The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499. [Google Scholar] [CrossRef]
- Zhang, F.J.; Zang, Y.P.; Huang, D.Z.; Di, C.A.; Zhu, D.B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 2015, 6, 8356. [Google Scholar] [CrossRef] [PubMed]
- Someya, T.; Bauer, S.; Kaltenbrunner, M. Imperceptible organic electronics. Mrs. Bull. 2017, 42, 124–130. [Google Scholar] [CrossRef]
- Liu, L.P.; Zhan, Q.F.; Yang, H.L.; Li, H.H.; Zhang, S.L.; Liu, Y.W.; Wang, B.M.; Tan, X.H.; Li, R.W. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers. Aip Adv. 2016, 6, 035206. [Google Scholar] [CrossRef]
- Kim, D.H.; Song, J.Z.; Choi, W.M.; Kim, H.S.; Kim, R.H.; Liu, Z.J.; Huang, Y.Y.; Hwang, K.C.; Zhang, Y.W.; Rogers, J.A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. P. Natl. Acad. Sci. USA 2008, 105, 18675–18680. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Xiao, J.L.; Song, J.Z.; Huang, Y.G.; Rogers, J.A. Stretchable, Curvilinear Electronics Based on Inorganic Materials. Adv. Mater. 2010, 22, 2108–2124. [Google Scholar] [CrossRef]
- Theiss, S.D.; Wagner, S. Amorphous silicon thin-film transistors on steel foil substrates. Ieee Electr. Device L 1996, 17, 578–580. [Google Scholar] [CrossRef]
- Hua, Q.L.; Sun, J.L.; Liu, H.T.; Bao, R.R.; Yu, R.M.; Zhai, J.Y.; Pan, C.F.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.A.; Someya, T.; Huang, Y.G. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [Green Version]
- Nathan, A.; Ahnood, A.; Cole, M.T.; Lee, S. Flexible Electronics: The Next Ubiquitous Platform. Proc. Ieee 2012, 100, 1486–1517. [Google Scholar] [CrossRef]
- Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwodiauer, R. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 2014, 26, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Lu, N.S.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.D.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolozzi, C.; Natale, L.; Nori, F.; Metta, G. Robots with a sense of touch. Nat. Mater. 2016, 15, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Ghaffari, R.; Lu, N.S.; Rogers, J.A. Flexible and Stretchable Electronics for Biointegrated Devices. Annu. Rev. Biomed. Eng. 2012, 14, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K.; Samant, M. Magnetically engineered spintronic sensors and memory. Proc. Ieee 2003, 91, 661–680. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Roche, K.P.; Samant, M.G.; Rice, P.M.; Beyers, R.B.; Scheuerlein, R.E.; O’Sullivan, E.J.; Brown, S.L.; Bucchigano, J.; Abraham, D.W.; et al. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. 1999, 85, 5828–5833. [Google Scholar] [CrossRef]
- Melzer, M.; Makarov, D.; Calvimontes, A.; Karnaushenko, D.; Baunack, S.; Kaltofen, R.; Mei, Y.F.; Schmidt, O.G. Stretchable Magnetoelectronics. Nano Lett. 2011, 11, 2522–2526. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.Y.; Wen, X.C.; Wang, B.M.; Bai, Y.H.; Zhan, Q.F.; Xu, X.H.; Li, R.W. Enhanced stress-invariance of magnetization direction in magnetic thin films. Appl. Phys. Lett. 2017, 111, 132405. [Google Scholar] [CrossRef] [Green Version]
- Ota, S.; Ando, A.; Chiba, D. A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 2018, 1, 124–129. [Google Scholar] [CrossRef]
- Karnaushenko, D.; Makarov, D.; Yan, C.L.; Streubel, R.; Schmidt, O.G. Printable Giant Magnetoresistive Devices. Adv. Mater. 2012, 24, 4518–4522. [Google Scholar] [CrossRef]
- Liu, Z.W.; Liu, Y.; Yan, L.; Tan, C.Y.; Ong, C.K. Thickness-dependent properties of FeTaN thin films deposited on flexible substrate. J. Appl. Phys. 2006, 99, 043903. [Google Scholar] [CrossRef]
- Liu, Z.W.; Zeng, D.C.; Ramanujan, R.V.; Ong, C.K. Rigid and flexible Fe-Zr-N magnetic thin films for microwave absorber. J. Appl. Phys. 2010, 107, 09A505. [Google Scholar] [CrossRef]
- Yang, F.F.; Yan, S.S.; Yu, M.X.; Dai, Y.Y.; Kang, S.S.; Chen, Y.X.; Pan, S.B.; Zhang, J.L.; Bai, H.L.; Xu, T.S.; et al. High-frequency electromagnetic properties of compositionally graded FeCoB-SiO2 granular films deposited on flexible substrates. J. Appl. Phys. 2012, 111, 113909. [Google Scholar] [CrossRef]
- Sekitani, T.; Someya, T. Stretchable, Large-area Organic Electronics. Adv. Mater. 2010, 22, 2228–2246. [Google Scholar] [CrossRef] [PubMed]
- Lacour, S.P.; Wagner, S.; Huang, Z.Y.; Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 2003, 82, 2404–2406. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.C.; Wang, B.M.; Sheng, P.; Hu, S.; Yang, H.L.; Pei, K.; Zhan, Q.F.; Xia, W.X.; Xu, H.; Li, R.W. Determination of stress-coefficient of magnetoelastic anisotropy in flexible amorphous CoFeB film by anisotropic magnetoresistance. Appl. Phys. Lett. 2017, 111, 142403. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, S.; Vishawakarma, P.; Dev, A.S.; Reddy, V.R.; Gupta, A. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J. Magn. Magn. Mater. 2016, 418, 99–106. [Google Scholar] [CrossRef]
- Trivedi, H.; Shvartsman, V.V.; Lupascu, D.C.; Medeiros, M.S.A.; Pullar, R.C. Stress induced magnetic-domain evolution in magnetoelectric composites. Nanotechnology 2018, 29, 255702. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, W.K.; Tu, R.; Rhee, D.; Zhao, R.; Wang, X.; Liu, X.; Hu, X.; Zhang, X.; Odom, T.W.; et al. Spontaneous Formation of Ordered Magnetic Domains by Patterning Stress. Nano Lett. 2021, 21, 5430–5437. [Google Scholar] [CrossRef]
- Chen, Y.F.; McCord, J.; Freudenberger, J.; Kaltofen, R.; Schmidt, O.G. Effects of strain on magnetic and transport properties of Co films on plastic substrates. J. Appl. Phys. 2009, 105, 07C302. [Google Scholar] [CrossRef]
- Yen, M.; Lai, Y.H.; Kuo, C.Y.; Chen, C.T.; Chang, C.F.; Chu, Y.H. Mechanical Modulation of Colossal Magnetoresistance in Flexible Epitaxial Perovskite Manganite. Adv. Funct. Mater. 2020, 30, 2004597. [Google Scholar] [CrossRef]
- Yu, Y.; Zhan, Q.F.; Wei, J.W.; Wang, J.B.; Dai, G.H.; Zuo, Z.H.; Zhang, X.S.; Liu, Y.W.; Yang, H.L.; Zhang, Y.; et al. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl. Phys. Lett. 2015, 106, 162405. [Google Scholar] [CrossRef]
- Liu, W.L.; Liu, M.; Ma, R.; Zhang, R.Y.; Zhang, W.Q.; Yu, D.P.; Wang, Q.; Wang, J.N.; Wang, H. Mechanical Strain-Tunable Microwave Magnetism in Flexible CuFe2O4 Epitaxial Thin Film for Wearable Sensors. Adv. Funct. Mater. 2018, 28, 1705928. [Google Scholar] [CrossRef]
- Dai, G.H.; Zhan, Q.F.; Liu, Y.W.; Yang, H.L.; Zhang, X.S.; Chen, B.; Li, R.W. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl. Phys. Lett. 2012, 100, 122407. [Google Scholar] [CrossRef] [Green Version]
- Ozkaya, B.; Saranu, S.R.; Mohanan, S.; Herr, U. Effects of uniaxial stress on the magnetic properties of thin films and GMR sensors prepared on polyimide substrates. Phys Status Solidi A 2008, 205, 1876–1879. [Google Scholar] [CrossRef]
- Peng, B.; Xie, Q.Y.; Zhang, W.L.; Zhong, Z.Y. Stress dependence of magnetic domains in FeCoSiB amorphous films. J. Appl. Phys. 2007, 101, 09C511. [Google Scholar] [CrossRef]
- Dai, G.; Xing, X.; Shen, Y.; Deng, X. Stress tunable magnetic stripe domains in flexible Fe81Ga19 films. J. Appl. Phys. D Appl. Phys. 2020, 53, 055001. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Mendez, M.; Vega, V.; Fernandez, A.; Prida, V.M. Tuning Nanohole Sizes in Ni Hexagonal Antidot Arrays: Large Perpendicular Magnetic Anisotropy for Spintronic Applications. Acs Appl. Nano Mater. 2019, 2, 1866–1875. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Martinez-Goyeneche, L.; Alvarez-Alonso, P.; Fernandez, A. Enhancement the perpendicular magnetic anisotropy of nanopatterned hard/soft bilayer magnetic antidot arrays for spintronic application. Nanotechnology 2020, 31, 485708. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Nafady, A.; Abu-Dief, A.M.; Crespo, R.D.; Fernandez-Garcia, M.P.; Andres, J.P.; Anton, R.L.; Blanco, J.A.; Alvarez-Alonso, P. Enhancement of Exchange Bias and Perpendicular Magnetic Anisotropy in CoO/Co Multilayer Thin Films by Tuning the Alumina Template Nanohole Size. Nanomaterials 2022, 12, 2544. [Google Scholar] [CrossRef] [PubMed]
- Lou, K.H.; Xie, T.A.; Zhao, Q.W.; Jiang, B.Q.; Xia, C.C.; Zhang, H.Y.; Yao, Z.H.; Bi, C.; Bi, C. Perpendicular magnetic anisotropy in as-deposited CoFeB/MgO thin films. Appl. Phys. Lett. 2022, 121, 122401. [Google Scholar] [CrossRef]
- Silva, A.S.; Sa, S.P.; Bunyaev, S.A.; Garcia, C.; Sola, I.J.; Kakazei, G.N.; Crespo, H.; Navas, D. Dynamical behaviour of ultrathin [CoFeB (t(CoFeB))/Pd] films with perpendicular magnetic anisotropy. Sci. Rep. 2021, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Q.; Zhan, Q.F.; Li, J.C.; Liu, Q.F.; Wang, B.M.; Li, R.W. Influence of Oblique Sputtering on Stripe Magnetic Domain Structure and Magnetic Anisotropy of CoFeB Thin Films. Acta Metall. Sin. 2018, 54, 1281–1288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xie, Y.; Yang, H.; Hu, H.; Li, M.; Li, R.-W. The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films. Metals 2023, 13, 678. https://doi.org/10.3390/met13040678
Li H, Xie Y, Yang H, Hu H, Li M, Li R-W. The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films. Metals. 2023; 13(4):678. https://doi.org/10.3390/met13040678
Chicago/Turabian StyleLi, Hongyang, Yali Xie, Huali Yang, Haixu Hu, Mengchao Li, and Run-Wei Li. 2023. "The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films" Metals 13, no. 4: 678. https://doi.org/10.3390/met13040678
APA StyleLi, H., Xie, Y., Yang, H., Hu, H., Li, M., & Li, R.-W. (2023). The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films. Metals, 13(4), 678. https://doi.org/10.3390/met13040678