Ductile Fracture of Titanium Alloys in the Dynamic Punch Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental methods
2.2. Numerical Modeling of Plastic Flow and Damage Development of Titanium Alloy during Dynamic Punch Tests
3. Results
3.1. Experimental Results
3.2. Numerical Simulation Results
4. Discussion
5. Conclusions
- The maximum values of plastic strain obtained in simulations exceeded the values of the macroscopic elongation δ before the failure of the Ti-5Al-2.5Sn alloy which are available in the literature.
- High strain rates promote the formation of localized shear bands under biaxial stress state.
- The values of the stress triaxiality parameter at the indenter–sample contact area vary unsteadily and spatially inhomogeneously during the accumulation of damage.
- The results indicate the ductile nature of the fracture of the Ti-5Al-2.5Sn alloy under biaxial tension at room temperature and at strain rates up to 104 s−1.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayaprakash, M.; Ping, D.H.; Yamabe-Mitarai, Y. Enhanced yielding strength of near-α Ti–Al–Zr–Sn high temperature alloys. Mater. Sci. Eng. A 2015, 625, 131–139. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, X.; Ji, W.; Wei, W.; Yao, C.; Han, D. Investigation on the deformation mechanism of Ti–5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures. Mater. Sci. Eng. A 2021, 818, 141380. [Google Scholar] [CrossRef]
- Tan, M.J.; Chen, G.W.; Thiruvarudchelvan, S. High temperature deformation in Ti–5Al–2.5Sn alloy. J. Mater. Process. Technol. 2007, 192–193, 434–438. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hamilton, C.H. Superplastic Forming and Diffusion Bonding of Titanium Alloys; Woodhead Publishing: Cambridge, UK, 1986; Volume 36, pp. 153–177. [Google Scholar]
- Tabie, V.M.; Li, C.; Saifu, W.; Li, J.; Xu, X. Mechanical properties of near alpha titanium alloys for high-temperature applications—A review. Aircr. Eng. Aerosp. Technol. 2020, 92, 521–540. [Google Scholar] [CrossRef]
- Luscher, D.J.; Buechler, M.A.; Walters, D.J.; Bolme, C.A.; Ramos, K.J. On computing the evolution of temperature for materials under dynamic loading. Int. J. Plast. 2018, 111, 188–210. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.-F.; Zhang, S.-H.; Xu, Y.; Song, H.-W. Deformation characteristics, formability and springback control of Titanium alloy sheet at room temperature: A review. Materials 2022, 15, 5586. [Google Scholar] [CrossRef] [PubMed]
- Skripnyak, V.V.; Skripnyak, E.G.; Skripnyak, V.A. Fracture of titanium alloys at high strain rates and under stress triaxiality. Metals 2020, 10, 305. [Google Scholar] [CrossRef]
- Spulak, N.; Seidt, J.; Gilat, A. Ductile fracture of 2024 aluminum under unequal biaxial in-plane tension and out-of-plane compression. Mech. Mater. 2024, 179, 104585. [Google Scholar] [CrossRef]
- Seidt, J.D.; Park, C.; Buyuk, M.; Lowe, R.L.; Wang, L.; Carney, K.S.; Du Bois, P.; Gilat, A.; Kan, C. An Experimental Investigation of the Influence of the State of Stress on the Ductile Fracture of 2024-T351 Aluminum. ASME J. Eng. Mater. Technol. 2022, 144, 041006. [Google Scholar] [CrossRef]
- Cadonia, E.; Dottaa, M.; Fornia, D.; Riganti, G. Combined effects of high strain rate, elevated temperature, and triaxiality on a commercial tungsten alloy. Procedia Struct. Integr. 2023, 47, 268–273. [Google Scholar] [CrossRef]
- Huang, B.; Lin, L.; Xu, T.; Xiao, X.; Wang, J. A Study of the dynamic mechanical properties of Q460D steel. Metals 2023, 13, 1609. [Google Scholar] [CrossRef]
- Sartora, T.; Lopes da Silva, J.V.; Guanc, Z.; Santiagod, R.C. Influence of stress triaxiality on the fracture behaviour of Ti6Al4V alloy manufactured by electron beam melting. Lat. Am. J. Solids Struct. 2022, 19, e469. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, P.; Wang, Y.; Dai, Q.; Knowles, D.; Mostafavi, M. Stress triaxiality and Lode angle parameter characterization of flat metal specimen with inclined notch. Metals 2021, 11, 1627. [Google Scholar] [CrossRef]
- Frost, H.J.; Ashby, M.F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics; Pergamon Press: Oxford, UK, 1982; 166p. [Google Scholar]
- Skripnyak, V.V.; Iohim, K.V.; Skripnyak, V.A. Mechanical behavior of titanium alloys at moderate strain rates characterized by the punch test technique. Materials 2023, 16, 416. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Zhan, M.; Wang, K.; Chen, F.; Guo, J.; Li, Y.; Song, Z.; Bai, L. Forming limit stress diagram prediction of pure titanium sheet based on GTN Model. Materials 2019, 12, 1783. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.D.; Parker, J.D. Deformation processes during disc bend loading. Mater. Sci. Technol. 1996, 12, 163–170. [Google Scholar] [CrossRef]
- Vorlicek, V.; Exworthy, L.F.; Flewitt, P.E.J. Evaluation of a miniaturized disc test for establishing the mechanical properties of low-alloy ferritic steels. J. Mater. Sci. 1995, 30, 2936–2943. [Google Scholar] [CrossRef]
- Dabboussi, W.; Nemes, J.A. Modeling of ductile fracture using the dynamic punch test. Int. J. Mater. Sci. 2005, 47, 1282–1299. [Google Scholar] [CrossRef]
- Hammer, J.T.; Liutkus, T.J.; Seidt, J.D.; Gilat, A. DIC in Dynamic Punch Testing. In Dynamic Behavior of Materials; Song, B., Casem, D., Kimberley, J., Eds.; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2015; Volume 1. [Google Scholar] [CrossRef]
- Zhang, Q.-D.; Cao, Q. Planar anisotropy of commercially pure titanium sheets. Rare Met. 2013, 32, 1–4. [Google Scholar] [CrossRef]
- Nixon, M.E.; Cazac, O.; Lebensohn, R.A. Anisotropic response of high-purity a-titanium: Experimental characterization and constitutive modeling. Int. J. Plast. 2010, 26, 516. [Google Scholar] [CrossRef]
- Corallo, L.; Revil-Baudard, B.; Cazacu, O.; Verleysen, P. Role of anisotropy on strain localization at high-strain rates in Ti6Al4V. Eur. J. Mech. A Solids 2022, 97, 104856. [Google Scholar] [CrossRef]
- Lancaster, R.J.; Jeffs, S.P.; Haigh, B.J.; Barnard, N.C. Derivation of material properties using small punch and shear punch test methods. Mater. Des. 2022, 215, 110473. [Google Scholar] [CrossRef]
- Abendroth, M.; Kuna, M. Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput. Mater. Sci. 2003, 28, 633–644. [Google Scholar] [CrossRef]
- Li, X.; Guo, G.; Xiao, J.; Song, N.; Li, D. Constitutive modeling and the effects of strain-rate and temperature on the formability of Ti–6Al–4V alloy sheet. Mater. Des. 2014, 55, 325–334. [Google Scholar] [CrossRef]
- Skripnyak, V.V.; Skripnyak, V.A. Mechanical behavior of alpha titanium alloys at high strain rates, elevated temperature, and under stress triaxiality. Metals 2022, 12, 1300. [Google Scholar] [CrossRef]
- ASTM E643; Test Method for Ball Punch Deformation of Metallic Sheet Material. Annual Book or ASTM Standards. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ISO 8490; Metallic Materials—Sheet and Strip—Modified Erichsen Cupping Test. ISO: Geneva, Switzerland, 1986.
- Revil-Baudard, B.; Cazacu, O.; Massoni, E. Room-temperature plastic behavior and formability of a commercially pure titanium: Mechanical characterization, modeling, and validation. Int. J. Solids Struct. 2021, 228, 111121. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Hixson, R.S.; Gray, G.T.; Wang, L.; Utsumi, W.; Takanori, H. Thermal equations of state for titanium obtained by high pressure—Temperature diffraction studies. Phys. Rev. B 2008, 78, 054119. [Google Scholar] [CrossRef]
- Steinberg, D.J.; Cochran, S.G.; Guinan, M.W. A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 1980, 51, 1498–1504. [Google Scholar] [CrossRef]
- Armstrong, R.W. Constitutive Relations for Slip and Twinning in High Rate Deformations: A Review and Update. J. Appl. Phys. 2021, 130, 245103. [Google Scholar] [CrossRef]
- Bettaieb, M.B.; Lemoine, X.; Duchêne, L.; Habraken, A.M. On the numerical integration of an advanced Gurson model. Int. J. Numer. Methods Eng. 2010, 85, 1049–1072. [Google Scholar] [CrossRef]
- Becker, R. Ring fragmentation predictions using the Gurson model with material stability conditions as failure criteria. Int. J. Solids Struct. 2002, 39, 3555–3580. [Google Scholar] [CrossRef]
- ASTM E3205-20; Standard Test Method for Small Punch Testing of Metallic Materials. Annual Book or ASTM Standards. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- Meyer, L.W.; Pursche, F. Experimental Methods; Dodd, B., Bai, Y., Eds.; Adiabatic Shear Locatization; Elsevier: Waltham, MA, USA, 2012; pp. 21–109. [Google Scholar]
- Sharkeev, Y.; Vavilov, V.; Skripnyak, V.A.; Belyavskaya, O.; Legostaeva, E.; Kozulin, A.; Chulkov, A.; Sorokoletov, A.; Skripnyak, V.V.; Eroshenko, A.; et al. Analyzing the deformation and fracture of bioinert titanium, zirconium and niobium alloys in different structural states by the use of infrared thermography. Metals 2018, 8, 703. [Google Scholar] [CrossRef]
- Roessig, K.M.; Mason, J.J. Adiabatic shear localization in the dynamic punch test, Part I: Experimental investigation. Int. J. Plast. 1999, 15, 241–262. [Google Scholar] [CrossRef]
- Bai, Y.; Dodd, B. Adiabatic Shear Localization: Occurrence, Theories and Applications, 1st ed.; Pergamon Press: Oxford, UK, 1992; p. 378. [Google Scholar]
- Li, F.-Q.; Mo, J.-H.; Li, J.-J.; Huang, L.; Zhou, H.-Y. Formability of Ti–6Al–4V titanium alloy sheet in magnetic pulse bulging. Mater. Des. 2013, 52, 337–344. [Google Scholar] [CrossRef]
- Skripnyak, V.V.; Skripnyak, V.A. Hexagonal close packed (hcp) alloys under dynamic impacts. J. Appl. Phys. 2022, 131, 16–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skripnyak, V.V.; Skripnyak, V.A. Ductile Fracture of Titanium Alloys in the Dynamic Punch Test. Metals 2024, 14, 528. https://doi.org/10.3390/met14050528
Skripnyak VV, Skripnyak VA. Ductile Fracture of Titanium Alloys in the Dynamic Punch Test. Metals. 2024; 14(5):528. https://doi.org/10.3390/met14050528
Chicago/Turabian StyleSkripnyak, Vladimir V., and Vladimir A. Skripnyak. 2024. "Ductile Fracture of Titanium Alloys in the Dynamic Punch Test" Metals 14, no. 5: 528. https://doi.org/10.3390/met14050528
APA StyleSkripnyak, V. V., & Skripnyak, V. A. (2024). Ductile Fracture of Titanium Alloys in the Dynamic Punch Test. Metals, 14(5), 528. https://doi.org/10.3390/met14050528