Eutectic MoNbTa(WC)x Composites with Excellent Elevated Temperature Strength
Abstract
:1. Introduction
RHEAs | Phase Structure | Manufacturing Rote | σa, σb, HV/MPa | εp, εb/% | Refs |
---|---|---|---|---|---|
NbMoTiVSi0.1(RT) | BCC + M5Si3 | Arc melting | 1141.5(σa) | 24.7(εp) | [15] |
NbMoTiVSi0.5(RT) | BCC | Arc melting | 2093.1(σa) | 11.0(εp) | [15] |
NbMoTaWB0.5(RT) | BCC | Arc melting | 1780(σb) | >10(εp) | [16] |
NbMoTaWC0.5(RT) | BCC | Arc melting | 1790(σb) | 9(εp) | [16] |
NbMoTaWC0.15B0.5(HT) | BCC | Arc melting | 700(σa) | - | [16] |
TaNbVTiAl0.2(RT) | BCC | PM | 2217(σb) | 10(εp) | [21] |
TaNbVTiAl0.4(RT) | BCC | PM | 2054(σb) | 9(εp) | [21] |
TaNbVTiAl0.6(RT) | BCC | PM | 1810(σb) | 5.5(εp) | [21] |
NbTaTiV/Ti-C-O(RT) | BCC | MA + SPS | 1510(σa) | ~10(εp) | [22] |
HfNbTiVSi0.5(RT) | BCC + silicide | IM | 1399(σa) | 10.9(εp) | [23] |
HfNbTiVSi0.5(HT) | BCC + silicide | IM | 240(σa) | >50(εp) | [23] |
TiZrNbWMo(HT) | BCC + β | Laser cladding deposition | 1000(HV) | - | [24] |
W0.16NbMoTa(HT) | BCC | Laser cladding deposition | 476 ± 12.9(HV) | - | [25] |
W0.33NbMoTa(HT) | BCC | Laser cladding deposition | 485.3 ± 8.7(HV) | - | [25] |
W0.53NbMoTa(HT) | BCC | Laser cladding deposition | 497.6 ± 5.6(HV) | - | [25] |
WNbMoTa(HT) | BCC | Laser cladding deposition | 530(σa) | 8.5 (εp) | [25] |
Nb25Mo25Ta25W25 | BCC | Arc melting | 548(σa) | - | [9] |
V20Nb25Mo25Ta25W25(HT) | BCC | Arc melting | 842(σa) | 19(εp) | [9] |
Re0.5NbMoTaW(HT) | BCC | Arc melting | ~567 (HV) | ~7.01(εp) | [26] |
ReNbMoTaW(HT) | BCC | Arc melting | ~536 (HV) | ~4.22(εp) | [26] |
ReMoTaW(HT) | BCC | Arc melting | ~640(HV) | ~5.69(εp) | [27] |
NbNiTaTiW(HT) | BCC + μ | Arc melting | 439 ± 9(HV) | - | [28] |
HfNbTaTiZrW(HT) | BCC1 + BCC2 | Arc melting | 409(σa) | >35(εp) | [29] |
HfNbTaTiZrMoW(HT) | BCC1 + BCC2 | Arc melting | 736(σa) | >35(εp) | [29] |
MoNbTa(WC)0.7(HT) | BCC + FCC + α | Arc melting | 1068(σa) | 18.12(εp) | This work |
MoNbTa(WC)0.9(HT) | BCC + FCC + α | Arc melting | 1205(σa) | 29.24(εp) | This work |
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Gao, M.C.; Qiao, J. High-Entropy Alloys (HEAs). Metals 2018, 8, 108. [Google Scholar] [CrossRef]
- Li, Z.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 2016, 534, 227. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153. [Google Scholar] [CrossRef]
- Butler, T.M.; Alfano, J.P.; Martens, R.L.; Weaver, M.L. High-temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM 2015, 67, 246. [Google Scholar] [CrossRef]
- Laplanche, G.; Volkert, U.F.; Eggeler, G.; George, E.P. Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met. 2016, 85, 629. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Todai, M.; Nagase, T.; Hori, T.; Matsugaki, A.; Sekita, A.; Nakano, T. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017, 129, 65–68. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014, 68, 214–228. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, M.C.; Zhang, Y.; Yang, S.; Guo, S.M. Senary refractory high entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 2015, 31, 1207–1213. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Meisenkothen, F.; Miracle, D.B.; Woodward, C.F. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 2012, 47, 4062–4074. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, Z.; Wang, M.; Chen, Y.; Tan, Y.; Cheng, X. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A 2019, 755, 318–322. [Google Scholar] [CrossRef]
- Wei, D.; Wang, L.; Zhang, Y.; Gong, W.; Tsuru, T.; Lobzenko, I.; Jiang, J.; Harjo, S.; Kawasaki, T.; Bae, J.W.; et al. Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys. Acta Mater. 2022, 225, 117571. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Wu, Y.; Huang, H.; Zhu, X.; Zhang, Y.; Zhu, H.; Yuan, X.; Chen, Q.; Wang, S.; et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater. Today 2022, 54, 83–89. [Google Scholar] [CrossRef]
- Rizi, M.S.; Minouei, H.; Lee, B.J.; Toroghinejad, M.R.; Hong, S.I. Effects of carbon and molybdenum on the nanostructural evolution and strength/ductility trade-off in Fe40Mn40Co10Cr10 high-entropy alloys. J. Alloys Compd. 2022, 911, 165108. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Shehzad, K.; Mujahid, M.; Bin Yaqub, T.; Godfrey, A.; Fernandes, F.; Muhammad, F.Z.; Yaqoob, K. Ceramic-reinforced HEA matrix composites exhibiting an excellent combination of mechanical properties. Sci. Rep. 2022, 12, 21486. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, D.Z.; Tan, C.Y.; Bi, X.Q.; Wang, Q.; Cui, H.Z.; Zhang, S.Y.; Chen, R.R. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure. J. Mater. Sci. Technol. 2021, 60, 1–7. [Google Scholar] [CrossRef]
- Kumar, A.; Dhekne, P.; Swarnakar, A.K.; Chopkar, M.K. Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater. Lett. 2017, 188, 73–76. [Google Scholar] [CrossRef]
- Xiang, L.; Guo, W.; Liu, B.; Fu, A.; Li, J.; Fang, Q.; Liu, Y. Microstructure and Mechanical Properties of TaNbVTiAlx Refractory High-Entropy Alloys. Entropy 2020, 22, 282. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Guo, W.; Liu, B.; Cao, Y.; Xu, L.; Fang, Q.; Yang, H.; Liu, Y. A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties. J. Alloys Compd. 2020, 815, 152466. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, Y.; Chen, X.; Zhang, H. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 2016, 174, 82–85. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, X.; Yu, X.; Li, J. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf. Coat. Technol. 2017, 311, 321–329. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Li, D.; Chen, Z.; Huang, S.; Lu, Z.; Yan, H. WxNbMoTa Refractory High-Entropy Alloys Fabricated by Laser Cladding Deposition. Materials 2019, 12, 533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, Y.; Wei, Q.; Xiao, Y.; Chen, P.; Luo, G.; Shen, Q. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders. J. Alloys Compd. 2020, 827, 154301. [Google Scholar] [CrossRef]
- Wei, Q.; Shen, Q.; Zhang, J.; Chen, B.; Luo, G.; Zhang, L. Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density. Int. J. Refract. Met. Hard Mater. 2018, 77, 8–11. [Google Scholar] [CrossRef]
- Ley, N.A.; Segovia, S.; Gorsse, S.; Young, M.L. Characterization and Modeling of NbNiTaTiW and NbNiTaTiW-Al Refractory High-Entropy Alloys. Metall. Mater. Trans. A 2019, 50, 4867–4876. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Z.; Xu, Z.; Cheng, X. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys. J. Alloys Compd. 2019, 803, 778–785. [Google Scholar] [CrossRef]
- Luo, G.; Jiang, S.; Wei, Q.; Kang, K.; Qian, Y.; Zhang, J.; Sun, Y.; Shen, Q. Microstructure and mechanical properties of MoNbW(TaC)x composites. Int. J. Refract. Met. Hard Mater. 2021, 99, 105574. [Google Scholar] [CrossRef]
- Wei, Q.; Shen, Q.; Zhang, J.; Zhang, Y.; Luo, G.; Zhang, L. Microstructure evolution, mechanical properties and strengthening mechanism of refractory high-entropy alloy matrix composites with addition of TaC. J. Alloys Compd. 2019, 777, 1168–1175. [Google Scholar] [CrossRef]
- Christian, J.W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall. Mater. Trans. A 1983, 14, 1237–1256. [Google Scholar] [CrossRef]
- Gypen, L.; Deruyttere, A. Thermally activated deformation in tantalum-base solid solutions. J. Less Common Met. 1982, 86, 219–240. [Google Scholar] [CrossRef]
- Gil Coury, F.; Kaufman, M.; Clarke, A.J. Solid-solution strengthening in refractory high entropy alloys. Acta Mater. 2019, 175, 66–81. [Google Scholar] [CrossRef]
- Fleischer, R.L. Substitutional solution hardening. Acta Metall. 1963, 11, 203–209. [Google Scholar] [CrossRef]
- Labusch, R. A Statistical Theory of Solid Solution Hardening. Phys. Status Solidi (b) 1970, 41, 659–669. [Google Scholar] [CrossRef]
- Gypen, L.A.; Deruyttere, A. Multi-component solid solution hardening. J. Mater. Sci. 1977, 12, 1028–1033. [Google Scholar] [CrossRef]
Phase Structure | Mo | Ta | Nb | W | C |
---|---|---|---|---|---|
BCC | 33.31 | 21.79 | 20.12 | 24.78 | - |
FCC | 8.09 | 26.83 | 21.34 | 7.26 | 36.49 |
α | 4.30 | 19.97 | 37.04 | 1.89 | 36.80 |
Composites | T (°C) | σ0.2 (MPa) | σm (MPa) | ε (%) |
---|---|---|---|---|
W0.7 | RT | 1517 | 2021 | 14.41 |
800 | 1033 | 1212 | 14.29 | |
1200 | 1068 | 1238 | 18.12 | |
W0.9 | RT | 1464 | 2115 | 13.96 |
800 | 1172 | 1236 | 12.96 | |
1200 | 1205 | 1383 | 29.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, K.; Wang, X.; Zhou, W.; Li, P.; Huang, Z.; Luo, G.; Shen, Q.; Zhang, L. Eutectic MoNbTa(WC)x Composites with Excellent Elevated Temperature Strength. Metals 2023, 13, 687. https://doi.org/10.3390/met13040687
Kang K, Wang X, Zhou W, Li P, Huang Z, Luo G, Shen Q, Zhang L. Eutectic MoNbTa(WC)x Composites with Excellent Elevated Temperature Strength. Metals. 2023; 13(4):687. https://doi.org/10.3390/met13040687
Chicago/Turabian StyleKang, Kejia, Xiao Wang, Weibing Zhou, Peibo Li, Zihao Huang, Guoqiang Luo, Qiang Shen, and Lianmeng Zhang. 2023. "Eutectic MoNbTa(WC)x Composites with Excellent Elevated Temperature Strength" Metals 13, no. 4: 687. https://doi.org/10.3390/met13040687
APA StyleKang, K., Wang, X., Zhou, W., Li, P., Huang, Z., Luo, G., Shen, Q., & Zhang, L. (2023). Eutectic MoNbTa(WC)x Composites with Excellent Elevated Temperature Strength. Metals, 13(4), 687. https://doi.org/10.3390/met13040687