Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Yield Strength (YS)
3.2. Microstructural Observations
3.2.1. PAG Observations
3.2.2. Packet and Block Observations
3.3. Precipitation Observations
3.3.1. Precipitation of As-Quenched Samples
3.3.2. Precipitation of As-Tempered Samples
3.4. Dislocation Observations
4. Discussion
4.1. Effect of Nb and V Micro-Alloying on the Precipitates in As-Quenched Specimens
4.2. Effect of Nb and V Micro-Alloying on the Precipitates in As-Tempered Specimens
4.3. Effect of Precipitates on Austenite Grain and Martensitic Structure Refinement
4.4. Quantification of the Contribution from Various Hardening Factors
5. Conclusions
- Nb-V composite micro-alloyed steel possessed the highest yield strength compared with Nb or V micro-alloyed steel when quenched at 870 °C and tempered at 450–650 °C. Furthermore, the strength increment of Nb-V micro-alloyed steel with respect to Nb or V micro-alloyed steel reached the maximum at a tempering temperature of 600 °C, and precipitation strengthening and dislocation strengthening presented higher strength contributions in Nb-V micro-alloyed steel than in Nb micro-alloyed steel and V micro-alloyed steel owing to the higher volume fraction and finer precipitate size.
- Compared with V steel, the nano-sized Nb-rich precipitates formed during the quenching process in Nb steel pinned the grain boundaries effectively and refined the austenite and substructures such as packets and blocks. When V was added in combination with Nb in steel, the precipitation temperature of the Nb-rich carbonitrides decreased and the mass percentage increased, which resulted in a higher volume fraction of effective pinning particles-Nb-rich (Ti,Nb,V)(C,N) with diameters smaller than 50 nm and led to an enhanced refinement of the prior austenite grain.
- Nb could reduce the consumption of V during quenching, allowing more V to be dissolved in the matrix after quenching, allowing more V to remain dissolved in the matrix, and further enhancing the precipitation strengthening by forming nano MC precipitates during tempering.
- Nb-V steel maintained a higher number of dispersed precipitates in both the quenched and tempered states, resulting in a higher dislocation density and dislocation strengthening.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Jiang, J.; Chen, Q.; Cai, W.; Chen, W.; Ye, J. Fracture behavior of Grade 10.9 high-strength bolts and T-stub connections in fire. J. Constr. Steel Res. 2022, 199, 107618. [Google Scholar] [CrossRef]
- Zhang, C.; Hui, W.; Zhao, X.; Zhang, Y.; Zhao, X. Hydrogen-induced delayed fracture behaviour of V+Nb-microalloyed high-strength bolt steel with internal and environmental hydrogen. Corros. Sci. 2022, 209, 110710. [Google Scholar] [CrossRef]
- Song, H.; Hui, W.; Fang, B.; Zhang, Y.; Zhao, X.; Ren, S.; Duan, L.; Sun, Z. Effect of direct-quenching and tempering on hydrogen-induced delayed fracture resistance of high-strength bolt steel. J. Mater. Res. Technol. 2024, 32, 37–48. [Google Scholar] [CrossRef]
- Kuduzović, A.; Poletti, M.C.; Sommitsch, C.; Domankova, M.; Mitsche, S.; Kienreich, R. Investigations into the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners. Mater. Sci. Eng. A 2014, 590, 66–73. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, P.; Li, J. Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels. Int. J. Hydrogen Energy 2021, 46, 34983–34997. [Google Scholar] [CrossRef]
- Rezaeian, A.; Shafiei, M.; Eskandari, M. Effect of Temperature on Mechanical Properties of Steel Bolts. J. Mater. Civ. Eng. 2020, 32, 04020239. [Google Scholar] [CrossRef]
- Güven, O.; Erdogan, Y. Effect of heat treatment on the performance of 30MnB4 steel for being used as grade 10.9 bolt material. Eur. Mech. Sci. 2023, 7, 172–177. [Google Scholar] [CrossRef]
- Fang, B.; Hui, W.; Song, H.; Zhang, Y.; Zhao, X.; Xu, L. Hydrogen embrittlement of a V+Nb-microalloyed medium-carbon bolt steel subjected to different tempering temperatures. Int. J. Hydrogen Energy 2024, 81, 458–470. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Q.; Wang, Q.; Li, C.; Li, K. Effect of Boron on Microstructures and Low-Temperature Impact Toughness of Medium-Carbon CrMo Alloy Steels with Different Quenching Temperatures. Processes 2024, 12, 852. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, F.; Li, C.; He, Y. Dissolution and precipitation behaviors of boron bearing phase and their effects on hardenability and toughness of 25CrMoNbB steel. Mater. Sci. Eng. A 2017, 701, 45–55. [Google Scholar] [CrossRef]
- Wang, S.C. The effect of titanium and reheating temperature on the microstructure and strength of plain-carbon, vanadium- andniobium-microalloyed steels. J. Mater. Sci. 1990, 25, 187–193. [Google Scholar] [CrossRef]
- Xu, G.; Gan, X.; Ma, G.; Luo, F.; Zou, H. The development of Ti-alloyed high strength microalloy steel. Mater. Des. 2010, 31, 2891–2896. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Zhang, C.; Wang, Q.; Zhang, F. Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel. Mater. Res. Express 2018, 5, 046501. [Google Scholar] [CrossRef]
- Ioannidou, C.; Navarro-López, A.; Dalgliesh, R.M.; Rijkenberg, A.; Zhang, X.; Kooi, B.; Geerlofs, N.; Pappas, C.; Sietsma, J.; van Well, A.A.; et al. Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS. Acta Mater. 2021, 220, 117317. [Google Scholar] [CrossRef]
- Gong, P.; Liu, X.G.; Rijkenberg, A.; Rainforth, W.M. The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium. Acta Mater. 2018, 161, 374–387. [Google Scholar] [CrossRef]
- Liu, H.; Fu, P.; Liu, H.; Sun, C.; Du, N.; Li, D. Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel. J. Mater. Sci. Technol. 2019, 35, 2526–2536. [Google Scholar] [CrossRef]
- Baker, T.N. Processes, microstructure and properties of vanadium microalloyed steels. Mater. Sci. Technol. 2009, 25, 1083–1107. [Google Scholar] [CrossRef]
- Lu, J.; Wang, S.; Yu, H.; Wu, G.; Gao, J.; Wu, H.; Zhao, H.; Zhang, C.; Mao, X. Effect of precipitation on the mechanical behavior of vanadium micro-alloyed HSLA steel investigated by microstructural evolution and strength modeling. Mater. Sci. Eng. A 2023, 881, 145313. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Qiao, W.; Chen, G.; Xu, G. Comparison of the strengthening effects of Nb, V, and Ti on the mechanical properties of 20MnSilow-aloy steel. Int. J. Mater. Res. 2020, 111, 504–510. [Google Scholar] [CrossRef]
- Karmakar, A.; Kundu, S.; Roy, S.; Neogy, S.; Srivastava, D.; Chakrabarti, D. Effect of microalloying elements on austenite grain growth in Nb–Ti and Nb–V steels. Mater. Sci. Technol. 2014, 30, 653–664. [Google Scholar] [CrossRef]
- ASTM A370; Standard Test Methods and Definitions for Mechanical Testing. ASTM: West Conshohocken, PA, USA, 2017. [CrossRef]
- Kennett, S.C.; Krauss, G.; Findley, K.O. Prior austenite grain size and tempering effects on the dislocation density of low-C Nb–Ti microalloyed lath martensite. Scr. Mater. 2015, 107, 123–126. [Google Scholar] [CrossRef]
- Revesz, A.; Ungár, T.; Borbely, A.; Lendvai, J. Dislocations and grain size in ball-milled iron powder. Nanostructured Mater. 1996, 7, 779–788. [Google Scholar] [CrossRef]
- Ito, A.; Fuse, T.; Torizuka, S. Effect of Dislocation Behavior on High Strength and High Ductility of Low Carbon-2%Si-5%Mn Fresh Martensitic Steel. ISIJ Int. 2024, 64, 361–371. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Stormvinter, A.; Miyamoto, G.; Furuhara, T.; Hedström, P.; Borgenstam, A. Effect of carbon content on variant pairing of martensite in Fe–C alloys. Acta Mater. 2012, 60, 7265–7274. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, Y. Abnormal growth of austenite grain of low-carbon steel. Mater. Sci. Eng. A 2006, 420, 34–38. [Google Scholar] [CrossRef]
- Jung, J.-G.; Park, J.-S.; Kim, J.; Lee, Y.-K. Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel. Mater. Sci. Eng. A 2011, 528, 5529–5535. [Google Scholar] [CrossRef]
- Dong, J.; Liu, C.; Liu, Y.; Li, C.; Guo, Q.; Li, H. Effects of two different types of MX carbonitrides on austenite growth behavior of Nb-V-Ti microalloyed ultra-high strength steel. Fusion Eng. Des. 2017, 125, 415–422. [Google Scholar] [CrossRef]
- Arribas, M.; López, B.; Rodriguez-Ibabe, J.M. Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology. Mater. Sci. Eng. A 2008, 485, 383–394. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Zhou, T.; Song, C.; Zhang, K. Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting. Mater. Sci. Eng. A 2014, 619, 212–220. [Google Scholar] [CrossRef]
- Abe, F. Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. Mater. Sci. Eng. A 2009, 510–511, 64–69. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, W.Z.; Guo, Z.H.; Wang, L.; Rong, Y.H. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching–partitioning–tempering process. Mater. Sci. Eng. A 2010, 527, 3373–3378. [Google Scholar] [CrossRef]
- Maalekian, M.; Radis, R.; Militzer, M.; Moreau, A.; Poole, W.J. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater. 2012, 60, 1015–1026. [Google Scholar] [CrossRef]
- Gladman, T. On the theory of the effect of precipitate particles on grain growth in metals. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1997, 294, 298–309. [Google Scholar] [CrossRef]
- Lan, K.; Ding, W.; Yang, Y.-t. Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel. China Foundry 2023, 20, 329–338. [Google Scholar] [CrossRef]
- Adrian, H.; Pickering, F.B. Effect of titanium additions on austenite grain growth kinetics of medium carbon V–Nb steels containing 0·008–0·018%N. Mater. Sci. Technol. 2013, 7, 176–182. [Google Scholar] [CrossRef]
- Zhou, T.; Faleskog, J.; Babu, R.P.; Odqvist, J.; Yu, H.; Hedström, P. Exploring the relationship between the microstructure and strength of fresh and tempered martensite in a maraging stainless steel Fe–15Cr–5Ni. Mater. Sci. Eng. A 2019, 745, 420–428. [Google Scholar] [CrossRef]
- Sun, J.; Wei, S.; Lu, S. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe–Cr–Ni–Mo weld metal. Mater. Sci. Eng. A 2020, 772, 138739. [Google Scholar] [CrossRef]
- Gladman, T. Precipitation hardening in metals. Mater. Sci. Technol. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Jiang, T.; Sun, Y.; Guo, S.; Liu, Y. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility. Acta Mater. 2018, 158, 247–256. [Google Scholar] [CrossRef]
Steel | C | Mn | Si | S | P | Mo | Cr | V | Ti | Nb | B | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb-V | 0.278 | 0.7 | 0.25 | ≤0.01 | ≤0.01 | 0.2 | 0.71 | 0.05 | 0.015 | 0.03 | 0.0015 | 0.0034 |
Nb | 0.282 | 0.7 | 0.24 | ≤0.01 | ≤0.01 | 0.2 | 0.74 | - | 0.015 | 0.03 | 0.0015 | 0.0040 |
V | 0.277 | 0.7 | 0.25 | ≤0.01 | ≤0.01 | 0.2 | 0.70 | 0.05 | 0.015 | - | 0.0015 | 0.0032 |
Steel/MPa | Dc/µm | Dp/µm | Db/µm | ρdis/1015 m−2 | dpre/nm | fpre/% |
---|---|---|---|---|---|---|
Nb-V | 16.5 | 9.1 | 1.71 | 1.15 | 15.5 | 6.4 |
V | 23.9 | 13.2 | 1.79 | 1.00 | 16.9 | 5.9 |
Nb | 20.4 | 11.5 | 1.92 | 0.96 | 19.7 | 5.2 |
Precipitate Type | Mass Fraction/wt.% at 600 °C | Mass Fraction/wt.% at 875 °C | Precipitation Temperature/°C | |
---|---|---|---|---|
V | MC (rich V, Mo, Ti, C) | 0.0013812 | - | 750 |
FCCA1#2 (rich Ti, N, C) | 0.0001916 | 0.0001980 | 1400 | |
Nb | FCCA1#2 (rich Nb, Ti, C, N) | 0.0005168 | 0.0003606 | 1220 |
FCCA1#3 (rich Ti, Nb, N, C) | 0.0001774 | 0.0001606 | 1400 | |
Nb + V | MC (rich V, Mo, Ti, C) | 0.0014015 | - | 740 |
FCCA1#3 (rich Nb, Ti, C, V) | 0.0005496 | 0.0003929 | 1220 | |
FCCA1#2 (rich Ti, Nb, V, C, N) | 0.0001728 | 0.0001522 | 1400 |
Steel/MPa | σy/MPa | σ0/MPa | σss/MPa | σgb/MPa | σdis/MPa | σph/MPa |
---|---|---|---|---|---|---|
Nb-V | 1077 | 40 | 233 | 161 | 300 | 343 |
V | 1027 | 40 | 241 | 152 | 279 | 315 |
Nb | 960 | 40 | 225 | 157 | 274 | 264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Wang, Q.; Dou, Y.; Wang, Q.; Xu, X.; Wang, Q. Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling. Metals 2024, 14, 1309. https://doi.org/10.3390/met14111309
Wen H, Wang Q, Dou Y, Wang Q, Xu X, Wang Q. Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling. Metals. 2024; 14(11):1309. https://doi.org/10.3390/met14111309
Chicago/Turabian StyleWen, Hui, Qian Wang, Yueyuan Dou, Qiang Wang, Xiaochun Xu, and Qingfeng Wang. 2024. "Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling" Metals 14, no. 11: 1309. https://doi.org/10.3390/met14111309
APA StyleWen, H., Wang, Q., Dou, Y., Wang, Q., Xu, X., & Wang, Q. (2024). Comparison of Strengthening Mechanism of the Nb, V, and Nb-V Micro-Alloyed High-Strength Bolt Steels Investigated by Microstructural Evolution and Strength Modeling. Metals, 14(11), 1309. https://doi.org/10.3390/met14111309