Influence of Pre-Milling on the Mn Solid Solubility in the Al-Mn-Cu Alloy during Mechanical Alloying
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surappa, M.K. Aluminium Matrix Composites: Challenges and Opportunities. Sadhana 2003, 28, 319–334. [Google Scholar] [CrossRef]
- Chelladurai, S.J.S.; Arthanari, R. Prediction of Hardness of Stir Cast LM13 Aluminum Alloy—Copper Coated Short Steel Fiber Reinforced Composites Using Response Surface Methodology. Materwiss. Werksttech. 2020, 51, 221–229. [Google Scholar] [CrossRef]
- Khelge, S.; Kumar, V.; Shetty, V.; Kumaraswamy, J. Effect of Reinforcement Particles on the Mechanical and Wear Properties of Aluminium Alloy Composites: Review. Mater. Today Proc. 2022, 52, 571–576. [Google Scholar] [CrossRef]
- Darling, K.A.; Roberts, A.J.; Armstrong, L.; Kapoor, D.; Tschopp, M.A.; Kecskes, L.J.; Mathaudhu, S.N. Influence of Mn Solute Content on Grain Size Reduction and Improved Strength in Mechanically Alloyed Al–Mn Alloys. Mater. Sci. Eng. A 2014, 589, 57–65. [Google Scholar] [CrossRef]
- Xia, W.; Zarezadeh Mehrizi, M. Direct Synthesis of NiAl Intermetallic Matrix Composite with TiC and Al2O3 Reinforcements by Mechanical Alloying of NiO–Al–Ti–C Powder Mixture. Ceram. Int. 2021, 47, 26863–26868. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Y.; Ma, Y.; Wu, L.; Yan, H.; Liu, C.; Liu, Y.; Liu, B.; Liu, W. Microstructure and Mechanical Properties of Powder Metallurgy 2024 Aluminum Alloy during Cold Rolling. J. Mater. Res. Technol. 2021, 15, 3337–3348. [Google Scholar] [CrossRef]
- Ayer, R.; Mueller, R.R.; Scanlon, J.C.; Klein, C.F. Microstructural characterization of the dispersed phases in AL-CE-FE system. Metall. Trans. A Phys. Metall. Mater. Sci. 1988, 19A, 1645–1656. [Google Scholar] [CrossRef]
- Belov, N.A.; Khvan, A.V.; Alabin, A.N. Microstructure and Phase Composition of Al-Ce-Cu Alloys in the Al-Rich Corner. In Proceedings of the Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2006; Volumes 519–521, pp. 395–400. [Google Scholar]
- Chen, Z.; Chen, P.; Li, S. Effect of Ce Addition on Microstructure of Al 20Cu 2Mn 3 Twin Phase in an Al-Cu-Mn Casting Alloy. Mater. Sci. Eng. A 2012, 532, 606–609. [Google Scholar] [CrossRef]
- Waterloo, G.; Jones, H. Microstructure and Thermal Stability of Melt-Spun Al-Nd and Al-Ce Alloy Ribbons. J. Mater. Sci. 1996, 31, 2301–2310. [Google Scholar] [CrossRef]
- Lu, Z.; Li, X.; Zhang, L. Thermodynamic Description of Al-Si-Mg-Ce Quaternary System in Al-Rich Corner and Its Experimental Validation. J. Phase Equilib. Diffus. 2018, 39, 57–67. [Google Scholar] [CrossRef]
- Gröbner, J.; Mirković, D.; Schmid-Fetzer, R. Thermodynamic Aspects of the Constitution, Grain Refining, and Solidification Enthalpies of Al-Ce-Si Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004, 35A, 3349–3362. [Google Scholar] [CrossRef]
- Manca, D.R.; Churyumov, A.Y.; Pozdniakov, A.V.; Prosviryakov, A.S.; Ryabov, D.K.; Krokhin, A.Y.; Korolev, V.A.; Daubarayte, D.K. Microstructure and Properties of Novel Heat Resistant Al–Ce–Cu Alloy for Additive Manufacturing. Met. Mater. Int. 2019, 25, 633–640. [Google Scholar] [CrossRef]
- Belov, N.A.; Eskin, D.G.; Aksenov, A.A. Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys; Elsevier B.V.: Amsterdam, The Netherlands, 2005; ISBN 9780080445373. [Google Scholar]
- Eskin, D.G.; Toropova, L.S. Tensile and Elastic Properties of Deformed Heterogeneous Aluminum Alloys at Room and Elevated Temperatures. Mater. Sci. Eng. A 1994, 183, L1–L4. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Precipitation Evolution in Al–Zr and Al–Zr–Ti Alloys during Isothermal Aging at 375–425 °C. Acta Mater. 2008, 56, 114–127. [Google Scholar] [CrossRef]
- Farkoosh, A.R.; Dunand, D.C.; Seidman, D.N. Tungsten Solubility in L12-Ordered Al3Er and Al3Zr Nanoprecipitates Formed by Aging in an Aluminum Matrix. J. Alloys Compd. 2020, 820, 153383. [Google Scholar] [CrossRef]
- Pozdniakov, A.V.; Yarasu, V.; Barkov, R.Y.; Yakovtseva, O.A.; Makhov, S.V.; Napalkov, V.I. Microstructure and Mechanical Properties of Novel Al-Mg-Mn-Zr-Sc-Er Alloy. Mater. Lett. 2017, 202, 116–119. [Google Scholar] [CrossRef]
- Farkoosh, A.R.; Dunand, D.C.; Seidman, D.N. Enhanced Age-Hardening Response and Creep Resistance of an Al-0.5Mn-0.3Si (at%) Alloy by Sn Inoculation. Acta Mater. 2022, 240, 118344. [Google Scholar] [CrossRef]
- Mochugovskiy, A.G.; Mukhamejanova, A.B.; Kotov, A.D.; Yakovtseva, O.A.; Tabachkova, N.Y.; Mikhaylovskaya, A.V. The Effect of Pre-Straining on the Annealing-Induced Precipitation Behavior of the Icosahedral I-Phase in an Aluminum-Based Alloy. Mater. Lett. 2022, 310, 131517. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A.V.; Mukhamejanova, A.; Kotov, A.D.; Tabachkova, N.Y.; Prosviryakov, A.S.; Mochugovskiy, A.G. Precipitation Behavior of the Metastable Quasicrystalline I-Phase and Θ′-Phase in Al-Cu-Mn Alloy. Metals 2023, 13, 469. [Google Scholar] [CrossRef]
- Nokhrin, A.V.; Gryaznov, M.Y.; Shotin, S.V.; Nagicheva, G.S.; Chegurov, M.K.; Bobrov, A.A.; Kopylov, V.I.; Chuvil’deev, V.N. Effect of Sc, Hf, and Yb Additions on Superplasticity of a Fine-Grained Al-0.4%Zr Alloy. Metals 2023, 13, 133. [Google Scholar] [CrossRef]
- Eskin, D.G. Sc Applications in Aluminum Alloys: Overview of Russian Research in the 20th Century. In Light Metals; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; Volume Part F4, pp. 1565–1572. ISBN 9783319722832. [Google Scholar]
- Belov, N.A.; Alabin, A.N.; Eskin, D.G.; Istomin-Kastrovskii, V.V. Optimization of Hardening of Al–Zr–Sc Cast Alloys. J. Mater. Sci. 2006, 41, 5890–5899. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, H.S.; Kum, D.W. Determination of Titanium Solubility in Alpha-Aluminum during High Energy Milling. Scr. Mater. 1996, 34, 421–428. [Google Scholar] [CrossRef]
- Shuai, C.; He, C.; Peng, S.; Qi, F.; Wang, G.; Min, A.; Yang, W.; Wang, W. Mechanical Alloying of Immiscible Metallic Systems: Process, Microstructure, and Mechanism. Adv. Eng. Mater. 2021, 23, 2001098. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Lavernia, E.J. Amorphization and Crystallization in Al-Ni-La during Mechanical Milling. J. Alloys Compd. 2008, 466, 189–200. [Google Scholar] [CrossRef]
- Azimi, M.; Akbari, G.H. Development of Nano-Structure Cu-Zr Alloys by the Mechanical Alloying Process. J. Alloys Compd. 2011, 509, 27–32. [Google Scholar] [CrossRef]
- Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Y. Investigation of Nanostructured Al-10 Wt% Zr Material Prepared by Ball Milling for High Temperature Applications. Mater. Charact. 2017, 123, 173–177. [Google Scholar] [CrossRef]
- Senkov, O.N.; Froes, F.H.; Stolyarov, V.V.; Valiev, R.Z.; Liu, J. Microstructure and Microhardness of an Al Fe Alloy Subjected to Severe Plastic Deformation and Aging. Nanostruct. Mater. 1998, 10, 691–698. [Google Scholar] [CrossRef]
- Bergk, B.; Mühle, U.; Kieback, B.; Koutná, N.; Holec, D.; Clemens, H. Nanocrystalline Alloys of Molybdenum with Sodium and Yttrium Obtained by Mechanical Alloying. In Proceedings of the Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, Milan, Italy, 1–5 October 2017. [Google Scholar]
- Pasebani, S.; Samimi, P.; Saber, M. Effects of Scandium and Hafnium Solute Additions on Microstructure Thermal Stability in Nanostructured Ferritic Alloys. Mater. Charact. 2019, 151, 216–220. [Google Scholar] [CrossRef]
- Kumar, A.P.; Muthaiah, V.M.S.; Mula, S. Effect of Nb, Y and Zr on Thermal Stability of Nanocrystalline Al-4.5 Wt% Cu Alloy Prepared by Mechanical Alloying. J. Alloys Compd. 2017, 722, 617–627. [Google Scholar] [CrossRef]
- Ashrafi, H.; Emadi, R.; Enayati, M.H. Microstructural and Hardness Changes during Isothermal Annealing of Nanostructured Al-11.6Fe-1.3V-2.3Si Alloy. J. Mater. Eng. Perform. 2015, 24, 1026–1030. [Google Scholar] [CrossRef]
- Chakraborty, S.; Gupta, A.K.; Roy, D.; Basu Mallick, A. Nanomechanical Properties of Mechanically Alloyed and Spark Plasma Sintered W-Nanoparticulate Dispersed Cu-Nb Alloys. Mater. Lett. 2020, 274, 128004. [Google Scholar] [CrossRef]
- Schuler, T.; Nastar, M.; Soisson, F. Vacancy-Induced Dissolution of Precipitates in out-of-Equilibrium Systems: A Test Case of FeX (X = C,N,O) Alloys. Phys. Rev. B 2017, 95, 014113. [Google Scholar] [CrossRef]
- Gupta, R.K.; Murty, B.S.; Birbilis, N. Future Work and Possible Applications of Nanocrystalline Al Alloys as Produced by High-Energy Ball Milling; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Olynik, N.; Cheng, B.; Sprouster, D.J.; Parish, C.M.; Trelewicz, J.R. Microstructural Transitions during Powder Metallurgical Processing of Solute Stabilized Nanostructured Tungsten Alloys. Metals 2022, 12, 159. [Google Scholar] [CrossRef]
- Tejeda-Ochoa, A.; Kametani, N.; Carreño-Gallardo, C.; Ledezma-Sillas, J.E.; Adachi, N.; Todaka, Y.; Herrera-Ramirez, J.M. Formation of a Metastable Fcc Phase and High Mg Solubility in the Ti-Mg System by Mechanical Alloying. Powder Technol. 2020, 374, 348–352. [Google Scholar] [CrossRef]
- Christudasjustus, J.; Larimian, T.; Esquivel, J.; Gupta, S.; Darwish, A.A.; Borkar, T.; Gupta, R.K. Aluminum Alloys with High Elastic Modulus. Mater. Lett. 2022, 320, 132292. [Google Scholar] [CrossRef]
- Witharamage, C.S.; Christudasjustus, J.; Gupta, R.K. The Effect of Milling Time and Speed on Solid Solubility, Grain Size, and Hardness of Al-V Alloys. J. Mater. Eng. Perform. 2021, 30, 3144–3158. [Google Scholar] [CrossRef]
- Sui, H.X.; Zhu, M.; Qi, M.; Li, G.B.; Yang, D.Z. The Enhancement of Solid Solubility Limits of AlCo Intermetallic Compound by High-energy Ball Milling. J. Appl. Phys. 1992, 71, 2945–2949. [Google Scholar] [CrossRef]
- Esquivel, J.; Gupta, R.K. Influence of the V Content on Microstructure and Hardness of High-Energy Ball Milled Nanocrystalline Al-V Alloys. J. Alloys Compd. 2018, 760, 63–70. [Google Scholar] [CrossRef]
- Christudasjustus, J.; Witharamage, C.S.; Walunj, G.; Borkar, T.; Gupta, R.K. The Influence of Spark Plasma Sintering Temperatures on the Microstructure, Hardness, and Elastic Modulus of the Nanocrystalline Al-XV Alloys Produced by High-Energy Ball Milling. J. Mater. Sci. Technol. 2022, 122, 68–76. [Google Scholar] [CrossRef]
- Prosviryakov, A.S.; Shcherbachev, K.D. Strengthening of Mechanically Alloyed Al-Based Alloy with High Zr Contents. Mater. Sci. Eng. A 2018, 713, 174–179. [Google Scholar] [CrossRef]
- Darling, K.A.; Roberts, A.J.; Catalano, J.E.; Tschopp, M.A.; Kecskes, L.J. Effect of Processing Parameters on the Microstructure of Mechanically Alloyed Nanostructured Al-Mn Alloys. In Advanced Composites for Aerospace, Marine, and Land Applications II; Springer Nature: Cham, Switzerland, 2016; pp. 3–11. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Sundaresan, R. Metastable Phases in Mechanically Alloyed Al Mn Powder Mixtures. Mater. Sci. Eng. A 1991, 131, 237–242. [Google Scholar] [CrossRef]
- Scudino, S.; Sakaliyska, M.; Surreddi, K.B.; Eckert, J. Mechanical Alloying and Milling of Al–Mg Alloys. J. Alloys Compd. 2009, 483, 2–7. [Google Scholar] [CrossRef]
- Mohammadi, A.; Enikeev, N.A.; Murashkin, M.Y.; Arita, M.; Edalati, K. Developing Age-Hardenable Al-Zr Alloy by Ultra-Severe Plastic Deformation: Significance of Supersaturation, Segregation and Precipitation on Hardening and Electrical Conductivity. Acta Mater. 2021, 203, 116503. [Google Scholar] [CrossRef]
- Gubicza, J. Lattice Defects and Their Influence on the Mechanical Properties of Bulk Materials Processed by Severe Plastic Deformation. Mater. Trans. 2019, 60, 1230–1242. [Google Scholar] [CrossRef] [Green Version]
- Straumal, B.; Kilmametov, A.; Korneva, A.; Zięba, P.; Zavorotnev, Y.; Metlov, L.; Popova, O.; Baretzky, B. The Enrichment of (Cu, Sn) Solid Solution Driven by High-Pressure Torsion. Crystals 2021, 11, 766. [Google Scholar] [CrossRef]
- Tolmachev, T.P.; Pilyugin, V.P.; Ancharov, A.I.; Chernyshov, E.G.; Patselov, A.M. The Formation, Structure, and Properties of the Au–Co Alloys Produced by Severe Plastic Deformation under Pressure. Phys. Met. Metallogr. 2016, 117, 135–142. [Google Scholar] [CrossRef]
- Korneva, A.; Straumal, B.; Kilmametov, A.; Chulist, R.; Cios, G.; Baretzky, B.; Zięba, P. Dissolution of Ag Precipitates in the Cu–8wt%Ag Alloy Deformed by High Pressure Torsion. Materials 2019, 12, 447. [Google Scholar] [CrossRef] [Green Version]
- Straumal, B.B.; Kilmametov, A.R.; Baretzky, B.; Kogtenkova, O.A.; Straumal, P.B.; Lityńska-Dobrzyńska, L.; Chulist, R.; Korneva, A.; Zięba, P. High Pressure Torsion of Cu–Ag and Cu–Sn Alloys: Limits for Solubility and Dissolution. Acta Mater. 2020, 195, 184–198. [Google Scholar] [CrossRef]
- Cubero-Sesin, J.M.; Horita, Z. Strengthening via Microstructure Refinement in Bulk Al–4 Mass% Fe Alloy Using High-Pressure Torsion. Mater. Trans. 2012, 53, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Bachmaier, A.; Rathmayr, G.B.; Bartosik, M.; Apel, D.; Zhang, Z.; Pippan, R. New Insights on the Formation of Supersaturated Solid Solutions in the Cu–Cr System Deformed by High-Pressure Torsion. Acta Mater. 2014, 69, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Bachmaier, A.; Kerber, M.; Setman, D.; Pippan, R. The Formation of Supersaturated Solid Solutions in Fe–Cu Alloys Deformed by High-Pressure Torsion. Acta Mater. 2012, 60, 860–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.X.; Kawasaki, M.; Huang, Y.; Langdon, T.G. An Examination of Microstructural Evolution in a Pb–Sn Eutectic Alloy Processed by High-Pressure Torsion and Subsequent Self-Annealing. Mater. Sci. Eng. A 2021, 802, 140653. [Google Scholar] [CrossRef]
- Dobromyslov, A.V.; Taluts, N.I.; Pilyugin, V.P.; Tolmachev, T.P. Mechanical Alloying of Al–Fe Alloys Using Severe Deformation by High-Pressure Torsion. Phys. Met. Metallogr. 2015, 116, 942–950. [Google Scholar] [CrossRef]
- Verma, N.; Pant, N.; Beach, J.A.; Ivanisenko, J.; Ashkenazy, Y.; Dillon, S.; Bellon, P.; Averback, R.S. Effects of Ternary Alloy Additions on the Microstructure of Highly Immiscible Cu Alloys Subjected to Severe Plastic Deformation: An Evaluation of the Effective Temperature Model. Acta Mater. 2019, 170, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Zhou, E.; Suryanarayana, C.; Froes, F.H. Solid Solubility Extension of Magnesium in Titanium by Mechanical Alloying. In Proceedings of the TMS Annual Meeting, Las Vegas, NV, USA, 12–16 February 1995; Volume 23, pp. 43–51. [Google Scholar]
- Esquivel, J.; Murdoch, H.A.; Darling, K.A.; Gupta, R.K. Excellent Corrosion Resistance and Hardness in Al Alloys by Extended Solid Solubility and Nanocrystalline Structure. Mater. Res. Lett. 2018, 6, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Y. Microstructural Characterization of Mechanically Alloyed Al–Cu–Mn Alloy with Zirconium. Mater. Sci. Eng. A 2015, 623, 109–113. [Google Scholar] [CrossRef]
- Michi, R.A.; Bahl, S.; Fancher, C.M.; Sisco, K.; Allard, L.F.; An, K.; Yu, D.; Dehoff, R.R.; Plotkowski, A.; Shyam, A. Load Shuffling during Creep Deformation of an Additively Manufactured AlCuMnZr Alloy. Acta Mater. 2023, 244, 118557. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, H.; Wang, R.; Peng, C.; Feng, Y.; Wang, X. Microstructure and Mechanical Properties of the Extruded Al-Cu-Mn-Sc-Zr Alloy during Single-Stage and Two-Stage Aging. J. Mater. Eng. Perform. 2022, 32, 185–198. [Google Scholar] [CrossRef]
- Belov, N.A.; Korotkova, N.O.; Shurkin, P.K.; Aksenov, A.A. Substantiation of the Copper Concentration in Thermally Stable Wrought Aluminum Alloys Containing 2 wt% of Mn. Phys. Met. Metallogr. 2020, 121, 1211–1219. [Google Scholar] [CrossRef]
- Belov, N.A.; Akopyan, T.K.; Shurkin, P.K.; Korotkova, N.O. Comparative Analysis of Structure Evolution and Thermal Stability of Commercial AA2219 and Model Al-2 wt%Mn-2 wt%Cu Cold Rolled Alloys. J. Alloys Compd. 2021, 864, 158823. [Google Scholar] [CrossRef]
- Zupanič, F.; Bončina, T. Heat-Resistant Al-Alloys with Quasicrystalline and L12- Precipitates. Solid State Phenom. 2022, 327, 26–32. [Google Scholar] [CrossRef]
- Glazoff, M.V.; Khvan, A.; Zolotorevsky, V.S.; Belov, N.A.; Dinsdale, A. Casting Aluminum Alloys; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128118054. [Google Scholar]
- Yakovtseva, O.A.; Prosviryakov, A.S.; Cheverikin, V.V.; Zanaeva, E.N.; Mikhaylovskaya, A.V. Influence of High-Energy Ball Milling on the Microstructure, Phase Composition, and Microhardness of the Al–Mn–Cu Alloy. Russ. J. Non-Ferrous Met. 2022, 63, 426–433. [Google Scholar] [CrossRef]
- Yakovtseva, O.A.; Bazlov, A.I.; Prosviryakov, A.S.; Emelina, N.B.; Tabachkova, N.Y.; Mikhaylovskaya, A.V. The Influence of the Al2O3 Particles on the Microstructure of the Mechanically Alloyed Al-Mn-Cu Alloy. J. Alloys Compd. 2023, 930, 167452. [Google Scholar] [CrossRef]
- Ghanbari, H.; Shafikhani, M.A.; Daryalaal, M. Graphene Nanosheets Production Using Liquid-Phase Exfoliation of Pre-Milled Graphite in Dimethylformamide and Structural Defects Evaluation. Ceram. Int. 2019, 45, 20051–20057. [Google Scholar] [CrossRef]
- Al Bacha, S.; Awad, A.S.; El Asmar, E.; Tayeh, T.; Bobet, J.-L.; Nakhl, M.; Zakhour, M. Hydrogen Generation via Hydrolysis of Ball Milled WE43 Magnesium Waste. Int. J. Hydrogen Energy 2019, 44, 17515–17524. [Google Scholar] [CrossRef]
- Gan, D.; Zhang, J.; Liu, Y.; Zhang, Y.; Zhu, Y.; Li, L. Purity of MgH2 Improved by the Process of Pre-Milling Assisted Hydriding of Mg Powder under a Hydrogen Pressure of 0.5 MPa. Russ. J. Phys. Chem. A 2019, 93, 665–673. [Google Scholar] [CrossRef]
- Dan-Dan, S.; Jia-Liang, Z.; Yan-Qing, W.; Zhong-Qiu, Z.; Da-Kang, L. Raw-Material Pre-Milling on Physical Property of BaTiO$lt;Inf$gt;3$lt;/Inf$gt; Piezoelectric Ceramics. J. Inorg. Mater. 2017, 32, 615. [Google Scholar] [CrossRef]
- Yoon, M.-S.; Khansur, N.H.; Choi, B.-K.; Lee, Y.-G.; Ur, S.-C. The Effect of Nano-Sized BNBT on Microstructure and Dielectric/Piezoelectric Properties. Ceram. Int. 2009, 35, 3027–3036. [Google Scholar] [CrossRef]
- Aminikia, B. Investigation of the Pre-Milling Effect on Synthesis of Nanocrystalline TiB2–TiC Composite Prepared by SHS Method. Powder Technol. 2012, 232, 78–86. [Google Scholar] [CrossRef]
- Kasraee, K.; Tayebifard, A.; Salahi, E. Investigation of Pre-Milling Effect on Synthesis of Ti5Si3 Prepared by MASHS, SHS, and MA. J. Mater. Eng. Perform. 2013, 22, 3742–3748. [Google Scholar] [CrossRef]
- Lee, Y.G.; Ur, S.C.; Mahmud, I.; Yoon, M.S. Effects of Mechanically Activated Milling and Calcination Process on the Phase Stability and Particle Morphology of Monoclinic Zirconia Synthesized by Hydrolysis of ZrOCl2 Solution. Korean J. Mater. Res. 2013, 23, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, T.; Kusano, Y.; Ishimaru, K.; Morimoto, T.; Togano, A.; Yoshioka, T. Pre-Milling Effects on Self-Propagating Reactions in Mechanochemical Synthesis of CdSe and ZnSe. Chem. Lett. 2015, 44, 1234–1236. [Google Scholar] [CrossRef]
- Hoseinpur, A.; Jalaly, M.; Bafghi, M.S.; Vahdati Khaki, J.; Sakaki, M. The Effect of Preliminary Mechanical Activation on the Zinc Loss Control in Combustive Reduction of MoO3 by Zn. Int. J. Refract. Met. Hard Mater. 2016, 54, 251–259. [Google Scholar] [CrossRef]
- Cho, C.-H.; Hwang, K.-M.; Hwang, K.-M.; Seok, S.H.; Kim, S.-H.; Seo, J.-W.; Park, E.-S. Preparation and Characterization of High Drug-Loaded Microgranules: Particle Sizing and Mechanical Properties. Powder Technol. 2018, 326, 344–355. [Google Scholar] [CrossRef]
- Canakci, A.; Erdemir, F.; Varol, T.; Dalmış, R.; Ozkaya, S. Effects of a New Pre-Milling Coating Process on the Formation and Properties of an Fe–Al Intermetallic Coating. Powder Technol. 2014, 268, 110–117. [Google Scholar] [CrossRef]
- Oliveira, R.D.P.S.; Cogo, G.R.; Nascimento, B.L.; Reis, M.M.S.; Takimi, A.; Griza, S.; Bergmann, C.P. Influence of Pre-Milling of Cr3C2-25 NiCr Spray Powder on the Fatigue Life of HVOF-Sprayed Coating on ASTM A516 Steel Substrate. Materials 2023, 16, 1593. [Google Scholar] [CrossRef]
- Kwak, Y.J.; Choi, E.; Song, M.Y. Milling Processes and Hydrogen Storage Properties of Mg-Graphene Composites. Mater. Sci. 2019, 25, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Wang, X.; Chen, S. Effects of Ball Milling Processing Conditions and Alloy Components on the Synthesis of Cu-Nb and Cu-Mo Alloys. Materials 2019, 12, 1224. [Google Scholar] [CrossRef] [Green Version]
- Ghazanfari, H.; Blais, C.; Alamdari, H.; Gariépy, M.; Schulz, R. Mechanically Activated Combustion Synthesis of Fe3Al Composite Powders Reinforced with Sub-Micrometer TiC Particles. J. Alloys Compd. 2018, 761, 71–79. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, W. Mechano-Hydrothermal Preparation of Li-Al-OH Layered Double Hydroxides. Solid State Sci. 2018, 79, 93–98. [Google Scholar] [CrossRef]
- Chen, Y.; Hwang, T.; Marsh, M.; Williams, J.S. Study on Mechanism of Mechanical Activation. Mater. Sci. Eng. A 1997, 226–228, 95–98. [Google Scholar] [CrossRef]
- Xiang, D.P.; Li, C.; Liu, C.J.; Ding, L. Vacuum Synthesis of Nanocrystalline TiC at a Low Carbothermal Reduction Temperature. Adv. Mater. Res. 2013, 774–776, 881–886. [Google Scholar] [CrossRef]
- Zhou, E.; Suryanarayana, C.; Froes, F.H.S. Effect of Premilling Elemental Powders on Solid Solubility Extension of Magnesium in Titanium by Mechanical Alloying. Mater. Lett. 1995, 23, 27–31. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, W.Z.; Marthinsen, K. Precipitation Crystallography of Plate-Shaped Al 6(Mn,Fe) Dispersoids in AA5182 Alloy. Acta Mater. 2012, 60, 5963–5974. [Google Scholar] [CrossRef]
- Engler, O.; Laptyeva, G.; Wang, N. Impact of Homogenization on Microchemistry and Recrystallization of the Al-Fe-Mn Alloy AA 8006. Mater. Charact. 2013, 79, 60–75. [Google Scholar] [CrossRef]
- Engler, O.; Liu, Z.; Kuhnke, K. Impact of Homogenization on Particles in the Al-Mg-Mn Alloy AA 5454-Experiment and Simulation. J. Alloys Compd. 2013, 560, 111–122. [Google Scholar] [CrossRef]
- Engler, O.; Miller-Jupp, S. Control of Second-Phase Particles in the Al-Mg-Mn Alloy AA 5083. J. Alloys Compd. 2016, 689, 998–1010. [Google Scholar] [CrossRef]
- Dupuy, L.; Blandin, J.J. Damage Sensitivity in a Commercial Al Alloy Processed by Equal Channel Angular Extrusion. Acta Mater. 2002, 50, 3253–3266. [Google Scholar] [CrossRef]
- Feng, Z.; Luo, X.; Chen, Y.; Chen, N.; Wu, G. Surface Severe Plastic Deformation Induced Solute and Precipitate Redistribution in an Al-Cu-Mg Alloy. J. Alloys Compd. 2019, 773, 585–596. [Google Scholar] [CrossRef]
- Sauvage, X.; Ganeev, A.; Ivanisenko, Y.; Enikeev, N.; Murashkin, M.; Valiev, R. Grain Boundary Segregation in UFG Alloys Processed by Severe Plastic Deformation. Adv. Eng. Mater. 2012, 14, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Enikeev, N.A.; Murashkin, M.Y.; Kazykhanov, V.U.; Sauvage, X. On the Origin of the Extremely High Strength of Ultrafine-Grained Al Alloys Produced by Severe Plastic Deformation. Scr. Mater. 2010, 63, 949–952. [Google Scholar] [CrossRef] [Green Version]
Alloy | Mn, wt% | Cu, wt% | Fe, wt% | Al, wt% |
---|---|---|---|---|
Master alloy | 14.3 | 6.5 | 0.31 *** | Bal. |
Sample A | 7.8 | 3.6 | 0.15 */0.27 **/0.30 *** | Bal. |
Sample B | 7.7 | 3.5 | 0.20 */0.38 ***/0.63 **** | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakovtseva, O.A.; Emelina, N.B.; Mochugovskiy, A.G.; Tabachkova, N.Y.; Prosviryakov, A.S.; Mikhaylovskaya, A.V. Influence of Pre-Milling on the Mn Solid Solubility in the Al-Mn-Cu Alloy during Mechanical Alloying. Metals 2023, 13, 756. https://doi.org/10.3390/met13040756
Yakovtseva OA, Emelina NB, Mochugovskiy AG, Tabachkova NY, Prosviryakov AS, Mikhaylovskaya AV. Influence of Pre-Milling on the Mn Solid Solubility in the Al-Mn-Cu Alloy during Mechanical Alloying. Metals. 2023; 13(4):756. https://doi.org/10.3390/met13040756
Chicago/Turabian StyleYakovtseva, Olga A., Nadezhda B. Emelina, Andrey G. Mochugovskiy, Nataliya Yu. Tabachkova, Alexey S. Prosviryakov, and Anastasia V. Mikhaylovskaya. 2023. "Influence of Pre-Milling on the Mn Solid Solubility in the Al-Mn-Cu Alloy during Mechanical Alloying" Metals 13, no. 4: 756. https://doi.org/10.3390/met13040756
APA StyleYakovtseva, O. A., Emelina, N. B., Mochugovskiy, A. G., Tabachkova, N. Y., Prosviryakov, A. S., & Mikhaylovskaya, A. V. (2023). Influence of Pre-Milling on the Mn Solid Solubility in the Al-Mn-Cu Alloy during Mechanical Alloying. Metals, 13(4), 756. https://doi.org/10.3390/met13040756