZ31OH-CeO2c |
---|---|---|---|---|---|
Rs (Ω·cm2) | 78 | 100 | 76 | 20 | 80 |
CPEAZ31OH (Ω−1 sn/cm2) | -- | 8 × 10−7 | -- | -- | -- |
η | -- | 0.85 | -- | -- | -- |
CPEcorr.prod (Ω−1 sn/cm2) | 2 × 10−6 | -- | -- | -- | -- |
η | 0.75 | -- | -- | -- | -- |
CPEAZ31OH-CeO2 (Ω−1 sn/cm2) | -- | -- | 1 × 10−6 | 1.7 × 10−7 | 1 × 10−6 |
η | -- | -- | 0.89 | 0.96 | 0.88 |
Rcorr.prod (Ω·cm2) | 40 | -- | -- | -- | -- |
RAZ31OHb (Ω·cm2) | -- | 8500 | -- | -- | -- |
RAZ31OH-CeO2b (Ω·cm2) | -- | -- | -- | 5200 | -- |
CPEdl (Ω−1 sn/cm2) | 1 × 10−6 | 2 × 10−7 | -- | 1.3 × 10−7 | -- |
η | 0.98 | 0.93 | -- | 0.93 | -- |
Rct (Ω·cm2) | 3690 | 10,000 | 7100 | 24,500 | 4560 |
CPEL (Ω−1 sn/cm2) | −5 × 10−6 | -- | -- | -- | -- |
η | 0.4 | -- | -- | -- | -- |
RL (Ω·cm2) | −2000 | -- | -- | -- | -- |
L (H cm2) | 0.05 | -- | -- | -- | -- |
χ | 9.30x−2 | 2.36x−3 | 2.35x−3 | 2.48x−2 | 5.66x−4 |
Sample | Ecorr (V) | Epitt (V) | ΔEpass (mV) | Icorr (A.cm−2) | Vcorr mmy |
---|---|---|---|---|---|
AZ31 | −1.480 | −1.34 | 58 | 1.76 × 10−5 | 0.4021 |
AZ31OHb | −1.488 | −1.18 | 227 | 1.74 × 10−5 | 0.3975 |
AZ31OH-CeO2a | −1.526 | −1.24 | 210 | 2.37 × 10−5 | 0.0541 |
AZ31OH-CeO2b | −1.574 | −1.11 | 386 | 1.08 × 10−6 | 0.0246 |
AZ31OH-CeO2c | −1.551 | −1.22 | 257 | 4.62 × 10−6 | 0.1055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benito-Santiago, S.E.; Onofre-Bustamante, E.; Lozano-Puerto, R.M. Synthesis and Characterisation of CeO2 Coatings on the AZ31 Alloy for Corrosion Protection and In Vitro Biocompatibility of MC3T3-E1 Pre-Osteoblasts. Metals 2023, 13, 653. https://doi.org/10.3390/met13040653
Benito-Santiago SE, Onofre-Bustamante E, Lozano-Puerto RM. Synthesis and Characterisation of CeO2 Coatings on the AZ31 Alloy for Corrosion Protection and In Vitro Biocompatibility of MC3T3-E1 Pre-Osteoblasts. Metals. 2023; 13(4):653. https://doi.org/10.3390/met13040653
Chicago/Turabian StyleBenito-Santiago, Sandra E., Edgar Onofre-Bustamante, and Rosa M. Lozano-Puerto. 2023. "Synthesis and Characterisation of CeO2 Coatings on the AZ31 Alloy for Corrosion Protection and In Vitro Biocompatibility of MC3T3-E1 Pre-Osteoblasts" Metals 13, no. 4: 653. https://doi.org/10.3390/met13040653
APA StyleBenito-Santiago, S. E., Onofre-Bustamante, E., & Lozano-Puerto, R. M. (2023). Synthesis and Characterisation of CeO2 Coatings on the AZ31 Alloy for Corrosion Protection and In Vitro Biocompatibility of MC3T3-E1 Pre-Osteoblasts. Metals, 13(4), 653. https://doi.org/10.3390/met13040653