A Review of Deformation Mechanisms, Compositional Design, and Development of Titanium Alloys with Transformation-Induced Plasticity and Twinning-Induced Plasticity Effects
Abstract
:1. Introduction
2. Deformation Mechanisms of TRIP/TWIP Ti Alloys
2.1. Deformation Mechanisms and Strain Hardening Behavior
2.2. Role of β Phase Stability
2.3. Role of α″ Martensite and α′ Martensite
2.3.1. Stress-Induced β-to-α″ Martensitic Transformation
2.3.2. Stress-Induced β-to-α′ Martensitic Transformation
2.4. Role of ω Phase
2.4.1. Effect of ω Phase on Stress-Induced Martensitic Transformation and Deformation Twinning
2.4.2. Tuning Mechanical Properties by Engineering ω Precipitation
2.4.3. Stress-Induced β-to-ω Transformation
3. Compositional Design of TRIP/TWIP Ti Alloys
3.1. d-Electron Theory
3.2. Molybdenum Equivalent ([Mo]eq)
+ 0.30Sn + 0.47Zr + 3.01Si − 1.47Al
3.3. Diagram
3.4. Machine Learning
4. Development of TRIP/TWIP Ti Alloys
4.1. Solid Solution Strengthening
4.2. Precipitation Strengthening
4.2.1. α Precipitation Strengthening
4.2.2. ω Precipitation Strengthening
4.3. Grain Refinement Strengthening
5. Summary
- (1)
- Considering the effect of solid solution strengthening atoms and their complex interactions on changing the stability of the β phase and TRIP/TWIP behaviors. On this basis, the boundaries are modified, and the accuracy of the existing semi-empirical compositional design methods is improved. Consequently, optimized deformation behaviors and correlating mechanical properties of TRIP/TWIP can be manipulated by tailoring chemical compositions.
- (2)
- The stress-induced martensitic transformation and deformation twinning of TRIP/TWIP Ti alloys and their interactions are quite complex and heterogeneous, setting difficulties in investigating them using ex situ techniques. In situ methods, such as in situ synchrotron X-ray diffraction (SXRD), in situ electron backscattered diffraction (EBSD), and in situ transmission electron microscopy (TEM), are highly plausible to study the microstructure evolution during static/dynamic loading. This detailed understanding of the interactions among the multiple deformation modes and their correlation with the mechanical properties will lay the foundation for the development of new TRIP/TWIP Ti alloys.
- (3)
- Addressing the limitation of relatively low yield strength in TRIP/TWIP Ti alloys is crucial to broaden their potential engineering applications. Previous research has mainly focused on designing new TRIP/TWIP Ti alloys and understanding their deformation mechanisms, but there has been a notable gap in exploring enhancing the yield strength of these alloys. Oxygen interstitial solid solution strengthening and ω phase strengthening are promising approaches to improve yield strength without compromising the high ductility and high strain hardening rate in TRIP/TWIP Ti alloys. Future research can delve into the implementation and mechanisms of these strengthening methods.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banerjee, D.; Williams, J.C. Perspectives on titanium science and technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Devaraj, A.; Joshi, V.V.; Srivastava, A.; Manandhar, S.; Moxson, V.; Duz, V.A.; Lavender, C. A low-cost hierarchical nanostructured beta-titanium alloy with high strength. Nat. Commun. 2016, 7, 11176. [Google Scholar] [CrossRef] [PubMed]
- Cotton, J.D.; Briggs, R.D.; Boyer, R.R.; Tamirisakandala, S.; Russo, P.; Shchetnikov, N.; Fanning, J.C. State of the art in beta titanium alloys for airframe applications. Miner. Met. Mater. Ser. 2015, 67, 1281–1303. [Google Scholar] [CrossRef]
- Brozek, C.; Sun, F.; Vermaut, P.; Millet, Y.; Lenain, A.; Embury, D.; Jacques, P.J.; Prima, F. A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties. Scr. Mater. 2016, 114, 60–64. [Google Scholar] [CrossRef]
- Ellyson, B.; Klemm-Toole, J.; Clarke, K.; Field, R.; Kaufman, M.; Clarke, A. Tuning the strength and ductility balance of a TRIP titanium alloy. Scr. Mater. 2021, 194, 113641. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.Y.; Marteleur, M.; Gloriant, T.; Vermaut, P.; Laillé, D.; Castany, P.; Curfs, C.; Jacques, P.J.; Prima, F. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 2013, 61, 6406–6417. [Google Scholar] [CrossRef]
- Ren, L.; Xiao, W.; Kent, D.; Wan, M.; Ma, C.; Zhou, L. Simultaneously enhanced strength and ductility in a metastable β-Ti alloy by stress-induced hierarchical twin structure. Scr. Mater. 2020, 184, 6–11. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, W.; Kent, D.; Dargusch, M.S.; Wang, J.; Zhao, X.; Ma, C. Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy. Scr. Mater. 2020, 187, 285–290. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, R.; Wang, Y.; Cai, C.; Wang, H.; Wang, K. C-modified stacking-fault networks inducing the excellent strength- plasticity combinations of medium manganese steel by simple two-stage warm rolling without annealing. Scr. Mater. 2023, 229, 115372. [Google Scholar] [CrossRef]
- Zhi, H.; Li, J.; Li, W.; Elkot, M.; Antonov, S.; Zhang, H.; Lai, M. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels. Acta Mater. 2023, 245, 118611. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, S.; Zhang, H.; Huang, Y.; Guan, D.; Xu, Y.; Guan, S.; Bendersky, L.A.; Davydov, A.V.; Wu, Y.; et al. Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature 2021, 590, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Marteleur, M.; Sun, F.; Gloriant, T.; Vermaut, P.; Jacques, P.J.; Prima, F. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scr. Mater. 2012, 66, 749–752. [Google Scholar] [CrossRef]
- Sadeghpour, S.; Abbasi, S.M.; Morakabati, M.; Kisko, A.; Karjalainen, L.P.; Porter, D.A. A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects. Scr. Mater. 2018, 145, 104–108. [Google Scholar] [CrossRef]
- Ren, L.; Xiao, W.; Ma, C.; Zheng, R.; Zhou, L. Development of a high strength and high ductility near β-Ti alloy with twinning induced plasticity effect. Scr. Mater. 2018, 156, 47–50. [Google Scholar] [CrossRef]
- Danard, Y.; Poulain, R.; Garcia, M.; Guillou, R.; Thiaudière, D.; Mantri, S.; Banerjee, R.; Sun, F.; Prima, F. Microstructure design and in-situ investigation of TRIP/TWIP effects in a forged dual-phase Ti-10V-2Fe-3Al alloy. Materialia 2019, 8, 100507. [Google Scholar] [CrossRef]
- Ahmed, M.; Wexler, D.; Casillas, G.; Ivasishin, O.M.; Pereloma, E.V. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy. Acta Mater. 2015, 84, 124–135. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, C.H.; Hong, J.-K.; Yeom, J.-T. Development of sub-grained α+β Ti alloy with high yield strength showing twinning- and transformation-induced plasticity. J. Alloys Compd. 2020, 813, 152102. [Google Scholar] [CrossRef]
- Qian, B.; Mantri, S.A.; Dasari, S.; Zhang, J.; Lilensten, L.; Sun, F.; Vermaut, P.; Banerjee, R.; Prima, F. Mechanisms underlying enhanced strength-ductility combinations in TRIP/TWIP Ti-12Mo alloy engineered via isothermal omega precipitation. Acta Mater. 2023, 245, 118619. [Google Scholar] [CrossRef]
- Lee, S.; Park, C.; Hong, J.; Yeom, J.-t. The role of nano-domains in {1–011} twinned martensite in metastable titanium alloys. Sci. Rep. 2018, 8, 11914. [Google Scholar] [CrossRef]
- Lee, S.W.; Oh, J.M.; Park, C.H.; Hong, J.-K.; Yeom, J.-T. Deformation mechanism of metastable titanium alloy showing stress-induced α′-Martensitic transformation. J. Alloys Compd. 2019, 782, 427–432. [Google Scholar] [CrossRef]
- Kuan, T.S.; Ahrens, R.R.; Sass, S.L. The stress-induced omega phase transformation in Ti-V alloys. Metall. Trans. A 1974, 6A, 1767–1774. [Google Scholar] [CrossRef]
- Zhao, X.; Niinomi, M.; Nakai, M. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2011, 4, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Pinilla Ducreux, C.I.; Saleh, A.A.; Gazder, A.A.; Pereloma, E.V. An in-situ neutron diffraction investigation of martensitic transformation in a metastable β Ti-10V-2Fe-3Al alloy during uniaxial tension. J. Alloys Compd. 2021, 869, 159301. [Google Scholar] [CrossRef]
- Castany, P.; Ramarolahy, A.; Prima, F.; Laheurte, P.; Curfs, C.; Gloriant, T. In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloys. Acta Mater. 2015, 88, 102–111. [Google Scholar] [CrossRef]
- Song, B.; Xiao, W.; Ma, C.; Zhou, L. Tuning the strength and ductility of near β titanium alloy Ti-5321 by ω and O′ intermediate phases via low-temperature aging. Mater. Sci. Eng. A 2022, 855, 143919. [Google Scholar] [CrossRef]
- Bortolan, C.C.; Campanelli, L.C.; Paternoster, C.; Giguère, N.; Brodusch, N.; Bolfarini, C.; Gauvin, R.; Mengucci, P.; Barucca, G.; Mantovani, D. Effect of oxygen content on the mechanical properties and plastic deformation mechanisms in the TWIP/TRIP Ti-12Mo alloy. Mater. Sci. Eng. A 2021, 817, 141346. [Google Scholar] [CrossRef]
- An, X.; Jiang, W.; Ni, S.; Chen, Z.; Wang, Z.; Song, M. Origin of {332} <113> twinning and twin-twin intersections in a shock load metastable β Ti-12Mo alloy. Mater. Charact. 2023, 197, 112674. [Google Scholar] [CrossRef]
- Liu, H.; Niinomi, M.; Nakai, M.; Cho, K.; Fujii, H. Deformation-induced ω-phase transformation in a β-type titanium alloy during tensile deformation. Scr. Mater. 2017, 130, 27–31. [Google Scholar] [CrossRef]
- Chen, K.; Fan, Q.; Xu, S.; Yao, J.; Yang, L.; Yuan, J.; Gong, H.; Zhang, H.; Cheng, X. Excellent strength-ductility balance of a titanium alloy via controlling stress-induced ω transformation assisted by α-β hybrid structure. Mater. Sci. Eng. A 2022, 853, 143739. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti-V alloys. Mater. Charact. 2015, 107, 149–155. [Google Scholar] [CrossRef]
- Zhao, X.L.; Li, L.; Niinomi, M.; Nakai, M.; Zhang, D.L.; Suryanarayana, C. Metastable Zr-Nb alloys for spinal fixation rods with tunable Young’s modulus and low magnetic resonance susceptibility. Acta Biomater. 2017, 62, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Sadeghpour, S.; Abbasi, S.M.; Morakabati, M.; Kisko, A.; Karjalainen, L.P.; Porter, D.A. On the compressive deformation behavior of new beta titanium alloys designed by d-electron method. J. Alloys Compd. 2018, 746, 206–217. [Google Scholar] [CrossRef]
- Shin, S.; Zhu, C.; Vecchio, K.S. Observations on {332}<113> twinning-induced softening in Ti-Nb Gum metal. Mater. Sci. Eng. A 2018, 724, 189–198. [Google Scholar] [CrossRef]
- Lu, H.; Ji, P.; Li, B.; Ma, W.; Chen, B.; Zhang, X.; Zhang, X.; Ma, M.; Liu, R. Mechanical properties and deformation mechanism of a novel metastable β-type Ti-4V-2Mo-2Fe alloy. Mater. Sci. Eng. A 2022, 848, 143376. [Google Scholar] [CrossRef]
- Qi, L.; Qiao, X.; Huang, L.; Huang, X.; Zhao, X. Effect of structural stability on the stress induced martensitic transformation in Ti-10V-2Fe-3Al alloy. Mater. Sci. Eng. A 2019, 756, 381–388. [Google Scholar] [CrossRef]
- Xue, Q.; Ma, Y.J.; Lei, J.F.; Yang, R.; Wang, C. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability. J. Mater. Sci. Technol. 2018, 34, 2507–2514. [Google Scholar] [CrossRef]
- Catanio Bortolan, C.; Contri Campanelli, L.; Mengucci, P.; Barucca, G.; Giguère, N.; Brodusch, N.; Paternoster, C.; Bolfarini, C.; Gauvin, R.; Mantovani, D. Development of Ti-Mo-Fe alloys combining different plastic deformation mechanisms for improved strength-ductility trade-off and high work hardening rate. J. Alloys Compd. 2022, 925, 166757. [Google Scholar] [CrossRef]
- Min, X.; Chen, X.; Emura, S.; Tsuchiya, K. Mechanism of twinning-induced plasticity in β-type Ti-15Mo alloy. Scr. Mater. 2013, 69, 393–396. [Google Scholar] [CrossRef]
- Ma, X.; Li, F.; Cao, J.; Li, J.; Sun, Z.; Zhu, G.; Zhou, S. Strain rate effects on tensile deformation behaviors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation. Mater. Sci. Eng. A 2018, 710, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, F.; Chen, Z.; Yang, Y.; Shen, B.; Li, J.; Prima, F. Strong and ductile beta Ti-18Zr-13Mo alloy with multimodal twinning. Mater. Res. Lett. 2019, 7, 251–257. [Google Scholar] [CrossRef]
- Zhao, G.-H.; Xu, X.; Dye, D.; Rivera-Díaz-del-Castillo, P.E.J. Microstructural evolution and strain-hardening in TWIP Ti alloys. Acta Mater. 2020, 183, 155–164. [Google Scholar] [CrossRef]
- Yao, K.; Min, X. Static and dynamic Hall-Petch relations in {332}<113> TWIP Ti-15Mo alloy. Mater. Sci. Eng. A 2021, 827, 142044. [Google Scholar] [CrossRef]
- Castany, P.; Gloriant, T.; Sun, F.; Prima, F. Design of strain-transformable titanium alloys. C. R. Phys. 2018, 19, 710–720. [Google Scholar] [CrossRef]
- Gao, J.J.; Castany, P.; Gloriant, T. Complex multi-step martensitic twinning process during plastic deformation of the superelastic Ti-20Zr-3Mo-3Sn alloy. Acta Mater. 2022, 236, 118140. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.-y.; Li, C.; Liu, C.; Zhou, K. A strengthening strategy for metastable β titanium alloys: Synergy effect of primary α phase and β phase stability. Mater. Sci. Eng. A 2022, 852, 143736. [Google Scholar] [CrossRef]
- Min, X.; Emura, S.; Chen, X.; Zhou, X.; Tsuzaki, K.; Tsuchiya, K. Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity β titanium alloy. Mater. Sci. Eng. A 2016, 659, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, B.; Lin, W.; Zhang, P.; Wu, Y.; Fu, Y.; Fan, Y.; Chen, Z.; Cheng, J.; Li, J.; et al. Compressive deformation-induced hierarchical microstructure in a TWIP β Ti-alloy. J. Mater. Sci. Technol. 2022, 112, 130–137. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Y.; Wu, Y.; Qian, B.; Chen, Z.; Inoue, A.; Wu, Y.; Yang, Y.; Sun, F.; Li, J.; et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization. Mater. Res. Lett. 2020, 8, 247–253. [Google Scholar] [CrossRef]
- Qian, B.; Zhang, J.; Fu, Y.; Sun, F.; Wu, Y.; Cheng, J.; Vermaut, P.; Prima, F. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration. J. Mater. Sci. Technol. 2021, 65, 228–237. [Google Scholar] [CrossRef]
- Zhao, G.; Li, X.; Petrinic, N. Materials information and mechanical response of TRIP/TWIP Ti alloys. NJP Comput. Mater. 2021, 7, 91. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, W.; Kent, D.; Rong, J.; Zhao, X.; Ma, C. Natural aging of a metastable β-type titanium alloy to simultaneously enhance yield strength and uniform elongation. Scr. Mater. 2023, 234, 115569. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Z.; Xie, Y.; Chan, S.L.I.; Liang, J.; Wang, J. Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy. Scr. Mater. 2022, 207, 114266. [Google Scholar] [CrossRef]
- Jing, T.; Dong, S.; Shen, L.; Peng, H.; Wen, Y. Achieving strength-ductility synergy in nanotwinned steels prepared by cryogenic deformation. Mater. Charact. 2023, 195, 112512. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, X.; Dye, D.; Rivera-Díaz-del-Castillo, P.E.J.; Petrinic, N. Facile route to implement transformation strengthening in titanium alloys. Scr. Mater. 2022, 208, 114362. [Google Scholar] [CrossRef]
- Morinaga, M.; Yukawa, H. Alloy design with the aid of molecular orbital method. Bull. Mater. Sci. 1997, 20, 805–815. [Google Scholar] [CrossRef]
- Abdel-Hady, M.; Hinoshita, K.; Morinaga, M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater. 2006, 55, 477–480. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.Y.; Marteleur, M.; Brozek, C.; Rauch, E.F.; Veron, M.; Vermaut, P.; Jacques, P.J.; Prima, F. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility. Scr. Mater. 2015, 94, 17–20. [Google Scholar] [CrossRef]
- Chen, K.; Fan, Q.; Yao, J.; Yang, L.; Xu, S.; Lei, W.; Wang, D.; Yuan, J.; Gong, H.; Cheng, X. Composition design of a novel Ti-6Mo-3.5Cr-1Zr alloy with high-strength and ultrahigh-ductility. J. Mater. Sci. Technol. 2022, 131, 276–286. [Google Scholar] [CrossRef]
- Lilensten, L.; Danard, Y.; Poulain, R.; Guillou, R.; Joubert, J.M.; Perrière, L.; Vermaut, P.; Thiaudière, D.; Prima, F. From single phase to dual-phase TRIP-TWIP titanium alloys: Design approach and properties. Materialia 2020, 12, 100700. [Google Scholar] [CrossRef]
- Castany, P.; Yang, Y.; Bertrand, E.; Gloriant, T. Reversion of a parent {130}<310>α″ martensitic twinning system at the origin of {332}<113>β twins observed in metastable β titanium alloys. Phys. Rev. Lett. 2016, 117, 245501. [Google Scholar] [CrossRef]
- Cho, K.; Morioka, R.; Harjo, S.; Kawasaki, T.; Yasuda, H.Y. Study on formation mechanism of {332}<113> deformation twinning in metastable β-type Ti alloy focusing on stress-induced α″ martensite phase. Scr. Mater. 2020, 177, 106–111. [Google Scholar] [CrossRef]
- Chen, N.; Molina-Aldareguia, J.M.; Kou, H.; Qiang, F.; Wu, Z.; Li, J. Reversion martensitic phase transformation induced {3 3 2}<1 1 3> twinning in metastable β-Ti alloys. Mater. Lett. 2020, 272, 127883. [Google Scholar] [CrossRef]
- Xiao, J.F.; He, B.B.; Tan, C.W. Effect of martensite on {332} twinning formation in a metastable beta titanium alloy. J. Alloys Compd. 2022, 895, 162598. [Google Scholar] [CrossRef]
- Gao, J.; Huang, Y.; Hu, X.; Wang, S.; Rainforth, W.M.; Todd, I.; Zhu, Q. An alternative formation mechanism of {332}BCC twinning in metastable body-centered-cubic high entropy alloy. Scr. Mater. 2022, 217, 114770. [Google Scholar] [CrossRef]
- Tobe, H.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S. Origin of {332} twinning in metastable β-Ti alloys. Acta Mater. 2014, 64, 345–355. [Google Scholar] [CrossRef]
- Tane, M.; Nakano, T.; Kuramoto, S.; Hara, M.; Niinomi, M.; Takesue, N.; Yano, T.; Nakajima, H. Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: Cold working and oxygen effects. Acta Mater. 2011, 59, 6975–6988. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Li, J.S.; Chen, Z.; Meng, Q.K.; Sun, F.; Shen, B.L. Microstructural evolution of a ductile metastable β titanium alloy with combined TRIP/TWIP effects. J. Alloys Compd. 2017, 699, 775–782. [Google Scholar] [CrossRef]
- Danard, Y.; Martin, G.; Lilensten, L.; Sun, F.; Seret, A.; Poulain, R.; Mantri, S.; Guillou, R.; Thiaudière, D.; Freiherr von Thüngen, I.; et al. Accommodation mechanisms in strain-transformable titanium alloys. Mater. Sci. Eng. A 2021, 819, 141437. [Google Scholar] [CrossRef]
- Bertrand, E.; Castany, P.; Yang, Y.; Menou, E.; Couturier, L.; Gloriant, T. Origin of {112} < 111 > antitwinning in a Ti-24Nb-4Zr-8Sn superelastic single crystal. J. Mater. Sci. 2022, 57, 7327–7342. [Google Scholar] [CrossRef]
- Yang, Y.; Castany, P.; Bertrand, E.; Cornen, M.; Lin, J.X.; Gloriant, T. Stress release-induced interfacial twin boundary ω phase formation in a β type Ti-based single crystal displaying stress-induced α” martensitic transformation. Acta Mater. 2018, 149, 97–107. [Google Scholar] [CrossRef]
- Zhang, D.C.; Xue, Q.; Lei, J.F.; Ma, Y.J.; Yang, R.; Wang, C. Influence of Grain Size on Mechanical Responses in Beta Ti-12Mo Alloy Demonstrating Concurrent Twinning-Induced Plasticity/Transformation-induced Plasticity Effects. Metall. Mater. Trans. A 2018, 49, 3161–3166. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Zhang, J.; Zhang, D.; Kuang, J.; Bao, X.; Liu, G.; Sun, J. Trifunctional nanoprecipitates ductilize and toughen a strong laminated metastable titanium alloy. Nat. Commun. 2023, 14, 1397. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Li, F.; Sun, Z.; Hou, J.; Fang, X.; Zhu, Y.; Koch, C.C. Achieving Gradient Martensite Structure and Enhanced Mechanical Properties in a Metastable β Titanium Alloy. Metall. Mater. Trans. A 2019, 50, 2126–2138. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, R.; Song, W.; Meng, L.; Niinomi, M.; Nakano, T.; Jia, N.; Zhang, D. A strategy to regulate the yield ratio of a metastable high Zr-containing β titanium alloy: Synergistic effects of the β domain, β stability and β/α interfaces by varying the α phase content. J. Alloys Compd. 2023, 952, 170024. [Google Scholar] [CrossRef]
- Sang, Z.; Wang, L.; Chen, J.; Fan, Q.; Zhou, S.; Tao, L.; Wu, Y.; Peng, X.; Zhou, Z.; Yao, J. Excellent strength-ductility balance via controlling stress-induced α′ martensite transformation of Ti422 alloy. Mater. Sci. Eng. A 2023, 884, 145558. [Google Scholar] [CrossRef]
- Oh, J.M.; Park, C.H.; Yeom, J.-T.; Hong, J.-K.; Kang, N.; Lee, S.W. High strength and ductility in low-cost Ti-Al-Fe-Mn alloy exhibiting transformation-induced plasticity. Mater. Sci. Eng. A 2020, 772, 138813. [Google Scholar] [CrossRef]
- Eleti, R.R.; Klimova, M.; Tikhonovsky, M.; Stepanov, N.; Zherebtsov, S. Exceptionally high strain-hardening and ductility due to transformation induced plasticity effect in Ti-rich high-entropy alloys. Sci. Rep. 2020, 10, 13293. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, L.; Naeem, M.; Huang, H.; Jiang, S.; Wang, H.; Liu, X.; Zhang, X.; Wang, X.-L.; Wu, Y.; et al. Strong work-hardenable body-centered-cubic high-entropy alloys at cryogenic temperature. Scr. Mater. 2023, 231, 115434. [Google Scholar] [CrossRef]
- Bönisch, M.; Waitz, T.; Calin, M.; Skrotzki, W.; Eckert, J. Tailoring the Bain strain of martensitic transformations in TiNb alloys by controlling the Nb content. Inter. J. Plast. 2016, 85, 190–202. [Google Scholar] [CrossRef]
- Bönisch, M.; Calin, M.; Giebeler, L.; Helth, A.; Gebert, A.; Skrotzki, W.; Eckert, J. Composition-dependent magnitude of atomic shuffles in Ti–Nb martensites. J. Appl. Crystall. 2014, 47, 1374–1379. [Google Scholar] [CrossRef]
- Wang, X.D.; Lou, H.B.; Ståhl, K.; Bednarcik, J.; Franz, H.; Jiang, J.Z. Tensile behavior of orthorhombic α″-titanium alloy studied by in situ X-ray diffraction. Mater. Sci. Eng. A 2010, 527, 6596–6600. [Google Scholar] [CrossRef]
- Yan, X.; Xu, X.; Zhao, Y.; Zhou, Y.; Wei, L.; Wu, Z.; Yu, Y.; Wu, C. Achieving low elastic modulus, excellent work hardening and high corrosion resistance in Ti-6Al-4V-5.6Cu alloy. J. Alloys Compd. 2023, 959, 170582. [Google Scholar] [CrossRef]
- Rastogi, A.; Sarkar, R.; Neelakantan, S. Transitions among martensitic phases during continuous deformation in metastable β Ti-10V-2Fe-3Al alloy. J. Alloys Compd. 2023, 964, 171320. [Google Scholar] [CrossRef]
- Chung, C.-C.; Wang, S.-W.; Chen, Y.-C.; Ju, C.-P.; Chern Lin, J.-H. Effect of cold rolling on structure and tensile properties of cast Ti–7.5Mo alloy. Mater. Sci. Eng. A 2015, 631, 52–66. [Google Scholar] [CrossRef]
- Lai, M.J.; Li, T.; Raabe, D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy. Acta Mater. 2018, 151, 67–77. [Google Scholar] [CrossRef]
- Ballor, J.; Li, T.; Prima, F.; Boehlert, C.J.; Devaraj, A. A review of the metastable omega phase in beta titanium alloys: The phase transformation mechanisms and its effect on mechanical properties. Inter. Mater. Rev. 2022, 68, 26–45. [Google Scholar] [CrossRef]
- Nag, S.; Devaraj, A.; Srinivasan, R.; Williams, R.E.; Gupta, N.; Viswanathan, G.B.; Tiley, J.S.; Banerjee, S.; Srinivasan, S.G.; Fraser, H.L.; et al. Novel mixed-mode phase transition involving a composition-dependent displacive component. Phys. Rev. Lett. 2011, 106, 245701. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Chen, G.F.; Fu, Y.Y.; Fan, Y.; Chen, Z.; Xu, J.; Chang, H.; Zhang, Z.H.; Zhou, J.; Sun, Z.; et al. Strengthening strain-transformable β Ti-alloy via multi-phase nanostructuration. J. Alloys Compd. 2019, 799, 389–397. [Google Scholar] [CrossRef]
- Lai, M.J.; Li, T.; Yan, F.K.; Li, J.S.; Raabe, D. Revisiting ω phase embrittlement in metastable β titanium alloys: Role of elemental partitioning. Scr. Mater. 2021, 193, 38–42. [Google Scholar] [CrossRef]
- Mantri, S.A.; Choudhuri, D.; Alam, T.; Ageh, V.; Sun, F.; Prima, F.; Banerjee, R. Change in the deformation mode resulting from beta-omega compositional partitioning in a Ti Mo alloy: Room versus elevated temperature. Scr. Mater. 2017, 130, 69–73. [Google Scholar] [CrossRef]
- Gao, J.; Knowles, A.J.; Guan, D.; Rainforth, W.M. ω phase strengthened 1.2GPa metastable β titanium alloy with high ductility. Scr. Mater. 2019, 162, 77–81. [Google Scholar] [CrossRef]
- Chen, W.; Li, K.; Yu, G.; Ren, J.; Zha, Y.; Sun, J. Deformation twinning-induced single-variant ω-plates in metastable β-Ti alloys containing athermal ω-precipitates. J. Mater. Sci. 2021, 56, 7710–7726. [Google Scholar] [CrossRef]
- Xiao, J.F.; Nie, Z.H.; Tan, C.W.; Zhou, G.; Chen, R.; Li, M.R.; Yu, X.D.; Zhao, X.C.; Hui, S.X.; Ye, W.J.; et al. Effect of reverse β-to-ω transformation on twinning and martensitic transformation in a metastable β titanium alloy. Mater. Sci. Eng. A 2019, 759, 680–687. [Google Scholar] [CrossRef]
- Chen, Q.-J.; Ma, S.-Y.; Wang, S.-Q. The assisting and stabilizing role played by ω phase during the 112111β twinning in Ti-Mo alloys: A first-principles insight. J. Mater. Sci. Technol. 2021, 80, 163–170. [Google Scholar] [CrossRef]
- Wu, S.Q.; Ping, D.H.; Yamabe-Mitarai, Y.; Xiao, W.L.; Yang, Y.; Hu, Q.M.; Li, G.P.; Yang, R. {112}<111> Twinning during ω to body-centered cubic transition. Acta Mater. 2014, 62, 122–128. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Mei, W.; Sun, J. Role of omega phase evolution in plastic deformation of twinning-induced plasticity β Ti–12V–2Fe–1Al alloy. Mater. Des. 2020, 186, 108282. [Google Scholar] [CrossRef]
- Chen, W.; Cao, S.; Kou, W.; Zhang, J.; Wang, Y.; Zha, Y.; Pan, Y.; Hu, Q.; Sun, Q.; Sun, J. Origin of the ductile-to-brittle transition of metastable β-titanium alloys: Self-hardening of ω-precipitates. Acta Mater. 2019, 170, 187–204. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, W.; Wang, J.; Zhao, X.; Ma, C. Mechanical properties and deformation mechanisms of Ti-15Nb-5Zr-4Sn-1Fe alloy with varying α phase fraction. J. Alloys Compd. 2022, 898, 162816. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.Y.; Vermaut, P.; Choudhuri, D.; Alam, T.; Mantri, S.A.; Svec, P.; Gloriant, T.; Jacques, P.J.; Banerjee, R.; et al. Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging. Mater. Res. Lett. 2017, 5, 547–553. [Google Scholar] [CrossRef]
- Liu, H.; Niinomi, M.; Nakai, M.; Cho, K. Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O. Acta Mater. 2016, 106, 162–170. [Google Scholar] [CrossRef]
- Morinaga, M.; Yukawa, H.; Maya, T.; Sone, K.; Adachi, H. Theoretical design of titanium alloy. In Proceedings of the Sixth World Conference on Titanium. III, Cannes, France, 6−9 June 1998. [Google Scholar]
- Ahmed, M.; Wexler, D.; Casillas, G.; Savvakin, D.G.; Pereloma, E.V. Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy. Acta Mater. 2016, 104, 190–200. [Google Scholar] [CrossRef]
- Sadeghpour, S.; Abbasi, S.M.; Morakabati, M. Design of a New Multi-element Beta Titanium Alloy Based on d-Electron Method. In TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 377–386. [Google Scholar]
- Danard, Y.; Sun, F.; Gloriant, T.; Freiherr Von Thüngen, I.; Piellard, M.; Prima, F. The Influence of Twinning on the Strain–Hardenability in TRIP/TWIP Titanium Alloys: Role of Solute–Solution Strengthening. Front. Mater. 2020, 7, 240. [Google Scholar] [CrossRef]
- Lilensten, L.; Danard, Y.; Brozek, C.; Mantri, S.; Castany, P.; Gloriant, T.; Vermaut, P.; Sun, F.; Banerjee, R.; Prima, F. On the heterogeneous nature of deformation in a strain-transformable beta metastable Ti-V-Cr-Al alloy. Acta Mater. 2019, 162, 268–276. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Chen, G.; Liu, L.; Chen, Z.; Meng, Q.; Shen, B.; Sun, F.; Prima, F. Fabrication and characterization of a novel β metastable Ti-Mo-Zr alloy with large ductility and improved yield strength. Mater. Charact. 2018, 139, 421–427. [Google Scholar] [CrossRef]
- Gordin, D.M.; Sun, F.; Laillé, D.; Prima, F.; Gloriant, T. How a new strain transformable titanium-based biomedical alloy can be designed for balloon expendable stents. Materialia 2020, 10, 100638. [Google Scholar] [CrossRef]
- Wang, C.H.; Russell, A.M.; Cao, G.H. A semi-empirical approach to the prediction of deformation behaviors of β-Ti alloys. Scr. Mater. 2019, 158, 62–65. [Google Scholar] [CrossRef]
- Bignon, M.; Bertrand, E.; Tancret, F.; Rivera-Díaz-del-Castillo, P.E.J. Modelling martensitic transformation in titanium alloys: The influence of temperature and deformation. Materialia 2019, 7, 100382. [Google Scholar] [CrossRef]
- Mehjabeen, A.; Xu, W.; Qiu, D.; Qian, M. Redefining the β-Phase Stability in Ti-Nb-Zr Alloys for Alloy Design and Microstructural Prediction. Jom-Us 2018, 70, 2254–2259. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.H.; Wu, X.; Wang, W.; van der Zwaag, S. Tuning the stress induced martensitic formation in titanium alloys by alloy design. J. Mater. Sci. 2012, 47, 4093–4100. [Google Scholar] [CrossRef]
- Kolli, R.P.; Joost, W.J.; Ankem, S. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys. Jom-Us 2015, 67, 1273–1280. [Google Scholar] [CrossRef]
- Bania, P.J. Beta Titanium Alloys and Their Role in the Titanium Industry. Jom-Us 1994, 46, 16–19. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, C.; Liaw, P.K. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [β/(α + β)] Phase-Boundary Slopes. Metall. Mater. Trans. A 2015, 46, 3440–3447. [Google Scholar] [CrossRef]
- Ikehata, H.; Nagasako, N.; Furuta, T.; Fukumoto, A.; Miwa, K.; Saito, T. First-principles calculations for development of low elastic modulus Ti alloys. Phys. Rev. B 2004, 70, 174113. [Google Scholar] [CrossRef]
- Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Mater. Des. 2019, 181, 108064. [Google Scholar] [CrossRef]
- Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. J. Alloys Compd. 2019, 792, 684–693. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, W.; Ren, L.; Fu, Y.; Ma, C. The roles of oxygen content on microstructural transformation, mechanical properties and corrosion resistance of Ti-Nb-based biomedical alloys with different β stabilities. Mater. Charact. 2021, 176, 111122. [Google Scholar] [CrossRef]
- Abdel-Hady, M.; Fuwa, H.; Hinoshita, K.; Kimura, H.; Shinzato, Y.; Morinaga, M. Phase stability change with Zr content in β-type Ti-Nb alloys. Scr. Mater. 2007, 57, 1000–1003. [Google Scholar] [CrossRef]
- Ijaz, M.F.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Effect of Sn addition on stress hysteresis and superelastic properties of a Ti-15Nb-3Mo alloy. Scr. Mater. 2014, 72–73, 29–32. [Google Scholar] [CrossRef]
- Zou, C.; Li, J.; Wang, W.Y.; Zhang, Y.; Lin, D.; Yuan, R.; Wang, X.; Tang, B.; Wang, J.; Gao, X.; et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Mater. 2021, 202, 211–221. [Google Scholar] [CrossRef]
- Oh, J.M.; Narayana, P.L.; Hong, J.-K.; Yeom, J.-T.; Reddy, N.S.; Kang, N.; Park, C.H. Property optimization of TRIP Ti alloys based on artificial neural network. J. Alloys Compd. 2021, 884, 161029. [Google Scholar] [CrossRef]
- Yang, F.; Li, Z.; Wang, Q.; Jiang, B.; Yan, B.; Zhang, P.; Xu, W.; Dong, C.; Liaw, P.K. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus. NPJ Comput. Mater. 2020, 6, 101. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, J.; Huang, Y.; Rainforth, W.M. A low-cost metastable beta Ti alloy with high elastic admissible strain and enhanced ductility for orthopaedic application. J. Alloys Compd. 2020, 835, 155391. [Google Scholar] [CrossRef]
- Li, Q.; Liu, T.; Li, J.; Cheng, C.; Niinomi, M.; Yamanaka, K.; Chiba, A.; Nakano, T. Microstructure, mechanical properties, and cytotoxicity of low Young’s modulus Ti-Nb-Fe-Sn alloys. J. Mater. Sci. 2022, 57, 5634–5644. [Google Scholar] [CrossRef]
- Min, X.; Bai, P.; Emura, S.; Ji, X.; Cheng, C.; Jiang, B.; Tsuchiya, K. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy. Mater. Sci. Eng. A 2017, 684, 534–541. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, L.; Xing, H.; Ou, P.; Sun, J. Role of oxygen in stress-induced ω phase transformation and {3 3 2}<1 1 3> mechanical twinning in βTi-20V alloy. Scr. Mater. 2015, 96, 37–40. [Google Scholar] [CrossRef]
- Ramarolahy, A.; Castany, P.; Prima, F.; Laheurte, P.; Peron, I.; Gloriant, T. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys. J. Mech. Behav. Biomed. Mater. 2012, 9, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ma, D.; Li, J.; Niinomi, M.; Nakai, M.; Koizumi, Y.; Wei, D.; Kakeshita, T.; Nakano, T.; Chiba, A.; et al. Low Young’s Modulus Ti-Nb-O with High Strength and Good Plasticity. Mater. Trans. 2018, 59, 858–860. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, M.; Chong, Y.; Mao, W.; Gong, W.; Zheng, R.; Bai, Y.; Wang, D.; Sun, Q.; Wang, Y.; et al. Achieving large super-elasticity through changing relative easiness of deformation modes in Ti-Nb-Mo alloy by ultra-grain refinement. Mater. Res. Lett. 2021, 9, 223–230. [Google Scholar] [CrossRef]
- Min, X.H.; Emura, S.; Tsuchiya, K.; Nishimura, T.; Tsuzaki, K. Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition. Mater. Sci. Eng. A 2014, 590, 88–96. [Google Scholar] [CrossRef]
- Min, X.; Emura, S.; Zhang, L.; Tsuzaki, K.; Tsuchiya, K. Improvement of strength–ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase. Mater. Sci. Eng. A 2015, 646, 279–287. [Google Scholar] [CrossRef]
- Liu, H.; Niinomi, M.; Nakai, M.; Cho, K. β-Type titanium alloys for spinal fixation surgery with high Young’s modulus variability and good mechanical properties. Acta Biomater. 2015, 24, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Lilensten, L.; Zhang, J.; Yang, M.; Sun, F.; Vermaut, P.; Prima, F. On the transformation pathways in TRIP/TWIP Ti-12Mo alloy. Mater. Sci. Eng. A 2021, 822, 141672. [Google Scholar] [CrossRef]
- Chong, Y.; Gholizadeh, R.; Guo, B.; Tsuru, T.; Zhao, G.; Yoshida, S.; Mitsuhara, M.; Godfrey, A.; Tsuji, N. Oxygen interstitials make metastable β titanium alloys strong and ductile. Acta Mater. 2023, 257, 119165. [Google Scholar] [CrossRef]
- Liu, H.; Niinomi, M.; Nakai, M.; Cong, X.; Cho, K.; Boehlert, C.J.; Khademi, V. Abnormal Deformation Behavior of Oxygen-Modified β-Type Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications. Metall. Mater. Trans. A 2016, 48, 139–149. [Google Scholar] [CrossRef]
- Chong, Y.; Gao, S.; Tsuji, N. A unique three-stage dependence of yielding behavior and strain-hardening ability in Ti-10V-2Fe-3Al alloy on phase fraction. Mater. Sci. Eng. A 2021, 821, 141609. [Google Scholar] [CrossRef]
- Liao, Z.; Luan, B.; Zhang, X.; Liu, R.; Murty, K.L.; Liu, Q. Effect of varying α phase fraction on the mechanical properties and deformation mechanisms in a metastable β-ZrTiAlV alloy. Mater. Sci. Eng. A 2019, 772, 138784. [Google Scholar] [CrossRef]
- Min, X.; Xiang, l.; Li, M.; Yao, K.; Emura, S.; Cheng, C.; Tsuchiya, K. Effect of {332}<113> Twins Combined with Isothermal w-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents. Aata Metall. Sinica 2018, 54, 1262–1272. [Google Scholar] [CrossRef]
- Min, X.; Tsuzaki, K.; Emura, S.; Tsuchiya, K. Enhanced uniform elongation by pre-straining with deformation twinning in high-strength β-titanium alloys with an isothermal ω-phase. Philos. Mag. Lett. 2012, 92, 726–732. [Google Scholar] [CrossRef]
- Church, N.L.; Hildyard, E.M.; Jones, N.G. The influence of grain size on the onset of the superelastic transformation in Ti-24Nb-4Sn-8Zr (wt%). Mater. Sci. Eng. A 2021, 828, 142072. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, W.; Fu, Y.; Ren, L.; Ma, C. Dependence of mechanical behavior on grain size of metastable Ti-Nb-O titanium alloy. Prog. Nat. Sci. Mater. Inter. 2022, 32, 63–71. [Google Scholar] [CrossRef]
- Cai, M.-H.; Lee, C.-Y.; Lee, Y.-K. Effect of grain size on tensile properties of fine-grained metastable β titanium alloys fabricated by stress-induced martensite and its reverse transformations. Scr. Mater. 2012, 66, 606–609. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Z.; Xiao, L.; Lu, W.; Luo, S.; Mi, Y. Compressive deformation of a metastable β titanium alloy undergoing a stress-induced martensitic transformation: The role of β grain size. Mater. Sci. Eng. A 2020, 794, 139919. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Bhargava, S.; Varma, V.K.; Kamat, S.V.; Gogia, A.K. Effect of b grain size on stress induced martensitic transformation in b solution treated Ti-10V-2Fe-3Al alloy. Scr. Mater. 2005, 53, 195–200. [Google Scholar] [CrossRef]
- Xiao, J.F.; Shang, X.K.; Hou, J.H.; Li, Y.; He, B.B. Role of stress-induced martensite on damage behavior in a metastable titanium alloy. Inter. J. Plast. 2021, 146, 103103. [Google Scholar] [CrossRef]
Alloy (wt.%) | Year | Researchers | Research Findings | YS | UTS | uEL | Ref. |
---|---|---|---|---|---|---|---|
Ti-12Mo (TRIP/TWIP) | 2012 | M. Marteleur, et al. | Developing a new family of TRIP/TWIP Ti alloys based on d-electron alloy design | 485 | 661 | 0.35 | [12] |
Ti-12Mo (TRIP/TWIP) | 2013 | F. Sun, et al. | Unveiling the deformation mechanisms at the early deformation stage in TRIP/TWIP Ti alloy | - | - | 0.4 | [6] |
Ti-15Mo (TWIP) | 2013 | X. Min, et al. | Quantitative evaluation of {332}β twinning at various tensile strains | 504 | 765 | 0.24 | [38] |
Ti-10Mo-0.2O (TRIP/TWIP) | 2014 | X. Min, et al. | Strengthening TRIP/TWIP Ti alloy by oxygen interstitials | 800 | 852 | - | [131] |
Ti-15Mo (TWIP) | 2015 | X. Min, et al. | Strengthening TWIP Ti alloy by pre-strain-induced twins and ωiso | 760 | - | 0.15 | [132] |
Ti-9Mo-6W (TRIP/TWIP) | 2015 | F. Sun, et al. | Outstanding work hardening and uniform elongation by stress-induced β-to-α″ and β-to-ω transformation and {332}β twinning | 528 | 791 | 0.33 | [57] |
Ti-9Cr-0.2O (TRIP) | 2015 | H. Liu, et al. | TRIP by stress-induced β-to-ω transformation | 850 | 1025 | 0.2 | [133] |
Ti-27Nb (at.%) (TRIP/TWIP) | 2016 | P. Castany, et al. | Origin of {332}β as a result of reversion of a parent {130}<310>α″ twinning | - | - | - | [60] |
Ti-12Mo (TRIP/TWIP) | 2017 | F. Sun, et al. | Strengthening TRIP/TWIP Ti alloy through low-temperature aging | 730 | 793 | 0.38 | [99] |
Ti-6Cr-4Mo-2Al-2Sn-1Zr (TWIP) | 2018 | L. Ren, et al. | Ultrahigh product of strength and elongation (42.6 GPa%) by {332}β and {112}β twinning and reverse ω transformation | 670 | 820 | 0.31 | [14] |
Ti-12Mo-5Zr (TRIP/TWIP) | 2018 | J. Zhang, et al. | Improving yield strength by increasing critical resolved shear stress (CRSS) of stress-induced β-to-α″ transformation | 656 | 733 | 0.31 | [106] |
Ti-3Al-5Mo-7V-3Cr (TRIP/TWIP) | 2018 | S. Sadeghpour et al. | Increasing yield strength by solid-solution strengthening | 750 | 1100 | 0.19 | [13] |
Ti-6Mo-4Zr (at.%) | 2018 | C. Wang, et.al | Introducing a semi-empirical approach based on the average electron-to-atom ratio () and atomic radius difference () to predict the deformation behaviors of metastable β-Ti alloys | 475 | - | - | [108] |
Ti-10V-2Fe-3Al (TRIP/TWIP) | 2019 | Y. Danard, et al. | Developing design strategy to reach (α + β) dual-phase TRIP/TWIP Ti alloy | 670 | - | 0.30 | [15] |
Ti-18Mo-13Zr (TWIP) | 2019 | J. Zhang et al. | Multimodal twinning by microscale {332}β, nanoscale {112}β, and novel {5811}<135>β | 800 | - | 0.18 | [40] |
Ti-4Al-4Fe-0.25Si-0.1O (TRIP) | 2019 | S. Lee, et al. | Stress-induced β-to-α′ transformation mediated by the O′ phase resulted in an excellent combination of strength and ductility | 600 | 1352 | 0.3 | [19,20] |
Ti-11Mo-5Sn-5Nb (TWIP) | 2019 | G. Zhao, et al. | Building a multiscale dislocation-based model to describe microstructural evolution and strain-hardening of {332}β TWIP Ti alloy | 490 | 788 | 0.24 | [41] |
Ti-16Nb-8Mo (TRIP/TWIP) | 2020 | D.M. Gordin, et al. | Designing strain transformable Ti alloy for biomedical applications | 420 | 650 | - | [107] |
Ti-4Mo-3Cr-1Fe (TWIP) | 2020 | L. Ren, et al. | Ultrahigh yield strength and ductility harnessed by a stress-induced nano-scale hierarchical twin structure and ωath-to-β reversion | 870 | 1092 | 0.27 | [7] |
Ti-15Nb-5Zr-4Sn-1Fe (TRIP) | 2020 | Y. Fu, et al. | Designing TRIP Ti alloy with stress-induced β-to-α′ transformation | 546 | 939 | 0.17 | [8] |
Ti-10V-2Fe-3Al (TRIP) | 2021 | B. Ellyson, et al. | β + ω TRIP Ti | - | - | - | [5] |
Ti-12Mo (TRIP/TWIP) | 2021 | B. Qian, et al. | Determining transformation pathways in TRIP/TWIP Ti alloy | - | - | - | [134] |
Ti-6Mo-3.5Cr-1Zr (TRIP) | 2022 | K. Chen, et al. | Designing TRIP Ti alloy with stress-induced β-to-ω transformation | 698 | 1242 | 0.32 | [58] |
Ti-12Mo (TRIP/TWIP) | 2022 | B. Qian, et al. | Strengthening TRIP/TWIP Ti alloy by grain refinement and ωiso | 865 | - | 0.35 | [18] |
Ti-15Nb-5Zr-4Sn-1Fe (TRIP) | 2023 | Y. Fu, et al. | Natural aging in TRIP Ti alloy led to simultaneously enhanced yield strength and uniform elongation | 683 | 987 | 0.17 | [51] |
Ti-12Mo-0.3O (TRIP/TWIP) | 2023 | Y. Chong, et al. | Strengthening TRIP/TWIP Ti alloy by grain refinement and oxygen interstitials | 826 | 1064 | 0.24 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Gao, Y.; Jiang, W.; Xiao, W.; Zhao, X.; Ma, C. A Review of Deformation Mechanisms, Compositional Design, and Development of Titanium Alloys with Transformation-Induced Plasticity and Twinning-Induced Plasticity Effects. Metals 2024, 14, 97. https://doi.org/10.3390/met14010097
Fu Y, Gao Y, Jiang W, Xiao W, Zhao X, Ma C. A Review of Deformation Mechanisms, Compositional Design, and Development of Titanium Alloys with Transformation-Induced Plasticity and Twinning-Induced Plasticity Effects. Metals. 2024; 14(1):97. https://doi.org/10.3390/met14010097
Chicago/Turabian StyleFu, Yu, Yue Gao, Wentao Jiang, Wenlong Xiao, Xinqing Zhao, and Chaoli Ma. 2024. "A Review of Deformation Mechanisms, Compositional Design, and Development of Titanium Alloys with Transformation-Induced Plasticity and Twinning-Induced Plasticity Effects" Metals 14, no. 1: 97. https://doi.org/10.3390/met14010097
APA StyleFu, Y., Gao, Y., Jiang, W., Xiao, W., Zhao, X., & Ma, C. (2024). A Review of Deformation Mechanisms, Compositional Design, and Development of Titanium Alloys with Transformation-Induced Plasticity and Twinning-Induced Plasticity Effects. Metals, 14(1), 97. https://doi.org/10.3390/met14010097