Experimental and Analytical Study of Directional Isothermal Fatigue in Additively Manufactured Ti-TiB Metal Matrix Composites
Abstract
:1. Introduction
2. Specimen Orientations and Experimental Results
3. Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Patent Office. Innovation Trends in Additive Manufacturing Patents in 3D Printing Technologies; European Patent Office: Munich, Germany, 2023; Available online: https://link.epo.org/web/service-support/publications/en-additive-manufacturing-study-2023-full-study.pdf (accessed on 3 March 2024).
- Boyer, R.R. Titanium for aerospace: Rationale and applications. Adv. Perform. Mater. 1995, 2, 349–368. [Google Scholar] [CrossRef]
- Gialanella, S.; Malandruccolo, A. Aerospace Alloys; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Brewer, W.D.; Bird, R.; Wallace, T.A. Titanium alloys and processing for high speed aircraft. Mater. Sci. Eng. A 1998, 243, 299–304. [Google Scholar] [CrossRef]
- Cotton, J.D.; Clark, L.P.; Phelps, H.R. Titanium alloys on the F-22 fighter airframe. Adv. Mater. Process. 2002, 160, 25–28. [Google Scholar]
- Saito, T. The automotive application of discontinuously reinforced TiB-Ti composites. JOM 2004, 56, 33–36. [Google Scholar] [CrossRef]
- Hanusiak, W.; Fields, J.; Hammond, V.; Grabow, R.; Yolton, C.F. The prospects for hybrid fiber-reinforced Ti-TiB-matrix composites. JOM 2004, 56, 49–50. [Google Scholar] [CrossRef]
- Fereiduni, E.; Ghasemi, A.; Elbestawi, M. Selective Laser Melting of Aluminum and Titanium Matrix Composites: Recent Progress and Potential Applications in the Aerospace Industry. Aerospace 2020, 7, 77. [Google Scholar] [CrossRef]
- Lomo, F.; Vargas-Uscategui, A.; King, P.; Patel, M.; Cole, I. Microstructure and mechanical properties of heat-treated cold spray additively manufactured titanium metal matrix composites. J. Manuf. Process. 2023, 99, 12–26. [Google Scholar] [CrossRef]
- Fang, M.; Han, Y.; Shi, Z.; Huang, G.; Song, J.; Lu, W. Embedding boron into Ti powder for direct laser deposited titanium matrix composite: Microstructure evolution and the role of nano-TiB network structure. Compos. Part B Eng. 2021, 211, 108683. [Google Scholar] [CrossRef]
- Macke, A.; Schultz, B.; Rohatgi, P. Metal Matrix Composites Offer Automotive Industry Opportunity to Reduce Vehicle Weight, Improve Performance. AMP Tech. Artic. 2012, 170, 19–23. [Google Scholar] [CrossRef]
- Miracle, D. Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 2005, 65, 2526–2540. [Google Scholar] [CrossRef]
- Hooker, J.; Doorbar, P. Metal matrix composites for aeroengines. Mater. Sci. Technol. 2000, 16, 725–731. [Google Scholar] [CrossRef]
- Hayat, M.D.; Singh, H.; He, Z.; Cao, P. Titanium metal matrix composites: An overview. Compos. Part A Appl. Sci. Manuf. 2019, 121, 418–438. [Google Scholar] [CrossRef]
- Ammisetti, D.K.; Kruthiventi, S.S.H. Recent trends on titanium metal matrix composites: A review. Mater. Today Proc. 2020, 46, 9730–9735. [Google Scholar] [CrossRef]
- Singh, G.; Ramamurty, U. Boron modified titanium alloys. Prog. Mater. Sci. 2020, 111, 100653. [Google Scholar] [CrossRef]
- Li, Q.; Huang, S.; Zhao, Y.; Gao, Y.; Ramamurty, U. Simultaneous enhancements of strength, ductility, and toughness in a TiB reinforced titanium matrix composite. Acta Mater. 2023, 254. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Le, J.; Han, Y.; Zong, N.; Wei, Z.; Huang, G.; Lu, W. Towards high strengthening efficiency by in-situ planting nano-TiB networks into titanium matrix composites. Compos. Part B Eng. 2022, 245, 110169. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, C.-T. Design of titanium alloys by additive manufacturing: A critical review. Adv. Powder Mater. 2021, 1, 100014. [Google Scholar] [CrossRef]
- Liu, Z.; He, B.; Lyu, T.; Zou, Y. A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V. JOM 2021, 73, 1804–1818. [Google Scholar] [CrossRef]
- Moghimian, P.; Poirié, T.; Habibnejad-Korayem, M.; Zavala, J.A.; Kroeger, J.; Marion, F.; Larouche, F. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit. Manuf. 2021, 43, 102017. [Google Scholar] [CrossRef]
- Kumar, M.B.; Sathiya, P. Methods and materials for additive manufacturing: A critical review on advancements and challenges. Thin-Walled Struct. 2020, 159, 107228. [Google Scholar] [CrossRef]
- Charmi, A.; Falkenberg, R.; Ávila, L.; Mohr, G.; Sommer, K.; Ulbricht, A.; Sprengel, M.; Neumann, R.S.; Skrotzki, B.; Evans, A. Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study. Mater. Sci. Eng. A 2020, 799, 140154. [Google Scholar] [CrossRef]
- Ren, Y.; Tariq, N.U.H.; Liu, H.; Zhao, L.; Cui, X.; Shen, Y.; Wang, J.; Xiong, T. Study of microstructural and mechanical anisotropy of 7075 Al deposits fabricated by cold spray additive manufacturing. Mater. Des. 2021, 212, 110271. [Google Scholar] [CrossRef]
- Kok, Y.; Tan, X.; Wang, P.; Nai, M.; Loh, N.; Liu, E.; Tor, S. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Chang, K.; Liang, E.; Huang, W.; Zhang, X.; Chen, Y.; Dong, J.; Zhang, R. Microstructural feature and mechanical property in different building directions of additive manufactured Ti6Al4V alloy. Mater. Lett. 2020, 267, 127516. [Google Scholar] [CrossRef]
- Sun, W.; Ma, Y.; Huang, W.; Zhang, W.; Qian, X. Effects of build direction on tensile and fatigue performance of selective laser melting Ti6Al4V titanium alloy. Int. J. Fatigue 2019, 130, 105260. [Google Scholar] [CrossRef]
- Edwards, P.; Ramulu, M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
- Tang, D.; He, X.; Wu, B.; Dang, L.; Xin, H.; Li, Y. Anisotropic fatigue performance of directed energy deposited Ti-6Al-4V: Effects of build orientation. Mater. Sci. Eng. A 2023, 876, 145112. [Google Scholar] [CrossRef]
- Samandi, M.; Storm, R.; Loutfy, R.; Withers, J. The Development of Plasma Transferred Arc Solid Free Form Fabtication as a Cost Effective Production Methodology. In Proceedings of the 22nd Heat Treating Society Conference and the 2nd International Surface Engineering Congress, Indianapolis, IN, USA, 15–17 September 2003; pp. 513–518. [Google Scholar]
- Balakumar, T.; Riahi, R.; Edrisy, A. An investigation of fatigue of additively manufactured commercially pure Alpha–Ti alloy at 350 °C. J. Mater. Res. Technol. 2023, 26, 7300–7311. [Google Scholar] [CrossRef]
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Arakawa, J.; Kawahara, Y.; Kimura, Y.; Hashimoto, S.; Akebono, H.; Sugeta, A. Estimation of the fatigue crack initiation site and life of Ti-6Al-4V alloy for two types of circle and slender crystal grains. Int. J. Fatigue 2024, 181, 108097. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, R.; Wang, S.; Sun, F.; Chen, R.; Huang, L.; Geng, L. Fatigue Crack Initiation and Propagation Dominated by Crystallographic Factors in TiB/near α-Ti Composite. Acta Met. Sin. 2024. [Google Scholar] [CrossRef]
Specimen AM Build Orientation | for Equation (1) | for Equation (2) |
---|---|---|
0° | 1.0333 | 0.8069 |
45° | 1.9880 | 1.2247 |
90° | 1.9737 | 1.1537 |
Specimen AM Build Orientation | for Fatigue Life Calculation Using Equation (1) | for Fatigue Life Calculation Using Equation (2) |
---|---|---|
0° | 0.34 | 0.93 |
45° | 0.67 | 0.96 |
90° | 0.09 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakumar, T.; Riahi, R.A.; Edrisy, A. Experimental and Analytical Study of Directional Isothermal Fatigue in Additively Manufactured Ti-TiB Metal Matrix Composites. Metals 2024, 14, 408. https://doi.org/10.3390/met14040408
Balakumar T, Riahi RA, Edrisy A. Experimental and Analytical Study of Directional Isothermal Fatigue in Additively Manufactured Ti-TiB Metal Matrix Composites. Metals. 2024; 14(4):408. https://doi.org/10.3390/met14040408
Chicago/Turabian StyleBalakumar, Thevika, Reza A. Riahi, and Afsaneh Edrisy. 2024. "Experimental and Analytical Study of Directional Isothermal Fatigue in Additively Manufactured Ti-TiB Metal Matrix Composites" Metals 14, no. 4: 408. https://doi.org/10.3390/met14040408
APA StyleBalakumar, T., Riahi, R. A., & Edrisy, A. (2024). Experimental and Analytical Study of Directional Isothermal Fatigue in Additively Manufactured Ti-TiB Metal Matrix Composites. Metals, 14(4), 408. https://doi.org/10.3390/met14040408