Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Yield Strength (YS)
3.2. Microstructural Observations
3.2.1. PAG Observations
3.2.2. Packet and Block Observations
3.3. Precipitation Observations
3.3.1. Precipitation of As-Quenched Samples
3.3.2. Precipitation of As-Tempered Samples
3.4. Dislocation Observations
4. Discussion
4.1. Effect of Nb and V Micro-Alloying on the Precipitates in As-Quenched Specimens
4.2. Effect of Nb and V Micro-Alloying on the Precipitates in As-Tempered Specimens
4.3. Effect of Precipitates on Austenite Grain and Martensitic Structure Refinement
4.4. Quantification of the Contribution from Various Hardening Factors
5. Conclusions
- Nb-V composite micro-alloyed steel possessed the highest yield strength compared with Nb or V micro-alloyed steel when quenched at 870 °C and tempered at 450–650 °C. Furthermore, the strength increment of Nb-V micro-alloyed steel with respect to Nb or V micro-alloyed steel reached the maximum at a tempering temperature of 600 °C, and precipitation strengthening and dislocation strengthening presented higher strength contributions in Nb-V micro-alloyed steel than in Nb micro-alloyed steel and V micro-alloyed steel owing to the higher volume fraction and finer precipitate size.
- Compared with V steel, the nano-sized Nb-rich precipitates formed during the quenching process in Nb steel pinned the grain boundaries effectively and refined the austenite and substructures such as packets and blocks. When V was added in combination with Nb in steel, the precipitation temperature of the Nb-rich carbonitrides decreased and the mass percentage increased, which resulted in a higher volume fraction of effective pinning particles-Nb-rich (Ti,Nb,V)(C,N) with diameters smaller than 50 nm and led to an enhanced refinement of the prior austenite grain.
- Nb could reduce the consumption of V during quenching, allowing more V to be dissolved in the matrix after quenching, allowing more V to remain dissolved in the matrix, and further enhancing the precipitation strengthening by forming nano MC precipitates during tempering.
- Nb-V steel maintained a higher number of dispersed precipitates in both the quenched and tempered states, resulting in a higher dislocation density and dislocation strengthening.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Jiang, J.; Chen, Q.; Cai, W.; Chen, W.; Ye, J. Fracture behavior of Grade 10.9 high-strength bolts and T-stub connections in fire. J. Constr. Steel Res. 2022, 199, 107618. [Google Scholar] [CrossRef]
- Zhang, C.; Hui, W.; Zhao, X.; Zhang, Y.; Zhao, X. Hydrogen-induced delayed fracture behaviour of V+Nb-microalloyed high-strength bolt steel with internal and environmental hydrogen. Corros. Sci. 2022, 209, 110710. [Google Scholar] [CrossRef]
- Song, H.; Hui, W.; Fang, B.; Zhang, Y.; Zhao, X.; Ren, S.; Duan, L.; Sun, Z. Effect of direct-quenching and tempering on hydrogen-induced delayed fracture resistance of high-strength bolt steel. J. Mater. Res. Technol. 2024, 32, 37–48. [Google Scholar] [CrossRef]
- Kuduzović, A.; Poletti, M.C.; Sommitsch, C.; Domankova, M.; Mitsche, S.; Kienreich, R. Investigations into the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners. Mater. Sci. Eng. A 2014, 590, 66–73. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, P.; Li, J. Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels. Int. J. Hydrogen Energy 2021, 46, 34983–34997. [Google Scholar] [CrossRef]
- Rezaeian, A.; Shafiei, M.; Eskandari, M. Effect of Temperature on Mechanical Properties of Steel Bolts. J. Mater. Civ. Eng. 2020, 32, 04020239. [Google Scholar] [CrossRef]
- Güven, O.; Erdogan, Y. Effect of heat treatment on the performance of 30MnB4 steel for being used as grade 10.9 bolt material. Eur. Mech. Sci. 2023, 7, 172–177. [Google Scholar] [CrossRef]
- Fang, B.; Hui, W.; Song, H.; Zhang, Y.; Zhao, X.; Xu, L. Hydrogen embrittlement of a V+Nb-microalloyed medium-carbon bolt steel subjected to different tempering temperatures. Int. J. Hydrogen Energy 2024, 81, 458–470. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Q.; Wang, Q.; Li, C.; Li, K. Effect of Boron on Microstructures and Low-Temperature Impact Toughness of Medium-Carbon CrMo Alloy Steels with Different Quenching Temperatures. Processes 2024, 12, 852. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, F.; Li, C.; He, Y. Dissolution and precipitation behaviors of boron bearing phase and their effects on hardenability and toughness of 25CrMoNbB steel. Mater. Sci. Eng. A 2017, 701, 45–55. [Google Scholar] [CrossRef]
- Wang, S.C. The effect of titanium and reheating temperature on the microstructure and strength of plain-carbon, vanadium- andniobium-microalloyed steels. J. Mater. Sci. 1990, 25, 187–193. [Google Scholar] [CrossRef]
- Xu, G.; Gan, X.; Ma, G.; Luo, F.; Zou, H. The development of Ti-alloyed high strength microalloy steel. Mater. Des. 2010, 31, 2891–2896. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Zhang, C.; Wang, Q.; Zhang, F. Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel. Mater. Res. Express 2018, 5, 046501. [Google Scholar] [CrossRef]
- Ioannidou, C.; Navarro-López, A.; Dalgliesh, R.M.; Rijkenberg, A.; Zhang, X.; Kooi, B.; Geerlofs, N.; Pappas, C.; Sietsma, J.; van Well, A.A.; et al. Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS. Acta Mater. 2021, 220, 117317. [Google Scholar] [CrossRef]
- Gong, P.; Liu, X.G.; Rijkenberg, A.; Rainforth, W.M. The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium. Acta Mater. 2018, 161, 374–387. [Google Scholar] [CrossRef]
- Liu, H.; Fu, P.; Liu, H.; Sun, C.; Du, N.; Li, D. Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel. J. Mater. Sci. Technol. 2019, 35, 2526–2536. [Google Scholar] [CrossRef]
- Baker, T.N. Processes, microstructure and properties of vanadium microalloyed steels. Mater. Sci. Technol. 2009, 25, 1083–1107. [Google Scholar] [CrossRef]
- Lu, J.; Wang, S.; Yu, H.; Wu, G.; Gao, J.; Wu, H.; Zhao, H.; Zhang, C.; Mao, X. Effect of precipitation on the mechanical behavior of vanadium micro-alloyed HSLA steel investigated by microstructural evolution and strength modeling. Mater. Sci. Eng. A 2023, 881, 145313. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Qiao, W.; Chen, G.; Xu, G. Comparison of the strengthening effects of Nb, V, and Ti on the mechanical properties of 20MnSilow-aloy steel. Int. J. Mater. Res. 2020, 111, 504–510. [Google Scholar] [CrossRef]
- Karmakar, A.; Kundu, S.; Roy, S.; Neogy, S.; Srivastava, D.; Chakrabarti, D. Effect of microalloying elements on austenite grain growth in Nb–Ti and Nb–V steels. Mater. Sci. Technol. 2014, 30, 653–664. [Google Scholar] [CrossRef]
- ASTM A370; Standard Test Methods and Definitions for Mechanical Testing. ASTM: West Conshohocken, PA, USA, 2017. [CrossRef]
- Kennett, S.C.; Krauss, G.; Findley, K.O. Prior austenite grain size and tempering effects on the dislocation density of low-C Nb–Ti microalloyed lath martensite. Scr. Mater. 2015, 107, 123–126. [Google Scholar] [CrossRef]
- Revesz, A.; Ungár, T.; Borbely, A.; Lendvai, J. Dislocations and grain size in ball-milled iron powder. Nanostructured Mater. 1996, 7, 779–788. [Google Scholar] [CrossRef]
- Ito, A.; Fuse, T.; Torizuka, S. Effect of Dislocation Behavior on High Strength and High Ductility of Low Carbon-2%Si-5%Mn Fresh Martensitic Steel. ISIJ Int. 2024, 64, 361–371. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Stormvinter, A.; Miyamoto, G.; Furuhara, T.; Hedström, P.; Borgenstam, A. Effect of carbon content on variant pairing of martensite in Fe–C alloys. Acta Mater. 2012, 60, 7265–7274. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, Y. Abnormal growth of austenite grain of low-carbon steel. Mater. Sci. Eng. A 2006, 420, 34–38. [Google Scholar] [CrossRef]
- Jung, J.-G.; Park, J.-S.; Kim, J.; Lee, Y.-K. Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel. Mater. Sci. Eng. A 2011, 528, 5529–5535. [Google Scholar] [CrossRef]
- Dong, J.; Liu, C.; Liu, Y.; Li, C.; Guo, Q.; Li, H. Effects of two different types of MX carbonitrides on austenite growth behavior of Nb-V-Ti microalloyed ultra-high strength steel. Fusion Eng. Des. 2017, 125, 415–422. [Google Scholar] [CrossRef]
- Arribas, M.; López, B.; Rodriguez-Ibabe, J.M. Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology. Mater. Sci. Eng. A 2008, 485, 383–394. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Zhou, T.; Song, C.; Zhang, K. Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting. Mater. Sci. Eng. A 2014, 619, 212–220. [Google Scholar] [CrossRef]
- Abe, F. Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. Mater. Sci. Eng. A 2009, 510–511, 64–69. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, W.Z.; Guo, Z.H.; Wang, L.; Rong, Y.H. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching–partitioning–tempering process. Mater. Sci. Eng. A 2010, 527, 3373–3378. [Google Scholar] [CrossRef]
- Maalekian, M.; Radis, R.; Militzer, M.; Moreau, A.; Poole, W.J. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater. 2012, 60, 1015–1026. [Google Scholar] [CrossRef]
- Gladman, T. On the theory of the effect of precipitate particles on grain growth in metals. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1997, 294, 298–309. [Google Scholar] [CrossRef]
- Lan, K.; Ding, W.; Yang, Y.-t. Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel. China Foundry 2023, 20, 329–338. [Google Scholar] [CrossRef]
- Adrian, H.; Pickering, F.B. Effect of titanium additions on austenite grain growth kinetics of medium carbon V–Nb steels containing 0·008–0·018%N. Mater. Sci. Technol. 2013, 7, 176–182. [Google Scholar] [CrossRef]
- Zhou, T.; Faleskog, J.; Babu, R.P.; Odqvist, J.; Yu, H.; Hedström, P. Exploring the relationship between the microstructure and strength of fresh and tempered martensite in a maraging stainless steel Fe–15Cr–5Ni. Mater. Sci. Eng. A 2019, 745, 420–428. [Google Scholar] [CrossRef]
- Sun, J.; Wei, S.; Lu, S. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe–Cr–Ni–Mo weld metal. Mater. Sci. Eng. A 2020, 772, 138739. [Google Scholar] [CrossRef]
- Gladman, T. Precipitation hardening in metals. Mater. Sci. Technol. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Jiang, T.; Sun, Y.; Guo, S.; Liu, Y. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility. Acta Mater. 2018, 158, 247–256. [Google Scholar] [CrossRef]
Steel | C | Mn | Si | S | P | Mo | Cr | V | Ti | Nb | B | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb-V | 0.278 | 0.7 | 0.25 | ≤0.01 | ≤0.01 | 0.2 | 0.71 | 0.05 | 0.015 | 0.03 | 0.0015 | 0.0034 |
Nb | 0.282 | 0.7 | 0.24 | ≤0.01 | ≤0.01 | 0.2 | 0.74 | - | 0.015 | 0.03 | 0.0015 | 0.0040 |
V | 0.277 | 0.7 | 0.25 | ≤0.01 | ≤0.01 | 0.2 | 0.70 | 0.05 | 0.015 | - | 0.0015 | 0.0032 |
Steel/MPa | Dc/µm | Dp/µm | Db/µm | ρdis/1015 m−2 | dpre/nm | fpre/% |
---|---|---|---|---|---|---|
Nb-V | 16.5 | 9.1 | 1.71 | 1.15 | 15.5 | 6.4 |
V | 23.9 | 13.2 | 1.79 | 1.00 | 16.9 | 5.9 |
Nb | 20.4 | 11.5 | 1.92 | 0.96 | 19.7 | 5.2 |
Precipitate Type | Mass Fraction/wt.% at 600 °C | Mass Fraction/wt.% at 875 °C | Precipitation Temperature/°C | |
---|---|---|---|---|
V | MC (rich V, Mo, Ti, C) | 0.0013812 | - | 750 |
FCCA1#2 (rich Ti, N, C) | 0.0001916 | 0.0001980 | 1400 | |
Nb | FCCA1#2 (rich Nb, Ti, C, N) | 0.0005168 | 0.0003606 | 1220 |
FCCA1#3 (rich Ti, Nb, N, C) | 0.0001774 | 0.0001606 | 1400 | |
Nb + V | MC (rich V, Mo, Ti, C) | 0.0014015 | - | 740 |
FCCA1#3 (rich Nb, Ti, C, V) | 0.0005496 | 0.0003929 | 1220 | |
FCCA1#2 (rich Ti, Nb, V, C, N) | 0.0001728 | 0.0001522 | 1400 |
Steel/MPa | σy/MPa | σ0/MPa | σss/MPa | σgb/MPa | σdis/MPa | σph/MPa |
---|---|---|---|---|---|---|
Nb-V | 1077 | 40 | 233 | 161 | 300 | 343 |
V | 1027 | 40 | 241 | 152 | 279 | 315 |
Nb | 960 | 40 | 225 | 157 | 274 | 264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Wang, Q.; Dou, Y.; Wang, Q.; Xu, X.; Wang, Q. Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling. Metals 2024, 14, 1309. https://doi.org/10.3390/met14111309
Wen H, Wang Q, Dou Y, Wang Q, Xu X, Wang Q. Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling. Metals. 2024; 14(11):1309. https://doi.org/10.3390/met14111309
Chicago/Turabian StyleWen, Hui, Qian Wang, Yueyuan Dou, Qiang Wang, Xiaochun Xu, and Qingfeng Wang. 2024. "Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling" Metals 14, no. 11: 1309. https://doi.org/10.3390/met14111309
APA StyleWen, H., Wang, Q., Dou, Y., Wang, Q., Xu, X., & Wang, Q. (2024). Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling. Metals, 14(11), 1309. https://doi.org/10.3390/met14111309