Implementation of ABAQUS User Subroutines for Viscoplasticity of 316 Stainless Steel and Zircaloy-4
Abstract
:1. Introduction
2. Viscoplastic Constitutive Equation
2.1. The Framework of the Unified Viscoplastic Constitutive Model
2.2. Isotropic Viscoplastic Constitutive Model for 316 Stainless Steel
2.3. Anisotropic Viscoplastic Constitutive Model for Zircaloy-4
3. Computational Algorithm
3.1. Return Mapping Algorithm
3.2. Stress Update Algorithm of 316 Stainless Steel Model
3.3. Stress Update Algorithm of Zircaloy-4 Model
4. Verification and Validation of FE Modeling and UMAT Code
4.1. 316 Stainless Steel
4.2. Zircaloy-4
4.3. Multiaxial Stress State Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cox, B. Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding—A review. J. Nucl. Mater. 1990, 172, 249–292. [Google Scholar]
- Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests. J. Nucl. Mater. 2018, 499, 641–651. [Google Scholar]
- d’Ambrosi, V.; Destouches, C.; Ricciardi, G.; Bréaud, S.; Lebon, F.; Gatt, J.M.; Julien, J.; Parrat, D. Fuel rod nonlinear vibrations to detect and characterize Pellet-Cladding Interaction. Nucl. Eng. Des. 2021, 379, 111214. [Google Scholar]
- Li, Y.; Ge, C.; Liu, Y.; Li, G.; Dong, X.; Gu, Z.; Zhang, Y. Influencing factors and mechanism of iodine-induced stress corrosion cracking of zirconium alloy cladding: A review. Int. J. Miner. Metall. Mater. 2022, 29, 586–598. [Google Scholar]
- Hallstadius, L.; Johnson, S.; Lahoda, E. Cladding for high performance fuel. Prog. Nucl. Energy 2012, 57, 71–76. [Google Scholar]
- Azevedo, C.d.F. Selection of fuel cladding material for nuclear fission reactors. Eng. Fail. Anal. 2011, 18, 1943–1962. [Google Scholar]
- Li, Q.; Song, P.; Zhang, R.; Li, Z.; Wang, Y.; Du, P.; Lu, J. Oxidation behavior and Cr-Zr diffusion of Cr coatings prepared by atmospheric plasma spraying on zircaloy-4 cladding in steam at 1300 °C. Corros. Sci. 2022, 203, 110378. [Google Scholar]
- Berna, G.; Beyer, G.; Davis, K.; Lanning, D. FRAPCON-3: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup; Technical Report; US Nuclear Regulatory Commission (NRC): Washington, DC, USA; Division of Systems Technology, Pacific Northwest National Lab. (PNNL): Richland, WA, USA; Idaho National Lab. (INL): Idaho Falls, ID, USA, 1997.
- Hughes, T. FPIN2 Analysis of Metal Fueled Pins; Technical Report; Argonne National Lab. (ANL): Argonne, IL, USA, 1985. [Google Scholar]
- Yagnik, S.; Rashid, Y.; Dunham, R.; Montgomery, R. Fuel Analysis and Licensing Code: FALCON MOD01, Volume 1: Theoretical and Numerical Bases; Technical Report; EPRI: Palo Alto, CA, USA, 2004; p. 1011307. [Google Scholar]
- Allison, C.; Berna, G.; Chambers, R.; Coryell, E.; Davis, K.; Hagrman, K.; McComas, M. SCDAP/RELAP5/MOD3.1 Code Manual Volume IV: MATPRO; Technical Report; NUREG/CR-6150; Idaho National Laboratory: Idaho Falls, ID, USA, 1993. [Google Scholar]
- Williamson, R.L.; Hales, J.; Novascone, S.; Tonks, M.; Gaston, D.; Permann, C.; Andrs, D.; Martineau, R. Multidimensional multiphysics simulation of nuclear fuel behavior. J. Nucl. Mater. 2012, 423, 149–163. [Google Scholar]
- Newman, C.; Hansen, G.; Gaston, D. Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods. J. Nucl. Mater. 2009, 392, 6–15. [Google Scholar]
- Williamson, R.L.; Hales, J.D.; Novascone, S.R.; Pastore, G.; Gamble, K.A.; Spencer, B.W.; Jiang, W.; Pitts, S.A.; Casagranda, A.; Schwen, D.; et al. BISON: A flexible code for advanced simulation of the performance of multiple nuclear fuel forms. Nucl. Technol. 2021, 207, 954–980. [Google Scholar] [CrossRef]
- Williamson, R. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior. J. Nucl. Mater. 2011, 415, 74–83. [Google Scholar] [CrossRef]
- Miao, Y.; Oaks, A.; Mo, K.; Billone, M.; Matthews, C.; Zabriskie, A.X.; Novascone, S.; Yacout, A.M. Metallic fuel cladding degradation model development and evaluation for BISON. Nucl. Eng. Des. 2021, 385, 111531. [Google Scholar] [CrossRef]
- Phan, V.T.; Messner, M.; Sham, T.L. A unified engineering inelastic model for 316H stainless steel. In Proceedings of the ASME 2019 Pressure Vessels and Piping Conference, San Antonio, TX, USA, 14–19 July 2019. [Google Scholar]
- Li, Z.; Wen, Z.; Pei, H.; Yue, X.; Wang, P.; Ai, C.; Yue, Z. Creep life prediction for a nickel-based single crystal turbine blade. Mech. Adv. Mater. Struct. 2022, 29, 6039–6052. [Google Scholar] [CrossRef]
- Chaboche, J.L. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 2008, 24, 1642–1693. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T.; Zhang, W.; Wahab, M.A.; Gong, J. An improved unified viscoplastic model for modelling low cycle fatigue and creep fatigue interaction loadings of 9–12% Cr steel. Eur. J. Mech.-A/Solids 2021, 85, 104123. [Google Scholar] [CrossRef]
- Chaboche, J.; Rousselier, G. On the plastic and viscoplastic constitutive equations—Part I: Rules developed with internal variable concept. J. Press. Vessel. Technol. 1983, 105, 153–158. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Rousselier, G. On the plastic and viscoplastic constitutive equations—Part II: Application of internal variable concepts to the 316 stainless steel. J. Press. Vessel. Technol. 1983, 105, 159–164. [Google Scholar] [CrossRef]
- Chaboche, J.L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989, 5, 247–302. [Google Scholar] [CrossRef]
- Miled, B.; Doghri, I.; Delannay, L. Coupled viscoelastic–viscoplastic modeling of homogeneous and isotropic polymers: Numerical algorithm and analytical solutions. Comput. Methods Appl. Mech. Eng. 2011, 200, 3381–3394. [Google Scholar] [CrossRef]
- Tian, J.; Li, J.; Xie, H.; Yang, Y.; Kan, Q. Finite element implementation of a temperature-dependent cyclic plastic model for SA508-3 steel. Metals 2018, 8, 955. [Google Scholar] [CrossRef]
- Du, R.; Zhang, X.; Wang, H.; Liu, X.; Wei, Y. A revised Chaboche model from multiscale approach to predict the cyclic behavior of type 316 stainless steel at room temperature. Int. J. Fatigue 2023, 167, 107303. [Google Scholar] [CrossRef]
- Santus, C.; Grossi, T.; Romanelli, L.; Pedranz, M.; Benedetti, M. A computationally fast and accurate procedure for the identification of the Chaboche isotropic-kinematic hardening model parameters based on strain-controlled cycles and asymptotic ratcheting rate. Int. J. Plast. 2023, 160, 103503. [Google Scholar] [CrossRef]
- Murty, K.L.; Charit, I. Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 2006, 48, 325–359. [Google Scholar] [CrossRef]
- Murty, K.L.; Adams, B.L. Biaxial creep of textured zircaloy I: Experimental and phenomenological descriptions. Mater. Sci. Eng. 1985, 70, 169–180. [Google Scholar] [CrossRef]
- Grosjean, C.; Poquillon, D.; Salabura, J.C.; Cloué, J.M. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings. Mater. Sci. Eng. A 2009, 510, 332–336. [Google Scholar] [CrossRef]
- Rautenberg, M.; Poquillon, D.; Pilvin, P.; Grosjean, C.; Cloué, J.M.; Feaugas, X. Thermal isocreep curves obtained during multi-axial creep tests on recrystallized Zircaloy-4 and M5™ alloy. Nucl. Eng. Des. 2014, 269, 33–37. [Google Scholar] [CrossRef]
- Guo, W.; Li, G.; Yuan, F.; Han, F.; Zhang, Y.; Ali, M.; Ren, J.; Yuan, G. Texture development and mechanical behavior of Zircaloy-4 alloy plates fabricated by cold rolling and annealing. Mater. Sci. Eng. A 2021, 807, 140846. [Google Scholar] [CrossRef]
- Delobelle, P. Synthesis of the elastoviscoplastic behavior and modelization of an austenitic stainless steel over a large temperature range, under uniaxial and biaxial loadings, part II: Phenomenological modelization. Int. J. Plast. 1993, 9, 87–118. [Google Scholar] [CrossRef]
- Delobelle, P.; Robinet, P.; Geyer, P.; Bouffioux, P. A model to describe the anisotropic viscoplastic behaviour of Zircaloy-4 tubes. J. Nucl. Mater. 1996, 238, 135–162. [Google Scholar] [CrossRef]
- Richard, F.; Delobelle, P.; Leclercq, S.; Bouffioux, P.; Rousselier, G. Modeling of the cold work stress relieved Zircaloy-4 cladding tubes mechanical behavior under PWR operating conditions. In Proceedings of the Transactions of the SMiRT 17, Prague, Czech Republic, 17–18 August 2003. [Google Scholar]
- Dunne, F.; Petrinic, N. Introduction to Computational Plasticity; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Armstrong, P.J.; Frederick, C. A Mathematical Representation of the Multiaxial Bauschinger Effect; Technical Report; Berkeley Nuclear Laboratories: Berkeley, CA, USA, 1966.
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 281–297. [Google Scholar]
- Marin, E.; McDowell, D. A semi-implicit integration scheme for rate-dependent and rate-independent plasticity. Comput. Struct. 1997, 63, 579–600. [Google Scholar] [CrossRef]
- Hyde, C.J.; Sun, W.; Leen, S.B. Cyclic thermo-mechanical material modelling and testing of 316 stainless steel. Int. J. Press. Vessel. Pip. 2010, 87, 365–372. [Google Scholar] [CrossRef]
- Dassault, S. Abaqus 6.14 Documentation; Simulia Systems: Providence, RI, USA, 2014. [Google Scholar]
- Guo, W.; Li, G.; Han, F.; Zhang, Y.; Ali, M.; Ren, J.; Wang, Q.; Yuan, F.; Tong, M. Deformation mechanism and cyclic stress response of Zircaloy-4 alloy cladding tube during low cycle fatigue at room temperature. Int. J. Fatigue 2022, 160, 106875. [Google Scholar] [CrossRef]
T (°C) | E (GPa) | (MPa) | b | Q (MPa) | (MPa) | K (MPa | n | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
RT * | 185 | 0.3 | 82 | 8 | 60 | 58 | 2800 | 270 | 25 | 151 | 24 |
550 | 141.26 | 0.3 | 31 | 31 | 27.8 | 86.3 | 6939 | 114.8 | 957.69 | 173 | 10 |
Recrystallized Zircaloy-4 | Cold Worked Stress Relieved Zircaloy-4 |
---|---|
MPa, | MPa, |
MPa, | MPa, |
MPa | MPa MPa |
MPa, | MPa, |
MPa, MPa | MPa, MPa, MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Zhou, J. Implementation of ABAQUS User Subroutines for Viscoplasticity of 316 Stainless Steel and Zircaloy-4. Metals 2023, 13, 1554. https://doi.org/10.3390/met13091554
Yue X, Zhou J. Implementation of ABAQUS User Subroutines for Viscoplasticity of 316 Stainless Steel and Zircaloy-4. Metals. 2023; 13(9):1554. https://doi.org/10.3390/met13091554
Chicago/Turabian StyleYue, Xiaowei, and Jinxiong Zhou. 2023. "Implementation of ABAQUS User Subroutines for Viscoplasticity of 316 Stainless Steel and Zircaloy-4" Metals 13, no. 9: 1554. https://doi.org/10.3390/met13091554
APA StyleYue, X., & Zhou, J. (2023). Implementation of ABAQUS User Subroutines for Viscoplasticity of 316 Stainless Steel and Zircaloy-4. Metals, 13(9), 1554. https://doi.org/10.3390/met13091554