Process Optimization in Laser Welding of IN792 DS Superalloy
Abstract
:1. Introduction
2. Materials and Methods
- Homogenization at 1200 °C for 1 h, cooling at room temperature (TR);
- Solubilization at 1100 °C for 4 h, cooling at TR;
- Aging at 870 °C for 4 h, cooling at TR.
3. Results and Discussion
3.1. Quality of Welds
3.2. Microstructural and Mechanical Characterization of Welds
3.3. Post-Welding Heat Treatment
- (i)
- The microstructure becomes homogeneous in the whole joint;
- (ii)
- The peak of hardness in MZ disappears;
- (iii)
- MZ and BM have, substantially, the same hardness;
- (iv)
- Such hardness value is intermediate between those of MZ and BM before PWHT.
4. Conclusions
- In all the preliminary bead-on-plate tests carried out by using laser beams in different conditions, pre-heating at 200 °C resulted in being necessary for reducing thermal stresses and avoiding the formation of cracks in welded samples.
- Cooling rates of welds made with fixed laser beam or wobbling beam are too fast and some gas remains entrapped in the metal during solidification, giving rise to significant porosity. Such phenomenon was not observed in samples welded by a pulsed laser beam.
- Joints without cracks and pores were obtained by using a pulsed rectangular beam with the following characteristics: peak power Ppk = 2080 W, average power Pav = 1250 W, pulse duration τh = 10 ms, time between two successive pulses τp = 16 ms, frequency f = 60 Hz and a duty cycle of 60%. The welding speed was 25 mm s−1.
- Base metal structure consists of γ′ particles with a cuboid shape and average size of ~400 nm, separated by channels of ~50–150 nm where finer round particles (10–30 nm) are observed. In the melt zone, only round particles of 10–30 nm are present because they nucleate below solvus (~1120 °C) and have a short time to grow during fast cooling. The heat-affected zone has a thickness <0.3 mm and exhibits similar characteristics of base metal.
- The original structure and mechanical properties in the melt zone are substantially recovered after a post-welding heat treatment consisting of the following: (i) homogenization at 1200 °C for 1 h, (ii) cooling at room temperature, (iii) solubilization at 1110 °C for 4 h, (iv) cooling at room temperature, (v) aging at 870 °C for 4 h and (vi) cooling at room temperature.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thellaputta, G.R.; Chandra, P.S.; Rao, C.S.P. Machinability of Nickel Based Superalloys: A Review. Mater. Today Proc. 2017, 4, 3712–3721. [Google Scholar] [CrossRef]
- Gloria, A.; Montanari, R.; Richetta, M.; Varone, A. Alloys for aeronautic applications: State of art and perspectives. Metals 2019, 9, 662. [Google Scholar] [CrossRef]
- Pollock, M.T.; Sammy, T. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties. J. Propuls. Power. 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Ye, W.; Hu, X.; Song, Y. The relationship between creep and tensile properties of a nickel-based superalloy. Mater. Sci. Eng. A 2020, 774, 138847. [Google Scholar] [CrossRef]
- Zhao, P.; Shen, C.; Niezgoda, S.R.; Wang, Y. Heterogeneous γ’ microstructures in nickel-base superalloys and their influence on tensile and creep performance. Int. J. Plast. 2018, 109, 153–168. [Google Scholar] [CrossRef]
- Darolia, R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: Critical review of challenges, progress and prospects. Int. Mater. Rev. 2019, 64, 355–380. [Google Scholar] [CrossRef]
- Deodati, P.; Montanari, R.; Tassa, O.; Ucciardello, N. Single crystal PWA 1483 superalloy: Dislocation rearrangement and damping phenomena. Mater. Sci. Eng. A. 2009, 521–522, 102–105. [Google Scholar] [CrossRef]
- Kaciulis, S.; Mezzi, A.; Amati, M.; Montanari, R.; Angella, G.; Maldini, M. Relation between the Microstructure and Microchemistry in Ni-based Superalloy. Surf. Interf. Anal. 2012, 44, 982–985. [Google Scholar] [CrossRef]
- Belan, J. GCP and TCP phases presented in nickel-base superalloys. Mater. Today Proc. 2016, 3, 936–941. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, T.; Lu, F.; Cao, K.; Wang, D.; Zhang, J.; Zhang, J.; Su, H.; Liu, L. The effect of rhenium on the microstructure stability and γ/γ′ interfacial characteristics of Ni-based single crystal superalloys during long-term aging. J. Alloys Compd. 2021, 876, 160114. [Google Scholar] [CrossRef]
- Meher, S.; Carroll, M.C.; Pollock, T.M.; Carroll, L.J. Designing nickel base alloys for microstructural stability through low γ-γ′ interfacial energy and lattice misfit. Mater. Des. 2018, 140, 249–256. [Google Scholar] [CrossRef]
- Wu, L.; Osada, T.; Watanabe, I.; Yokokawa, T.; Kobayashi, T.; Kawagishi, K. Strength prediction of Ni-base disc superalloys: Modified γ′ hardening models applicable to commercial alloys. Mater. Sci. Eng. A 2021, 799, 140103. [Google Scholar] [CrossRef]
- Wu, L.; Osada, T.; Watanabe, I.; Yokokawa, T.; Kobayashi, T.; Kawagishi, K. A New Approach to Strength Prediction of Ni-Base Disk Superalloys with Dual-Phase γ/γ′. In Superalloys 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 651–658. [Google Scholar] [CrossRef]
- Fleury, R.M.N.; Nowell, D. Evaluating the influence of residual stresses and surface damage on fatigue life of nickel superalloys. Int. J. Fatigue 2017, 105, 27–33. [Google Scholar] [CrossRef]
- Xiao, Q.; Xu, Y.; Liu, X.; Wang, Y.; Zhang, W. Oxidation-induced recrystallization and damage mechanism of a Ni-based single-crystal superalloy during creep. Mater. Charact. 2023, 195, 112465. [Google Scholar] [CrossRef]
- Choudhury, B.; Chandrasekaran, M. Investigation on welding characteristics of aerospace materials—A review. Mater. Today Proc. 2017, 4, 7519–7526. [Google Scholar] [CrossRef]
- AL-Nafeay, R.H.; AL-Roubaiy, A.O.; Omidvar, H. Overview of Joining and Repairing Techniques of Ni-Based Superalloy for Industrial Gas Turbine Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012141. [Google Scholar] [CrossRef]
- Taheri, M.; Kashani-Bozorg, S.F.; Alizadeh, A.; Beni, M.H.; Jam, J.E.; Khorram, A. Analysis of liquation and solidification cracks in the electron beam welding of GTD-111 nickel-base superalloy joint. Mater. Res. Express 2021, 8, 076507. [Google Scholar] [CrossRef]
- Sharma, S.K.; Biswas, K.; Dutta Majumdar, J. Studies on Electron Beam Surface Remelted Inconel 718 Superalloy. Met. Mater. Int. 2021, 27, 5360–5373. [Google Scholar] [CrossRef]
- Pariyar, A.; John, A.; Perugu, C.S.; Edachery, V.; Kailas, S.V. Influence of laser beam welding parameters on the microstructure and mechanical behavior of Inconel X750 superalloy. Manuf. Lett. 2023, 35, 33–38. [Google Scholar] [CrossRef]
- Cheng, H.; Kang, L.; Wang, C.; Li, Q.; Chang, B.; Du, D. Dynamic behavior of molten pool backside during full-penetration laser welding of Ni-based superalloys. Int. J. Adv. Manuf. Technol. 2022, 119, 4587–4598. [Google Scholar] [CrossRef]
- Montanari, R.; Varone, A.; Barbieri, G.; Soltani, P.; Mezzi, A.; Kaciulis, S. Welding of IN792 DS superalloy by electron beam. Surf. Interface Anal. 2016, 48, 483–487. [Google Scholar] [CrossRef]
- Patterson, T.; Hochanadel, J.; Sutton, S.; Panton, B.; Lippold, J. A review of high energy density beam processes for welding and additive manufacturing applications. Weld World. 2021, 65, 1235–1306. [Google Scholar] [CrossRef]
- Taheri, M.; Halvaee, A.; Kashani-Bozorg, S.F. Effect of Pre- and Post-weld Heat Treatment on Microstructure and Mechanical Properties of GTD-111 Superalloy Welds. Met. Mater. Int. 2021, 27, 1173–1192. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, L.; Li, C.; Leng, B.; Ye, X.-X.; Liu, R.; Chen, S.; Yu, K.; Li, Z.; Zhou, X. Effects of post-weld heat treatment on microstructure and mechanical properties of Hastelloy N superalloy welds. Mater. Today Commun. 2019, 19, 230–237. [Google Scholar] [CrossRef]
- Angella, G.; Barbieri, G.; Donnini, R.; Montanari, R.; Richetta, M.; Varone, A. Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness. Materials 2017, 10, 1033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792. Scr. Mater. 2003, 48, 677–681. [Google Scholar] [CrossRef]
- Barbieri, G.; Bifaretti, S.; Bonaiuto, V.; Montanari, R.; Richetta, M.; Varone, A. Laser beam welding of IN792 DS superalloy. Mater. Sci. Forum. 2018, 941, 1149–1154. [Google Scholar] [CrossRef]
- Jiang, Z.; Tao, W.; Yu, K.; Tan, C.; Chen, Y.; Li, L.; Li, Z. Comparative study on fiber laser welding of GH3535 superalloy in continuous and pulsed waves. Mater. Des. 2016, 110, 728–739. [Google Scholar] [CrossRef]
- Taheri, M.; Halvaee, A.; Kashani-Bozorg, S.F. Effect of Nd:YAG pulsed-laser welding parameters on microstructure and mechanical properties of GTD-111 superalloy joint. Mater. Res. Express 2019, 6, 076549. [Google Scholar] [CrossRef]
- Hou, J.; Li, R.; Xu, C.; Li, T.; Shi, Z. A comparative study on microstructure and properties of pulsed laser welding and continuous laser welding of Al-25Si-4Cu-Mg high silicon aluminum alloy. J. Manuf. Process. 2021, 68, 657–667. [Google Scholar] [CrossRef]
- Zhao, H.; He, L.; Niu, W.C.; Zhang, B. Investigation on porosity suppression in deep-penetration laser welding by using computational fluid dynamics. J. Laser App. 2016, 28, 032011. [Google Scholar] [CrossRef]
- Wei, M.; Jun Ding, W.; Vastola, G.; Zhang, Y.-W. Quantitative study on the dynamics of melt pool and keyhole and their controlling factors in metal laser melting. Addit. Manuf. 2022, 54, 102779. [Google Scholar] [CrossRef]
- Kang, Y.; Zhao, Y.; Li, Y.; Wang, J.; Zhan, X. Simulation of the Effect of Keyhole Instability on Porosity during the Deep Penetration Laser Welding Process. Metals 2022, 12, 1200. [Google Scholar] [CrossRef]
- Sohn, H.; Liu, P.; Yoon, H.; Yi, K.; Yang, L.; Kim, S. Real-time porosity reduction during metal directed energy deposition using a pulse laser. J. Mater. Sci. Technol. 2022, 116, 214–223. [Google Scholar] [CrossRef]
- Sun, W.R.; Hu, Z.Q.; Lee, J.H.; Cheo, S.M.; Choe, S.J. Influence of solidification rate on precipitation and microstructure of directional solidification IN792+Hf superalloy. J. Mater. Res. 1999, 14, 3873–3881. [Google Scholar] [CrossRef]
- Rosenthal, D. The theory of moving sources of heat and its application to metal treatments. Trans. Am. Soc. Mech. Eng. 1946, 68, 849–865. [Google Scholar] [CrossRef]
- Adams, C.M. Cooling rates and peak temperatures in fusion welding. Weld. J. 1958, 37, 210–215. [Google Scholar]
- Karunaratne, M.S.A.; Carter, P.; Reed, R.C. On the diffusion of aluminium and titanium in the Ni-rich Ni–Al–Ti system between 900 and 1200 °C. Acta Mater. 2001, 49, 861–875. [Google Scholar] [CrossRef]
- Bolli, E.; Fava, A.; Ferro, P.; Kaciulis, S.; Mezzi, A.; Montanari, R.; Varone, A. Cr Segregation and Impact Fracture in a Martensitic Stainless Steel. Coatings 2020, 10, 843. [Google Scholar] [CrossRef]
- Baldan, R.; Pereira da Rocha, R.L.; Tomasiello, R.B.; Nunes, C.A.; Matos da Silva Costa, A.; Ribeiro Barboza, M.J.; Coelho, G.C.; Rosenthal, R. Solutioning and Aging of MAR-M247 Nickel-Based Superalloy. J. Mater. Eng. Perform. 2013, 22, 2574–2579. [Google Scholar] [CrossRef]
- Rettig, R.; Ritter, N.C.; Müller, F.; Franke, M.M.; Singer, R.F. Optimization of the Homogenization Heat Treatment of Nickel-Based Superalloys Based on Phase-Field Simulations: Numerical Methods and Experimental Validation. Metall. Mater. Trans. A 2015, 46, 842–5855. [Google Scholar] [CrossRef]
- Puidokas, S.M.; Mangano, F. Method of Repairing Superalloys. Patent EP3441180A1, 13 February 2019. [Google Scholar]
- Goncharov, A.B.; Liburdi, J.; Lowden, P. Precipitation Strengthened Nickel Based Welding Material for Fusion Welding of Superalloys. Patent WO2015/095949A1, 15 April 2020. [Google Scholar]
- Eminoglu, C.M.; Cui, Y.; Dorriety, D.J.; Tollison, B.L.; Cook, P.A. Method of Welding Superalloys. Patent EP3417972B1, 29 September 2021. [Google Scholar]
Element | C | Al | Ti | Cr | Co | Mo | W | Ta | Ni |
---|---|---|---|---|---|---|---|---|---|
at.% | 0.39 | 8.88 | 4.46 | 14.07 | 9.13 | 1.16 | 1.56 | 1.46 | Bal. |
Samples | T (°C) | P (W) | V (mm s−1) | Focus | Beam | Weld |
---|---|---|---|---|---|---|
L1-A | 200 | 1250 | 17 | On the surface | Standard | BoP |
L1-B | 25 | |||||
L1-C | 33 | |||||
L2 | 200 | 1250 | 25 | On the surface | Wobbling | BoP |
d = 0.24 mm | ||||||
f = 60 Hz | ||||||
L3 | 200 | Ppk = 2080 | 25 | On the surface | Pulsed | BoP |
Pave = 1250 | ||||||
f = 60 Hz | ||||||
L4 | 200 | Ppk = 2080 | 25 | On the surface | Pulsed | Butt weld |
Pave = 1250 | ||||||
f = 60 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, G.; Cognini, F.; de Crescenzo, C.; Fava, A.; Moncada, M.; Montanari, R.; Richetta, M.; Varone, A. Process Optimization in Laser Welding of IN792 DS Superalloy. Metals 2024, 14, 124. https://doi.org/10.3390/met14010124
Barbieri G, Cognini F, de Crescenzo C, Fava A, Moncada M, Montanari R, Richetta M, Varone A. Process Optimization in Laser Welding of IN792 DS Superalloy. Metals. 2024; 14(1):124. https://doi.org/10.3390/met14010124
Chicago/Turabian StyleBarbieri, Giuseppe, Francesco Cognini, Chiara de Crescenzo, Alessandra Fava, Massimo Moncada, Roberto Montanari, Maria Richetta, and Alessandra Varone. 2024. "Process Optimization in Laser Welding of IN792 DS Superalloy" Metals 14, no. 1: 124. https://doi.org/10.3390/met14010124