Inverse Design of Aluminium Alloys Using Genetic Algorithm: A Class-Based Workflow
Abstract
:1. Introduction
2. Dataset and Methods
2.1. Dataset
2.2. Methods
2.2.1. Multi-Target Random Forest Models
2.2.2. Multi-Objective Optimisation Method
2.2.3. An Alloy Design Workflow
3. Results
3.1. Model Training and Feature Selection
3.2. Pareto Front
3.3. Predicted Compositions
3.3.1. Alloys Predicted within Class 1
3.3.2. Alloys Predicted within Class 2
3.3.3. Alloys Predicted within Class 6
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dorward, R.C.; Pritchett, T.R. Advanced Aluminium Alloys for Aircraft and Aerospace Applications. Mater. Des. 1988, 9, 63–69. [Google Scholar] [CrossRef]
- Hirsch, J. Automotive Trends in Aluminium—The European Perspective. In Proceedings of the 9th International Conference on Aluminium Alloys, Brisbane, Australia, 2–5 August 2004. [Google Scholar]
- Verma, R.P.; Kumar Lila, M. A Short Review on Aluminium Alloys and Welding in Structural Applications. Mater. Today Proc. 2021, 46, 10687–10691. [Google Scholar] [CrossRef]
- Davis, J.R. Corrosion of Aluminum and Aluminum Alloys; ASM International: Geauga County, OH, USA, 1999; ISBN 1-61503-238-X. [Google Scholar]
- Polmear, I.; St John, D.; Nie, J.-F.; Qian, M. Light Alloys: Metallurgy of the Light Metals; Butterworth-Heinemann: Oxford, UK, 2017; ISBN 0-08-099430-X. [Google Scholar]
- Kong, Y.; Jia, Z.; Liu, Z.; Liu, M.; Roven, H.J.; Liu, Q. Effect of Zr and Er on the Microstructure, Mechanical and Electrical Properties of Al-0.4 Fe Alloy. J. Alloys Compd. 2021, 857, 157611. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Liang, X.; Wang, Y.; Liu, H. Effect of Sc and Nd on the Microstructure and Mechanical Properties of Al-Mg-Mn Alloy. J. Mater. Eng. Perform. 2012, 21, 83–88. [Google Scholar] [CrossRef]
- Macchi, C.; Somoza, A.; Ferragut, R.; Dupasquier, A.; Polmear, I.J. Ageing Processes in Al-Cu-Mg Alloys with Different Cu/Mg Ratios. Phys. Status Solidi C 2009, 6, 2322–2325. [Google Scholar] [CrossRef]
- Pogatscher, S.; Antrekowitsch, H.; Leitner, H.; Sologubenko, A.S.; Uggowitzer, P.J. Influence of the Thermal Route on the Peak-Aged Microstructures in an Al–Mg–Si Aluminum Alloy. Scr. Mater. 2013, 68, 158–161. [Google Scholar] [CrossRef]
- Dorbane, A.; Harrou, F.; Sun, Y. Machine Learning Methods for Predicting Mechanical Behavior of Aluminum Alloys. Wseas Trans. Electron. 2022, 13, 84–88. [Google Scholar] [CrossRef]
- Merayo Fernández, D.; Rodríguez-Prieto, A.; Camacho, A.M. Prediction of the Bilinear Stress-Strain Curve of Aluminum Alloys Using Artificial Intelligence and Big Data. Metals 2020, 10, 904. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Jiang, L.; Zhao, F.; Zhang, Z. Simultaneous Enhancement in Mechanical and Corrosion Properties of Al-Mg-Si Alloys Using Machine Learning. J. Mater. Sci. Technol. 2023, 167, 1–13. [Google Scholar] [CrossRef]
- Bhat, N.; Barnard, A.S.; Birbilis, N. Improving the Prediction of Mechanical Properties of Aluminium Alloy Using Data-Driven Class-Based Regression. Comput. Mater. Sci. 2023, 228, 112270. [Google Scholar] [CrossRef]
- Hu, M.; Tan, Q.; Knibbe, R.; Wang, S.; Li, X.; Wu, T.; Jarin, S.; Zhang, M.-X. Prediction of Mechanical Properties of Wrought Aluminium Alloys Using Feature Engineering Assisted Machine Learning Approach. Metall. Mater. Trans. A 2021, 52, 2873–2884. [Google Scholar] [CrossRef]
- Soofi, Y.J.; Rahman, M.A.; Gu, Y.; Liu, J. A Feasibility Study of Machine Learning-Assisted Alloy Design Using Wrought Aluminum Alloys as an Example. Comput. Mater. Sci. 2022, 215, 111783. [Google Scholar] [CrossRef]
- Bhat, N.; Barnard, A.S.; Birbilis, N. Inverse Design of Aluminium Alloys Using Multi-Targeted Regression. J. Mater. Sci. 2024, 59, 1448–1463. [Google Scholar] [CrossRef]
- Zunger, A. Inverse Design in Search of Materials with Target Functionalities. Nat. Rev. Chem. 2018, 2, 0121. [Google Scholar] [CrossRef]
- Deschamps, A.; Tancret, F.; Benrabah, I.-E.; De Geuser, F.; Van Landeghem, H.P. Combinatorial Approaches for the Design of Metallic Alloys. Comptes Rendus Phys. 2018, 19, 737–754. [Google Scholar] [CrossRef]
- Pollock, T.M.; Ven, A.V. der The Evolving Landscape for Alloy Design. MRS Bull. 2019, 44, 238–246. [Google Scholar] [CrossRef]
- Dey, S.; Dey, P.; Datta, S. Design of Novel Age-Hardenable Aluminium Alloy Using Evolutionary Computation. J. Alloys Compd. 2017, 704, 373–381. [Google Scholar] [CrossRef]
- Dey, S.; Dey, P.; Datta, S. Rough-Fuzzy-GA-Based Design of Al Alloys Having Superior Cryogenic Performance. Mater. Manuf. Process. 2017, 32, 1075–1081. [Google Scholar] [CrossRef]
- Lee, K.W.; Song, Y.; Kim, S.-H.; Kim, M.-S.; Seol, J.B.; Cho, K.-S.; Choi, H. Genetic Design of New Aluminum Alloys to Overcome Strength-Ductility Trade-off Dilemma. J. Alloys Compd. 2023, 947, 169546. [Google Scholar] [CrossRef]
- Dey, S.; Ganguly, S.; Datta, S. In Silico Design of High Strength Aluminium Alloy Using Multi-Objective GA; Springer: Berlin/Heidelberg, Germany, 2014; pp. 316–327. [Google Scholar]
- Dey, S.; Sultana, N.; Dey, P.; Pradhan, S.K.; Datta, S. Intelligent Design Optimization of Age-Hardenable Al Alloys. Comput. Mater. Sci. 2018, 153, 315–325. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough Sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Bhat, N.; Barnard, A.S.; Birbilis, N. Aluminium Alloy Dataset for Supervised Learning. Mendeley Data 2023, V1. [Google Scholar] [CrossRef]
- Parker, A.J.; Barnard, A.S. Selecting Appropriate Clustering Methods for Materials Science Applications of Machine Learning. Adv. Theory Simul. 2019, 2, 1900145. [Google Scholar] [CrossRef]
- Bhat, N.; Barnard, A.S.; Birbilis, N. Unsupervised Machine Learning Discovers Classes in Aluminium Alloys. R. Soc. Open Sci. 2023, 10, 220360. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984; ISBN 978–0412048418. [Google Scholar]
- Allen, D.M. Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics 1971, 13, 469–475. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. Available online: https://ieeexplore-ieee-org.virtual.anu.edu.au/document/996017 (accessed on 3 November 2023). [CrossRef]
- Blickle, T. Tournament Selection. Evol. Comput. 2000, 1, 181–186. [Google Scholar]
- Fortin, F.-A.; Parizeau, M. Revisiting the NSGA-II Crowding-Distance Computation. In Proceedings of the GECCO ‘13: Genetic and Evolutionary Computation Conference, Amsterdam, The Netherlands, 6–10 July 2013; pp. 623–630. [Google Scholar]
- Zitzler, E.; Thiele, L. Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study. In Proceedings of the Parallel Problem Solving from Nature—PPSN V, Amsterdam, The Netherlands, 27–30 September 1998; Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 292–301. [Google Scholar]
- Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. Available online: https://ieeexplore-ieee-org.virtual.anu.edu.au/document/9078759 (accessed on 3 November 2023). [CrossRef]
- Hussein, A.Y.; Falcarin, P.; Sadiq, A.T. Enhancement Performance of Random Forest Algorithm via One Hot Encoding for IoT IDS. Period. Eng. Nat. Sci. 2021, 9, 579. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Sekhar, A.P.; Nandy, S.; Dey, S.; Datta, S.; Das, D. Multi-Objective Genetic Algorithm Based Optimization of Age Hardening for AA6063 Alloy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 912, 052019. [Google Scholar] [CrossRef]
- Sun, Y.; Song, M.; He, Y. Effects of Sc Content on the Mechanical Properties of Al-Sc Alloys. Rare Metals 2010, 29, 451–455. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, Y.; Nie, Z. Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys. Metall. Mater. Trans. A 2013, 44, 3910–3920. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jung, J.-G.; Baik, S.-I.; Seidman, D.N.; Kim, M.-S.; Lee, Y.-K.; Euh, K. Precipitation Strengthening in Naturally Aged Al–Zn–Mg–Cu Alloy. Mater. Sci. Eng. A 2021, 803, 140719. [Google Scholar] [CrossRef]
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [Google Scholar] [CrossRef]
- Lee, B.-H.; Kim, S.-H.; Park, J.-H.; Kim, H.-W.; Lee, J.-C. Role of Mg in Simultaneously Improving the Strength and Ductility of Al–Mg Alloys. Mater. Sci. Eng. A 2016, 657, 115–122. [Google Scholar] [CrossRef]
- Mondolfo, L.F. Aluminum Alloys: Structure and Properties; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 1-4831-4482-8. [Google Scholar]
- Venkateswarlu, K.; Pathak, L.C.; Ray, A.K.; Das, G.; Verma, P.K.; Kumar, M.; Ghosh, R.N. Microstructure, Tensile Strength and Wear Behaviour of Al–Sc Alloy. Mater. Sci. Eng. A 2004, 383, 374–380. [Google Scholar] [CrossRef]
- Shu, W.X.; Hou, L.G.; Zhang, C.; Zhang, F.; Liu, J.C.; Liu, J.T.; Zhuang, L.Z.; Zhang, J.S. Tailored Mg and Cu Contents Affecting the Microstructures and Mechanical Properties of High-Strength Al–Zn–Mg–Cu Alloys. Mater. Sci. Eng. A 2016, 657, 269–283. [Google Scholar] [CrossRef]
- Gayle, F.W.; Heubaum, F.H.; Pickens, J.R. Structure and Properties during Aging of an Ultra-High Strength Al-Cu-Li-Ag-Mg Alloy. Scr. Metall. Et Mater. 1990, 24, 79–84. [Google Scholar] [CrossRef]
- Decreus, B.; Deschamps, A.; De Geuser, F.; Donnadieu, P.; Sigli, C.; Weyland, M. The Influence of Cu/Li Ratio on Precipitation in Al–Cu–Li–x Alloys. Acta Mater. 2013, 61, 2207–2218. [Google Scholar] [CrossRef]
- Gumbmann, E.; De Geuser, F.; Sigli, C.; Deschamps, A. Influence of Mg, Ag and Zn Minor Solute Additions on the Precipitation Kinetics and Strengthening of an Al-Cu-Li Alloy. Acta Mater. 2017, 133, 172–185. [Google Scholar] [CrossRef]
- Liu, J.; Hu, R.; Zheng, J.; Zhang, Y.; Ding, Z.; Liu, W.; Zhu, Y.; Sha, G. Formation of Solute Nanostructures in an Al–Zn–Mg Alloy during Long-Term Natural Aging. J. Alloys Compd. 2020, 821, 153572. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.Y.; Zhang, B.; Qin, F.C.; Hou, Y.F. Precipitation Behavior and Mechanical Properties of Al–Zn–Mg Alloy with High Zn Concentration. Journal of Alloys and Compounds 2020, 825, 154005. [Google Scholar] [CrossRef]
- Wan, L.; Deng, Y.-L.; Ye, L.-Y.; Zhang, Y. The Natural Ageing Effect on Pre-Ageing Kinetics of Al-Zn-Mg Alloy. J. Alloys Compd. 2019, 776, 469–474. [Google Scholar] [CrossRef]
- Kaufman, J.G. Introduction to Aluminum Alloys and Tempers; ASM International: Geauga County, OH, USA, 2000; ISBN 978-1-61503-066-8. [Google Scholar]
- Ding, L.; Jia, Z.; Zhang, Z.; Sanders, R.E.; Liu, Q.; Yang, G. The Natural Aging and Precipitation Hardening Behaviour of Al-Mg-Si-Cu Alloys with Different Mg/Si Ratios and Cu Additions. Mater. Sci. Eng. A 2015, 627, 119–126. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent Development in Aluminium Alloys for the Automotive Industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E. Phase Relations and Precipitation in Al–Mg–Si Alloys with Cu Additions. Prog. Mater. Sci. 2004, 49, 389–410. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Stene, T.N.; Hasting, H.; Walmsley, J.; Van Helvoort, A.T.J.; Holmestad, R. The Effect of Cu on Precipitation in Al–Mg–Si Alloys. Philos. Mag. 2007, 87, 3385–3413. Available online: https://www.tandfonline.com/doi/epdf/10.1080/14786430701287377?src=getftr (accessed on 15 December 2023). [CrossRef]
- Buchanan, K.; Colas, K.; Ribis, J.; Lopez, A.; Garnier, J. Analysis of the Metastable Precipitates in Peak-Hardness Aged Al-Mg-Si(-Cu) Alloys with Differing Si Contents. Acta Mater. 2017, 132, 209–221. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.; Tang, S.; Zhu, Q.; Song, H.; Guo, M.; Cao, L. Investigation on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloys with Various Zn/Mg Ratios. J. Mater. Sci. Technol. 2021, 85, 106–117. [Google Scholar] [CrossRef]
- Holroyd, N.J.; Scamans, G.M. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments. Metall. Mater. Trans. A 2013, 44, 1230–1253. Available online: https://link.springer.com/article/10.1007/s11661-012-1528-3 (accessed on 27 November 2023). [CrossRef]
- Janaki Ram, G.D.; Mitra, T.K.; Shankar, V.; Sundaresan, S. Microstructural Refinement through Inoculation of Type 7020 Al–Zn–Mg Alloy Welds and Its Effect on Hot Cracking and Tensile Properties. J. Mater. Process. Technol. 2003, 142, 174–181. [Google Scholar] [CrossRef]
- Babu, A.P.; Choudhary, S.; Griffith, J.C.; Huang, A.; Birbilis, N. On the Corrosion of a High Solute Al-Zn-Mg Alloy Produced by Laser Powder Bed Fusion. Corros. Sci. 2021, 189, 109626. [Google Scholar] [CrossRef]
- Babu, A.P.; Kairy, S.K.; Huang, A.; Birbilis, N. Laser Powder Bed Fusion of High Solute Al-Zn-Mg Alloys: Processing, Characterisation and Properties. Mater. Des. 2020, 196, 109183. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Birbilis, N. A Machine Learning-Driven Framework for the Property Prediction and Generative Design of Multiple Principal Element Alloys. Mater. Today Commun. 2023, 107940. [Google Scholar] [CrossRef]
Optimal Number of Features | |||||
---|---|---|---|---|---|
1 | 9 | 0.0311 | 0.0027 | 0.0028 | 0.0320 |
2 | 15 | 0.0351 | 0.0026 | 0.0026 | 0.0350 |
3 | 8 | 0.0438 | 0.0039 | 0.0038 | 0.0433 |
4 | 2 | 0.0364 | 0.0023 | 0.0018 | 0.0315 |
5 | 2 | 0.0423 | 0.0027 | 0.0024 | 0.0397 |
6 | 9 | 0.0290 | 0.0019 | 0.0020 | 0.0290 |
7 | 1 | 0.0720 | 0.0094 | 0.0092 | 0.0703 |
8 | 2 | 0.0491 | 0.0048 | 0.0069 | 0.0586 |
all | 25 | 0.0403 | 0.0034 | 0.0034 | 0.0401 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, N.; Barnard, A.S.; Birbilis, N. Inverse Design of Aluminium Alloys Using Genetic Algorithm: A Class-Based Workflow. Metals 2024, 14, 239. https://doi.org/10.3390/met14020239
Bhat N, Barnard AS, Birbilis N. Inverse Design of Aluminium Alloys Using Genetic Algorithm: A Class-Based Workflow. Metals. 2024; 14(2):239. https://doi.org/10.3390/met14020239
Chicago/Turabian StyleBhat, Ninad, Amanda S. Barnard, and Nick Birbilis. 2024. "Inverse Design of Aluminium Alloys Using Genetic Algorithm: A Class-Based Workflow" Metals 14, no. 2: 239. https://doi.org/10.3390/met14020239
APA StyleBhat, N., Barnard, A. S., & Birbilis, N. (2024). Inverse Design of Aluminium Alloys Using Genetic Algorithm: A Class-Based Workflow. Metals, 14(2), 239. https://doi.org/10.3390/met14020239