4. Summary and Outlook
In view of the undocumented experiments and ongoing demonstrations of GEN-IV LFRs, the review of cladding failure has to be focused on the modelling and takes references from separated effects. However, we must admit that cladding failure behaviors under a long-term operation and transient conditions are major safety concerns for LFRs and deserve more attention. Compared with LWRs, LFRs have higher neutron doses, higher temperatures, higher burnup and an extremely corrosive environment. These complicated and extreme environments inside the reactor core bring significant challenges to nuclear materials and critical structures, especially claddings, the first barriers containing radioactive nuclear fuels.
The fuel performance modelling and transient analyses of LFRs are helpful for understanding the relatively realistic environment inside the reactor core and providing a clear image for material applications. In this paper, we took ALFRED and ELSY as reference to illustrate the long-term operating environment for fuel pins. According to the demands of LFRs, the fuel pin will service more than five equivalent full power years and the burnup will exceed 8 a.t.%, while some small modular LFRs intended to use for remote areas or special purposes have higher burnups. The maximum dpa of LFRs ranges from 100 dpa to 150 dpa and causes severe irradiation damage to claddings. Temperatures in the core will experience large increments or decrements during reactor start-up and shut-down, and swing under a long-term operation due to the reactivity changes. The fuel performance analyses of ALFRED indicate that the maximum temperature of the fuel is close to 2200 °C under nominal conditions, and the maximum contact pressure is 55.6 MPa at last because of FCMI, where accelerated creep rupture could occur.
During the long-term steady operation, LFRs could experience a series of transient accidents, in which the reactor parameters change intensely in a short time and may exceed safety limits. Therefore, the safety principles and guidelines have to be elaborated for LFRs. In this paper, transient analyses of DBCs for EFIT and CiADS were summarized and compared, including beam-trip transients, UBOP, ULOF, ULOHS and PLOHS. During frequent 10 s beam-trip of EFIT, the temperature variations of the fuel, the cladding and the coolant were 743 °C, 88 °C and 65 °C, respectively, which is inclined to induce the thermal cyclic fatigue of claddings. Furthermore, under ULOF and ULOHS for both EFIT and CiADS, the coolant temperatures exceeded the design limit of 550 °C with a consequence of irreversible damage of claddings caused by accelerated LBE corrosion.
In addition to satisfying materials design criteria based on in-pile performance, candidate cladding materials for current and proposed future nuclear energy systems must provide adequate resistance to three additional overarching environmental degradation phenomena: temperature dependence, radiation damage and chemical compatibility. Some macroscopical failure behaviors of claddings, such as thermal creep, cyclic fatigue, rupture and ratcheting between fuels and claddings, are temperature-dependent. Radiation damage can produce pronounced irradiation creep, void swelling and hardening due to high densities of nanoscale defects and fission products. Other failure phenomena of LFR claddings can be attributed to chemical compatibility issues, such as lead or LBE corrosion and fuel-cladding chemical interaction (FCCI).
Based on the modelling results, some critical issues need to be addressed in the future:
(i) The fuel cladding mechanical interaction (FCMI) plays an important role in cladding failure, and it is effective to consider delaying FCMI from the initial design of LFRs. In reality, the cladding temperature in LFRs and its variation are relatively low under long-term steady operation, which will not induce large thermal stresses in the cladding before contact. The dominant failure mechanism should be cladding corrosion, and any mechanical effects are not obvious for certain. But once the contact occurs, everything will become complicated. Because large stresses induced by ongoing contact will accelerate creep and make microcracks growing fast until failure, especially with the degradation of cladding mechanical performance due to irradiation and corrosion.
(ii) Which failure mechanism is dominant under different scenarios should be figured out. With regard to frequent beam-trips in ADSs, fatigue under alternating stresses should be the most important issue, and the ratcheting between fuel and cladding tends to be serious after FCMI. But as for ULOF and ULOHS, the cladding temperature increases to a very high value, where all the failure-related behaviors will be accelerated.
(iii) Cladding failure modelling is elaborated with experimental support and performed using FPCs and commercial FEM software. The highly sophisticated descriptions of cladding behaviors should include theoretical knowledge and nonlinear material models. Those unconsidered fatigue mechanisms in this paper, such as liquid metal embrittlement (LME), ratcheting effects, FCCI, either lack suitable mathematical descriptions to couple with multi-physics behaviors or cannot be explained by specifical theories. All of them deserve further research to support quantified simulation and couple with other phenomena. Most importantly, a systematic and demand-driven deployment needs to be conducted from fundamental research to engineering application.
Author Contributions
G.W.: Writing—Original Draft, Resources, Investigation, Formal analysis; Z.W.: Resources, Data curation, Investigation; D.Y.: Supervision, Data Curation, Writing—Review and Editing. All authors have read and agreed to the published version of the manuscript.
Funding
This work was supported by the State Key Research and Development Program of China, Grant No. 2020YFB1902100.
Acknowledgments
We thank Jinxiong Zhou of Xi’an Jiaotong University for providing us with guidance.
Conflicts of Interest
The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the work reported in this paper.
Abbreviations
LFRs | Lead-cooled fast reactors |
F/M steels | Ferritic/Martensitic steels |
AuS steels | Austenitic stainless steels |
ODS steels | Oxide dispersion strengthened steels |
GEN-IV | The International Generation IV Initiative |
LWRs | Light water reactors |
SFRs | Sodium-cooled fast reactors |
LBE | Lead-bismuth eutectic |
ADSs | Accelerator Driven Systems |
Minor actinides | MAs |
LLFPs | Long-lived fission products |
P&T | Partitioning and Transmutation |
FCMI | Fuel-cladding mechanical interaction |
FCCI | Fuel-cladding chemical interaction |
EFPD | Equivalent full power days |
BoL | Beginning of life |
EoL | End of life |
DBC | Design basis conditions |
DEC | Design extension conditions |
UBOP | Unprotected beam overpower |
ULOF | Unprotected loss of flow |
ULOHS | Unprotected loss of heat sink |
RVACS | Reactor vessel auxiliary cooling system |
bcc | Body-centred cubic |
fcc | Face-centred cubic |
dpa | displacements per atom |
CDF | Cumulative damage function |
LMP | Larson-Miller parameter |
FPCs | Fuel performance codes |
UTS | Ultimate tensile strength |
MOX | Mixed oxide fuel |
FEM | Finite element method |
LME | Liquid metal embrittlement |
References
- OECD/NEA. Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles; OECD Publishing: Paris, France, 2002. [Google Scholar]
- Nifenecker, H.; Meplan, O.; David, S. Accelerator Driven Subcritical Reactors; Series in Fundamental and Applied Nuclear Physics; Institute of Physics Publishing: Bristol, UK, 2003; ISBN 0-7503-0743-9. [Google Scholar]
- Abram, T.; Ion, S. Generation-IV Nuclear Power: A Review of the State of the Science. Energy Policy 2008, 36, 4323–4330. [Google Scholar] [CrossRef]
- Locatelli, G.; Mancini, M.; Todeschini, N. Generation IV Nuclear Reactors: Current Status and Future Prospects. Energy Policy 2013, 61, 1503–1520. [Google Scholar]
- Ojovan, M.I.; Steinmetz, H.J. Approaches to Disposal of Nuclear Waste. Energies 2022, 15, 7804. [Google Scholar] [CrossRef]
- Alwaeli, M.; Mannheim, V. Investigation into the Current State of Nuclear Energy and Nuclear Waste Management—A State-of-the-Art Review. Energies 2022, 15, 4275. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman, M.H.D.; Singh, D.; Avtar, R.; Hwang, G.H.; Setiadi, T.; Lo, W. Technological Solutions for Long-Term Storage of Partially Used Nuclear Waste: A Critical Review. Ann. Nucl. Energy 2022, 166, 108736. [Google Scholar]
- Buckthorpe, D. Introduction to Generation IV Nuclear Reactors. In Structural Materials for Generation IV Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–22. [Google Scholar]
- Rodriguez, G. Overview of GIF Activities/Updates on Gen IV Systems. In Proceedings of the 15th GIF-IAEA Interface Meeting, Vienna, Austria, 29–30 June 2021. [Google Scholar]
- Pioro, I.L.; Rodriguez, G.H. Generation IV International Forum (GIF). In Handbook of Generation IV Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2023; pp. 111–132. [Google Scholar]
- Alemberti, A. Lead Cooled Fast Reactors. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021; pp. 523–544. [Google Scholar]
- Alemberti, A.; Smirnov, V.; Smith, C.F.; Takahashi, M. Overview of Lead-Cooled Fast Reactor Activities. Prog. Nucl. Energy 2014, 77, 300–307. [Google Scholar] [CrossRef]
- Gonzalez-Romero, E.-M. Impact of Partitioning and Transmutation on the High Level Waste Management. Nucl. Eng. Des. 2011, 241, 3436–3444. [Google Scholar] [CrossRef]
- Wallenius, J. Transmutation of Nuclear Waste. Blykalla Böcker Och Spel 2011, 400, 156. [Google Scholar]
- Liu, B.; Han, J.; Liu, F.; Sheng, J.; Li, Z. Minor Actinide Transmutation in the Lead-Cooled Fast Reactor. Prog. Nucl. Energy 2020, 119, 103148. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Status of Accelerator Driven Systems Research and Technology Development; IAEA Tecdoc Series; International Atomic Energy Agency: Vienna, Austria, 2015; ISBN 92-0-113919-5. [Google Scholar]
- De Bruyn, D.; Larmignat, S.; Hune, A.W.; Mansani, L.; Rimpault, G.; Artioli, C. Accelerator Driven Systems for Transmutation: Main Design Achievements of the XT-ADS and EFIT Systems within the FP6 IP-EUROTRANS Integrated Project. In Proceedings of the ICAPP 2010, San Diego, CA, USA, 13–17 June 2010; Volume 10, pp. 13–17. [Google Scholar]
- Tuček, K.; Carlsson, J.; Wider, H. Comparison of Sodium and Lead-Cooled Fast Reactors Regarding Reactor Physics Aspects, Severe Safety and Economical Issues. Nucl. Eng. Des. 2006, 236, 1589–1598. [Google Scholar] [CrossRef]
- Murty, K.; Charit, I. Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities. J. Nucl. Mater. 2008, 383, 189–195. [Google Scholar] [CrossRef]
- Konings, R.; Stoller, R. Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 0-08-102866-0. [Google Scholar]
- Olander, D.R. Fundamental Aspects of Nuclear Reactor Fuel Elements: Solutions to Problems; California University: Berkeley, CA, USA, 1976. [Google Scholar]
- Khattak, M.; Omran, A.A.B.; Kazi, S.; Khan, M.; ALI, H.M.; Tariq, S.L.; Akram, M.A. A Review of Failure Modes of Nuclear Fuel Cladding. J. Eng. Sci. Technol. 2019, 14, 1520–1541. [Google Scholar]
- Kass, S. The Development of the Zircaloys; Westinghouse Electric Corp.: Pittsburgh, PA, USA; Bettis Atomic Power Lab.: West Mifflin, PA, USA, 1962. [Google Scholar]
- Mishima, Y.; Aoki, T.; Itō, G.; Kiyooka, S.; Ono, K.; Seki, Y.; Sumitomo, M.; Takao, Z. Behavior of Cladding Tube under Coolant-Loss Accident Conditions. J. Nucl. Sci. Technol. 1966, 3, 72–82. [Google Scholar] [CrossRef]
- Pickman, D.O. Zirconium Alloy Performance in Light Water Reactors: A Review of UK and Scandinavian Experience; ASTM International: West Conshohocken, CA, USA, 1994. [Google Scholar]
- Garzarolli, F.; Stehle, H.; Steinberg, E. Behavior and Properties of Zircaloys in Power Reactors: A Short Review of Pertinent Aspects in LWR Fuel. ASTM Spec. Tech. Publ. 1996, 1295, 12–34. [Google Scholar]
- Cox, B. Some Thoughts on the Mechanisms of In-Reactor Corrosion of Zirconium Alloys. J. Nucl. Mater. 2005, 336, 331–368. [Google Scholar] [CrossRef]
- Lewis, B.; Iglesias, F.; Dickson, R.; Williams, A. Overview of High-Temperature Fuel Behaviour with Relevance to CANDU Fuel. J. Nucl. Mater. 2009, 394, 67–86. [Google Scholar]
- Alam, T.; Khan, M.K.; Pathak, M.; Ravi, K.; Singh, R.; Gupta, S. A Review on the Clad Failure Studies. Nucl. Eng. Des. 2011, 241, 3658–3677. [Google Scholar] [CrossRef]
- Azevedo, C.d.F. Selection of Fuel Cladding Material for Nuclear Fission Reactors. Eng. Fail. Anal. 2011, 18, 1943–1962. [Google Scholar] [CrossRef]
- Lorusso, P.; Bassini, S.; Del Nevo, A.; Di Piazza, I.; Giannetti, F.; Tarantino, M.; Utili, M. GEN-IV LFR Development: Status & Perspectives. Prog. Nucl. Energy 2018, 105, 318–331. [Google Scholar]
- Serag, E.; Caers, B.; Schuurmans, P.; Lucas, S.; Haye, E. Challenges and Coating Solutions for Wear and Corrosion inside Lead Bismuth Eutectic: A Review. Surf. Coat. Technol. 2022, 441, 128542. [Google Scholar]
- Wang, H.; Xiao, J.; Wang, H.; Chen, Y.; Yin, X.; Guo, N. Corrosion Behavior and Surface Treatment of Cladding Materials Used in High-Temperature Lead-Bismuth Eutectic Alloy: A Review. Coatings 2021, 11, 364. [Google Scholar] [CrossRef]
- Pioro, I. Handbook of Generation-IV Nuclear Reactors; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Alemberti, A.; Frogheri, M.; Hermsmeyer, S.; Ammirabile, L.; Smirnov, V.; Takahashi, M.; Smith, C.; Wu, Y.; Hwang, I. Lead-Cooled Fast Reactor (LFR) Risk and Safety Assessment White Paper; GEN IV International Forum: Online, 2014; pp. 6–18. [Google Scholar]
- Cinotti, L.; Smith, C.F.; Artioli, C.; Grasso, G.; Corsini, G. Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design. In Handbook of Nuclear Engineering; Lawrence Livermore National Lab.(LLNL): Livermore, CA, USA, 2010. [Google Scholar]
- Zrodnikov, A.; Toshinsky, G.; Komlev, O.; Stepanov, V.; Klimov, N. SVBR-100 Module-Type Fast Reactor of the IV Generation for Regional Power Industry. J. Nucl. Mater. 2011, 415, 237–244. [Google Scholar] [CrossRef]
- Dragunov, Y.; Lemekhov, V.; Smirnov, V.; Chernetsov, N. Technical Solutions and Development Stages for the BREST-OD-300 Reactor Unit. At. Energy 2012, 113, 70–77. [Google Scholar] [CrossRef]
- Alemberti, A.; Carlsson, J.; Malambu, E.; Orden, A.; Struwe, D.; Agostini, P.; Monti, S. European Lead Fast Reactor—ELSY. Nucl. Eng. Des. 2011, 241, 3470–3480. [Google Scholar] [CrossRef]
- Alemberti, A. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics. In Proceedings of the Technical Meeting on Impact of Fukushima Event on Current and Future Fast Reactor Designs, Dresden, Germany, 19–23 March 2012. [Google Scholar]
- Alemberti, A.; Frogheri, M.; Mansani, L. The Lead Fast Reactor: Demonstrator (ALFRED) and ELFR Design. In Proceedings of the FR13: International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, Paris France, 4–7 March 2013. [Google Scholar]
- Grasso, G.; Petrovich, C.; Mattioli, D.; Artioli, C.; Sciora, P.; Gugiu, D.; Bandini, G.; Bubelis, E.; Mikityuk, K. The Core Design of ALFRED, a Demonstrator for the European Lead-Cooled Reactors. Nucl. Eng. Des. 2014, 278, 287–301. [Google Scholar] [CrossRef]
- Wallenius, J.; Qvist, S.; Mickus, I.; Bortot, S.; Szakalos, P.; Ejenstam, J. Design of SEALER, a Very Small Lead-Cooled Reactor for Commercial Power Production in off-Grid Applications. Nucl. Eng. Des. 2018, 338, 23–33. [Google Scholar]
- Smith, C.F.; Halsey, W.G.; Brown, N.W.; Sienicki, J.J.; Moisseytsev, A.; Wade, D.C. SSTAR: The US Lead-Cooled Fast Reactor (LFR). J. Nucl. Mater. 2008, 376, 255–259. [Google Scholar] [CrossRef]
- Rubbia, C. A Comparison of the Safety and Environmental Advantages of the Energy Amplifier and of Magnetic Confinement Fusion; Document CERN/AT/95-58 (ET); European Organization for Nuclear Research: Meyrin, Switzerland, 1995. [Google Scholar]
- Mueller, A.C. Nuclear Waste Incineration and Accelerator Aspects from the European PDS-XADS Study. Nucl. Phys. A 2005, 751, 453–468. [Google Scholar] [CrossRef]
- Artioli, C.; Chen, X.; Gabrielli, F.; Glinatsis, G.; Liu, P.; Maschek, W.; Petrovich, C.; Rineiski, A.; Sarotto, M.; Schikorr, M. Minor Actinide Transmutation in ADS: The EFIT Core Design. In Proceedings of the International Conference on the Physics of Reactors, Interlaken, Switzerland, 14–19 September 2008. [Google Scholar]
- Mansani, L.; Artioli, C.; Schikorr, M.; Rimpault, G.; Angulo, C.; Bruyn, D.D. The European Lead-Cooled EFIT Plant: An Industrial-Scale Accelerator-Driven System for Minor Actinide Transmutation—I. Nucl. Technol. 2012, 180, 241–263. [Google Scholar] [CrossRef]
- Abderrahim, H.A.; Baeten, P.; De Bruyn, D.; Fernandez, R. MYRRHA–A Multi-Purpose Fast Spectrum Research Reactor. Energy Convers. Manag. 2012, 63, 4–10. [Google Scholar] [CrossRef]
- Gu, L.; Su, X. Latest Research Progress for LBE Coolant Reactor of China Initiative Accelerator Driven System Project. Front. Energy 2021, 15, 810–831. [Google Scholar] [CrossRef]
- Luzzi, L.; Cammi, A.; Di Marcello, V.; Lorenzi, S.; Pizzocri, D.; Van Uffelen, P. Application of the TRANSURANUS Code for the Fuel Pin Design Process of the ALFRED Reactor. Nucl. Eng. Des. 2014, 277, 173–187. [Google Scholar] [CrossRef]
- Sobolev, V.; Malambu, E.; Abderrahim, H.A. Design of a Fuel Element for a Lead-Cooled Fast Reactor. J. Nucl. Mater. 2009, 385, 392–399. [Google Scholar] [CrossRef]
- Grasso, G.; Petrovich, C.; Mikityuk, K.; Mattioli, D.; Manni, F.; Gugiu, D. Demonstrating the Effectiveness of the European LFR Concept: The ALFRED Core Design. In Proceedings of the International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, 4–7 March 2013. [Google Scholar]
- Papin, J. Behavior of Fast Reactor Fuel during Transient and Accident Conditions; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Liu, P.; Chen, X.; Rineiski, A.; Maschek, W. Transient Analyses of the 400MWth-Class EFIT Accelerator Driven Transmuter with the Multi-Physics Code: SIMMER-III. Nucl. Eng. Des. 2010, 240, 3481–3494. [Google Scholar] [CrossRef]
- Wang, G.; Wallenius, J.; Yu, R.; Jiang, W.; Zhang, L.; Sheng, X.; Yun, D.; Gu, L. Transient Analyses for China Initiative Accelerator Driven System Using the Extended BELLA Code. Ann. Nucl. Energy 2023, 190, 109892. [Google Scholar] [CrossRef]
- Bandini, G.; Casamirra, M.; Castiglia, F.; Mansani, L.; Meloni, P.; Polidori, M. Preliminary T/H and Transient Analyses for EFIT Reactor Design. In Proceedings of the ICAPP 2007, Nice, France, 13–18 May 2007; Volume 7. [Google Scholar]
- Maschek, W.; Rineiski, A.; Suzuki, T.; Wang, S.; Mori, M.; Wiegner, E.; Wilhelm, D.; Kretzschmar, F.; Tobita, Y.; Yamano, H. SIMMER-III and SIMMER-IV Safety Code Development for Reactors with Transmutation Capability. In Proceedings of the Mathematics and Computation, Supercomputing, Reactor Physics and Biological Applications, Avignon, France, 12–15 September 2005. [Google Scholar]
- Tobita, Y.; Kondo, S.; Yamano, H.; Morita, K.; Maschek, W.; Coste, P.; Cadiou, T. The Development of SIMMER-III, an Advanced Computer Program for LMFR Safety Analysis, and Its Application to Sodium Experiments. Nucl. Technol. 2006, 153, 245–255. [Google Scholar] [CrossRef]
- Bortot, S.; Suvdantsetseg, E.; Wallenius, J. BELLA: A Multi-Point Dynamics Code for Safety-Informed Design of Fast Reactors. Ann. Nucl. Energy 2015, 85, 228–235. [Google Scholar] [CrossRef]
- Wang, G.; Gu, L.; Yun, D. Preliminary Multi-Physics Performance Analysis and Design Evaluation of UO2 Fuel for LBE-Cooled Subcritical Reactor of China Initiative Accelerator Driven System. Front. Energy Res. 2021, 9, 732801. [Google Scholar] [CrossRef]
- Luzzi, L.; Vettraino, F.; Calabrese, R. ADS-demo fuel rod performance analysis. In Proceedings of the Global Environment and Nuclear Energy Systems/Advanced Nuclear Power Plants International Conference (GENES4/ANP2003), Kyoto, Japan, 15–19 September 2003; p. 1155. [Google Scholar]
- Series, I.N.E. Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies–Operational Behaviour; Report No. NF; International Atomic Energy Agency (IAEA): Vienna, Austria, 2012. [Google Scholar]
- Gong, X.; Short, M.P.; Auger, T.; Charalampopoulou, E.; Lambrinou, K. Environmental Degradation of Structural Materials in Liquid Lead-and Lead-Bismuth Eutectic-Cooled Reactors. Prog. Mater. Sci. 2022, 126, 100920. [Google Scholar]
- Fazio, C.; Sobolev, V.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies-2015 Edition; Organisation for Economic Co-Operation and Development: Paris, France, 2015. [Google Scholar]
- Maziasz, P.J.; Busby, J.T. Properties of Austenitic Stainless Steels for Nuclear Reactor Applications; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2012. [Google Scholar]
- Raj, B.; Vijayalakshmi, M. Ferritic Steels and Advanced Ferritic–Martensitic Steels. Compr. Nucl. Mater. 2012, 97–121. [Google Scholar] [CrossRef]
- Klueh, R.; Shingledecker, J.; Swindeman, R.; Hoelzer, D. Oxide Dispersion-Strengthened Steels: A Comparison of Some Commercial and Experimental Alloys. J. Nucl. Mater. 2005, 341, 103–114. [Google Scholar] [CrossRef]
- Lamon, J. Properties of Characteristics of SiC and SiC/SiC Composites; Laboratoire de Mécanique et Technologie: Cachan, France, 2019. [Google Scholar]
- El-Genk, M.S.; Tournier, J.-M. A Review of Refractory Metal Alloys and Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Space Nuclear Power Systems. J. Nucl. Mater. 2005, 340, 93–112. [Google Scholar] [CrossRef]
- Raman, L.; Gothandapani, K.; Murty, B. Austenitic Oxide Dispersion Strengthened Steels: A Review. Def. Sci. J. 2016, 66, 316–322. [Google Scholar] [CrossRef]
- Verhiest, K.; Almazouzi, A.; De Wispelaere, N.; Petrov, R.; Claessens, S. Development of Oxides Dispersion Strengthened Steels for High Temperature Nuclear Reactor Applications. J. Nucl. Mater. 2009, 385, 308–311. [Google Scholar] [CrossRef]
- Leonard, K.J. Radiation Effects in Refractory Metals and Alloys (Chapter 88); Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2012. [Google Scholar]
- Daghbouj, N.; Li, B.; Callisti, M.; Sen, H.; Karlik, M.; Polcar, T. Microstructural Evolution of Helium-Irradiated 6H–SiC Subjected to Different Irradiation Conditions and Annealing Temperatures: A Multiple Characterization Study. Acta Mater. 2019, 181, 160–172. [Google Scholar]
- Mondal, K.; Nuñez III, L.; Downey, C.M.; Van Rooyen, I.J. Thermal Barrier Coatings Overview: Design, Manufacturing, and Applications in High-Temperature Industries. Ind. Eng. Chem. Res. 2021, 60, 6061–6077. [Google Scholar] [CrossRef]
- Gong, X.; Li, R.; Sun, M.; Ren, Q.; Liu, T.; Short, M.P. Opportunities for the LWR ATF Materials Development Program to Contribute to the LBE-Cooled ADS Materials Qualification Program. J. Nucl. Mater. 2016, 482, 218–228. [Google Scholar] [CrossRef]
- Yvon, P.; Carré, F. Structural Materials Challenges for Advanced Reactor Systems. J. Nucl. Mater. 2009, 385, 217–222. [Google Scholar] [CrossRef]
- Anderoglu, O.; Byun, T.S.; Toloczko, M.; Maloy, S.A. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors. Metall. Mater. Trans. A 2013, 44, 70–83. [Google Scholar] [CrossRef]
- Alamo, A.; Bertin, J.; Shamardin, V.; Wident, P. Mechanical Properties of 9Cr Martensitic Steels and ODS-FeCr Alloys after Neutron Irradiation at 325 C up to 42 Dpa. J. Nucl. Mater. 2007, 367, 54–59. [Google Scholar] [CrossRef]
- Hales, J.D.; Williamson, R.L.; Novascone, S.R.; Pastore, G.; Spencer, B.W.; Stafford, D.S.; Gamble, K.A.; Perez, D.M.; Liu, W. BISON Theory Manual the Equations behind Nuclear Fuel Analysis; Idaho National Lab.: Idaho Falls, ID, USA, 2016. [Google Scholar]
- Xu, C.; Hackett, M. TerraPower HT9 Mechanical and Thermal Creep Properties; Springer: Berlin/Heidelberg, Germany, 2017; pp. 95–102. [Google Scholar]
- Aoto, K.; Dufour, P.; Hongyi, Y.; Glatz, J.P.; Kim, Y.; Ashurko, Y.; Hill, R.; Uto, N. A Summary of Sodium-Cooled Fast Reactor Development. Prog. Nucl. Energy 2014, 77, 247–265. [Google Scholar]
- Daghbouj, N.; Callisti, M.; Sen, H.; Karlik, M.; Čech, J.; Vronka, M.; Havránek, V.; Čapek, J.; Minárik, P.; Bábor, P. Interphase Boundary Layer-Dominated Strain Mechanisms in Cu+ Implanted Zr-Nb Nanoscale Multilayers. Acta Mater. 2021, 202, 317–330. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.; Callisti, M.; Vronka, M.; Karlik, M.; Duchoň, J.; Čech, J.; Havránek, V.; Polcar, T. Revealing Nanoscale Strain Mechanisms in Ion-Irradiated Multilayers. Acta Mater. 2022, 229, 117807. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G. Materials Challenges in Nuclear Energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Allen, T.; Sridharan, K.; Tan, L.; Windes, W.; Cole, J.; Crawford, D.; Was, G.S. Materials Challenges for Generation IV Nuclear Energy Systems. Nucl. Technol. 2008, 162, 342–357. [Google Scholar] [CrossRef]
- ASTM E521-96; Standard Practice for Neutron Damage Simulation by Charged-Particle Irradiation. ASTM International: West Conshohocken, PA, USA, 2000.
- Norgett, M.; Robinson, M.; Torrens, I.M. A Proposed Method of Calculating Displacement Dose Rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Li, B.; Sen, H.; Daghbouj, N.; AlMotasem, A.T.; Lorinčík, J.; Karlik, M.; Ge, F.; Zhang, L.; Sofer, Z.; Elantyev, I. Thermal Behavior of Iron in 6H-SiC: Influence of He-Induced Defects. Scr. Mater. 2022, 218, 114805. [Google Scholar] [CrossRef]
- Daghbouj, N.; AlMotasem, A.; Vesely, J.; Li, B.; Sen, H.; Karlik, M.; Lorinčík, J.; Ge, F.; Zhang, L.; Krsjak, V. Microstructure Evolution of Iron Precipitates in (Fe, He)-Irradiated 6H-SiC: A Combined TEM and Multiscale Modeling. J. Nucl. Mater. 2023, 584, 154543. [Google Scholar] [CrossRef]
- Ashby, M.F. A First Report on Deformation-Mechanism Maps. Acta Metall. 1972, 20, 887–897. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: Cambridge, UK, 2008; ISBN 1-107-39418-X. [Google Scholar]
- Gavoille, P.; Courcelle, A.; Seran, J.; Averty, X.; Bourdiliau, B.; Provitina, O.; Garat, V.; Verwaerde, D. Mechanical Properties of Cladding and Wrapper Materials for the ASTRID Fast-Reactor Project. In Proceedings of the FR13: International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, Paris, France, 4–7 March 2013. [Google Scholar]
- Filacchioni, G.; De Angelis, U.; Ferrara, D.; Pilloni, L. Mechanical and Structural Behaviour of the Second Double Stabilized Stainless Steels Generation. In Fast Reactor Core and Fuel Structural Behaviour; Thomas Telford Publishing: London, UK, 1990; pp. 255–261. [Google Scholar]
- de Bellefon, G.M.; Bertsch, K.; Chancey, M.; Wang, Y.; Thoma, D. Influence of Solidification Structures on Radiation-Induced Swelling in an Additively-Manufactured Austenitic Stainless Steel. J. Nucl. Mater. 2019, 523, 291–298. [Google Scholar] [CrossRef]
- Waltar, A.E.; Todd, D.R.; Tsvetkov, P.V. Fast Spectrum Reactors; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 1-4419-9572-2. [Google Scholar]
- Dubuisson, P. Core Structural Materials-Feedback Experience from PHENIX. In Proceedings of the Technical Meeting on Design, Manufacturing and Irradiation Behaviour of Fast Reactor Fuel, Obninsk, Russian, 30 May–3 June 2011. [Google Scholar]
- Paaren, K.M.; Lybeck, N.; Mo, K.; Medvedev, P.; Porter, D. Cladding Profilometry Analysis of Experimental Breeder Reactor-Ii Metallic Fuel Pins with Ht9, D9, and Ss316 Cladding. Energies 2021, 14, 515. [Google Scholar] [CrossRef]
- Larson, F.R.; Miller, J. A Time-Temperature Relationship for Rupture and Creep Stresses. Trans. Am. Soc. Mech. Eng. 1952, 74, 765–771. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.; Čížek, J.; Lorinčík, J.; Karlík, M.; Callisti, M.; Čech, J.; Havránek, V.; Li, B.; Krsjak, V. Characterizing Heavy Ions-Irradiated Zr/Nb: Structure and Mechanical Properties. Mater. Des. 2022, 219, 110732. [Google Scholar] [CrossRef]
- Zhang, J. Long-Term Behaviors of Oxide Layer in Liquid Lead–Bismuth Eutectic (LBE), Part I: Model Development and Validation. Oxid. Met. 2013, 80, 669–685. [Google Scholar] [CrossRef]
- Zhang, J. Long-Term Behaviors of Oxide Layer in Liquid Lead–Bismuth Eutectic (LBE), Part II: Model Applications. Oxid. Met. 2014, 81, 597–615. [Google Scholar] [CrossRef]
- Van Uffelen, P.; Hales, J.; Li, W.; Rossiter, G.; Williamson, R. A Review of Fuel Performance Modelling. J. Nucl. Mater. 2019, 516, 373–412. [Google Scholar]
- Aybar, H.S.; Ortego, P. A Review of Nuclear Fuel Performance Codes. Prog. Nucl. Energy 2005, 46, 127–141. [Google Scholar] [CrossRef]
- Jankus, V.; Weeks, R. LIFE-II—A Computer Analysis of Fast-Reactor Fuel-Element Behavior as a Function of Reactor Operating History. Nucl. Eng. Des. 1972, 18, 83–96. [Google Scholar] [CrossRef]
- Matthews, J.R. The Basis of the TRAFIC Fuel Performance Code; UKAEA Atomic Energy Research Establishment: Abingdon, UK, 1982. [Google Scholar]
- Matthews, J.R.; Thetford, R.; Wood, M.H. The Application of the TRAFIC Fuel Performance Code to Steady and Transient Conditions. In Proceedings of the Nuclear Fuel Performance, Stratford-upon-Avon, UK, 25–29 March 1985; pp. 301–307. [Google Scholar]
- Lassmann, K.; Schubert, A.; Van Uffelen, P.; Gyori, C. TRANSURANUS Handbook Copyright© 1975–2014; Institute for Transuranium Elements: Karlsruhe, Germany, 2019. [Google Scholar]
- Hwang, W.; Nam, C.; Byun, T.S.; Kim, Y.C. MACSIS: A Metallic Fuel Performance Analysis Code for Simulating in-Reactor Behavior under Steady-State Conditions. Nucl. Technol. 1998, 123, 130–141. [Google Scholar] [CrossRef]
- Ozawa, T.; Abe, T. Development and Verifications of Fast Reactor Fuel Design Code CEPTAR. Nucl. Technol. 2006, 156, 39–55. [Google Scholar] [CrossRef]
- Karahan, A.; Andrews, N.C. Extended Fuel Swelling Models and Ultra High Burn-up Fuel Behavior of U–Pu–Zr Metallic Fuel Using FEAST-METAL. Nucl. Eng. Des. 2013, 258, 26–34. [Google Scholar] [CrossRef]
- Lainet, M.; Michel, B.; Dumas, J.-C.; Pelletier, M.; Ramière, I. GERMINAL, a Fuel Performance Code of the PLEIADES Platform to Simulate the in-Pile Behaviour of Mixed Oxide Fuel Pins for Sodium-Cooled Fast Reactors. J. Nucl. Mater. 2019, 516, 30–53. [Google Scholar]
- Veshchunov, M.S.; Boldyrev, A.V.; Kuznetsov, A.V.; Ozrin, V.D.; Seryi, M.S.; Shestak, V.E.; Tarasov, V.I.; Norman, G.E.; Kuksin, A.Y.; Pisarev, V.V. Development of the Advanced Mechanistic Fuel Performance and Safety Code Using the Multi-Scale Approach. Nucl. Eng. Des. 2015, 295, 116–126. [Google Scholar] [CrossRef]
- Okawa, T.; Tatewaki, I.; Ishizu, T.; Endo, H.; Tsuboi, Y.; Saitou, H. Fuel Behavior Analysis Code FEMAXI-FBR Development and Validation for Core Disruptive Accident. Prog. Nucl. Energy 2015, 82, 80–85. [Google Scholar] [CrossRef]
- WANG, G.; GU, L.; YU, R.; WANG, T.; WANG, Z.; YUAN, H.; YUN, D. Development and Preliminary Verification of Oxide Fuel Performance Analysis Code FUTURE for Lead-Based Fast Reactor. At. Energy Sci. Technol. 2022, 56, 1328. [Google Scholar]
- Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandie, D. MOOSE: A Parallel Computational Framework for Coupled Systems of Nonlinear Equations. Nucl. Eng. Des. 2009, 239, 1768–1778. [Google Scholar] [CrossRef]
- Michel, B.; Sercombe, J.; Nonon, C.; Fandeur, O. Modeling of Pellet Cladding Interaction; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 3, ISBN 978-0-08-056033-5. [Google Scholar]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).