Enhancing Mechanical Characteristics of 6061-T6 with 5083-H111 Aluminum Alloy Dissimilar Weldments: A New Pin Tool Design for Friction Stir Welding (FSW)
Abstract
:1. Introduction
2. Methods and Protocols
2.1. Experiment Procedure
2.1.1. Design of Experiment
2.1.2. Testing Procedure
3. Results and Discussion
3.1. Mechanical Properties
3.1.1. With Normal Tool Design
Main Effect Plot for Tensile Strength (TS) (Normal Tool Design)
3.1.2. With New Tool Design
Main Effect Plot for Tensile Strength (TS) (New Tool Design)
Comparison of Tensile Strength between the New Tool Design and the Normal Tool Design in FSW
3.2. Microstructural Analysis
- Sample 1: TS 285 MPa (Th 3 mm, Tt 25 s, L 0.3 mm, SS 1600 rpm, Fr 90 mm/min)
- Sample 2: TS 280 MPa (Th 3 mm, Tt 15 s, L 0.3 mm, SS 800 rpm, Fr 90 mm/min)
- Sample 5: TS 317 MPa (Th 3 mm, Tt 25 s, L 0.1 mm, SS 1600 rpm, Fr 30 mm/min)
- Sample 7: TS 290 MPa (Th 3 mm, Tt 25 s. L 0.1 mm, SS 800 rpm, Fr 90 mm/min)
- Sample 8: TS 270 MPa (Th 5 mm, Tt 25 s, L 0.3 mm, SS 1600 rpm, Fr 30 mm/min)
- Sample 18: TS 278 MPa (Th 5 mm, Tt 25 s, L 0.1 mm, SS 800 rpm, Fr 30 mm/min)
3.3. Microhardness Analysis
Charpy V-Notch Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jannet, S.; Mathews, K.; Raja, R. Comparative investigation of friction stir welding and fusion welding of 6061 T6—5083 O aluminum alloy based on mechanical properties and microstructure. Bull. Polish Acad. Sci. Tech. Sci. 2014, 62, 791–795. [Google Scholar] [CrossRef]
- SGupta, K.; Pandey, K.N.; Kumar, R. Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminium alloys. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, 232, 333–342. [Google Scholar] [CrossRef]
- Threadgilll, P.L.; Leonard, A.J.; Shercliff, H.R.; Withers, P.J. Friction stir welding of aluminium alloys. Int. Mater. Rev. 2009, 54, 49–93. [Google Scholar] [CrossRef]
- Wang, B.B.; Xue, P.; Xiao, B.L.; Wang, W.G.; Liu, Y.D.; Ma, Z.Y. Achieving equal fatigue strength to base material in a friction stir welded 5083-H19 aluminium alloy joint. Sci. Technol. Weld. Join. 2020, 25, 81–88. [Google Scholar] [CrossRef]
- Selvakumar, S.; Babu, B.G.; Raffic, N.M.; Babu, K.G. Experimental Investigation on Effect of FSW Parameters on Hardness and Microstructure of AA 6061 and AA 5083. 2020. Available online: https://www.ijresm.com/Vol.3_2020/Vol3_Iss2_February20/IJRESM_V3_I2_151.pdf (accessed on 12 February 2024).
- Kumar, J.; Majumder, S.; Mondal, A.K.; Verma, R.K. Influence of rotation speed, transverse speed, and pin length during underwater friction stir welding (UW-FSW) on aluminum AA6063: A novel criterion for parametric control. Int. J. Light. Mater. Manuf. 2022, 5, 295–305. [Google Scholar] [CrossRef]
- Kumar, K.S.; Seeman, M.; Sivaraj, P.; Balasubramanian, V. Mechanical properties and metallurgical characteristics of friction stir welded dissimilar AA5083/AA6061 aluminum alloy joints. In Proceedings of the IP Conference Proceedings, Boston, MA, USA, 21–22 September 2023; p. 2747. [Google Scholar] [CrossRef]
- Mamgain, A.; Singh, V.; Singh, A.P. Influence of Welding parameters on Mechanical property during Friction Stir Welded joint on Aluminium Alloys: A Review. J. Kejuruter 2023, 35, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K. Effects of tool profile on mechanical properties of aluminium alloy Al 1120 friction stir welds. J. Adhes. Sci. Technol. 2020, 34, 2000–2010. [Google Scholar] [CrossRef]
- Rajaseelan, S.L.; Kumarasamy, S. Mechanical properties and microstructural characterization of dissimilar friction stir welded AA5083 and AA6061 aluminium alloys. Mechanika 2020, 26, 545–552. [Google Scholar] [CrossRef]
- Elatharasan, G.; Manikandan, R.; Karthikeyan, G. Multi-response optimization of process parameters in friction stir welding of dissimilar aluminum alloys by Grey relation analysis (AA 6061-T6 & AA5083-H111). Mater. Today Proc. 2020, 37, 1172–1182. [Google Scholar] [CrossRef]
- Lakshmikhanth, R.S.; Subbaiah, K. Optimization of Tool Pin Profile for Dissimilar Friction stir welding of AA5083-H111 and AA6061-T6 aluminum alloys. Tierarztl. Prax. 2020, 40, 460–473. [Google Scholar]
- Kumar, K.K.; Kumar, A.; Satyanarayana, M.V.N.V. Effect of friction stir welding parameters on the material flow, mechanical properties and corrosion behavior of dissimilar AA5083-AA6061 joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 2901–2917. [Google Scholar] [CrossRef]
- Tucci, F.; Carlone, P.; Silvestri, A.T.; Parmar, H.; Astarita, A. Dissimilar friction stir lap welding of AA2198-AA6082: Process analysis and joint characterization. CIRP J. Manuf. Sci. Technol. 2021, 35, 753–764. [Google Scholar] [CrossRef]
- Astarita, A.; Tucci, F.; Silvestri, A.T.; Perrella, M.; Boccarusso, L.; Carlone, P. Dissimilar friction stir lap welding of AA2198 and AA7075 sheets: Forces, microstructure and mechanical properties. Int. J. Adv. Manuf. Technol. 2021, 117, 1045–1059. [Google Scholar] [CrossRef]
- Reimann, M.; Goebel, J.; Santos, J.F.D. Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding. Mater. Des. 2017, 132, 283–294. [Google Scholar] [CrossRef]
- Palanivel, R.; Mathews, P.K.; Murugan, N.; Dinaharan, I. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater. Des. 2012, 40, 7–16. [Google Scholar] [CrossRef]
- Pereira, M.A.R.; Galvão, I.; Costa, J.D.; Leal, R.M.; Amaro, A.M. Friction Stir Spot Welding of Thin Aluminium Sheets to Polyamide 6: A Study of the Welding Parameters and Strategies. J. Compos. Sci. 2024, 8, 21. [Google Scholar] [CrossRef]
- Ahmadi, M.; Pahlavani, M.; Rahmatabadi, D.; Marzbanrad, J.; Hashemi, R.; Afkar, A. An Exhaustive Evaluation of Fracture Toughness, Microstructure, and Mechanical Characteristics of Friction Stir Welded Al6061 Alloy and Parameter Model Fitting Using Response Surface Methodology. J. Mater. Eng. Perform. 2022, 31, 3418–3436. [Google Scholar] [CrossRef]
- Kumar, P.S.; Chander, M.S. Effect of tool pin geometry on FSW dissimilar aluminum alloys—(AA5083 & AA6061). Mater. Today Proc. 2020, 39, 472–477. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, V. Optimization of friction stir welding parameters of dissimilar aluminium alloys 6061 and 5083 by using response surface methodology. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 7009–7020. [Google Scholar] [CrossRef]
- Khodir, S.A.; Shibayanagi, T. Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2008, 148, 82–87. [Google Scholar] [CrossRef]
- Cavaliere, P.; De Santis, A.; Panella, F.; Squillace, A. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding. Mater. Des. 2009, 30, 609–616. [Google Scholar] [CrossRef]
- Zhang, T.; Ji, H.; Xu, D.; Yin, X.; Wei, H.; Sun, Z.; Liu, C. A hybrid shoulder to achieve a significant improvement in tensile strength and fatigue performance of friction stir welded joints for Al–Mg–Si alloy. J. Mater. Res. Technol. 2023, 27, 2280–2291. [Google Scholar] [CrossRef]
- Homola, P.; Růžek, R.; McAndrew, A.R.; De Backer, J. Effect of primer and sealant in refill friction stir spot welded joints on strength and fatigue behaviour of aluminium alloys. Int. J. Fatigue 2023, 168, 107455. [Google Scholar] [CrossRef]
- Hassan, K.S.; Abbass, M.K.; Mohammed, M.T. Effect of Surface Finishing on Microstructure and Corrosion Behavior of Friction Stir Welded Joints For Dissimilar Aluminum Alloys (AA2024-T3 with AA6061-T6). IOP Conf. Ser. Mater. Sci. Eng. 2021, 1105, 012047. [Google Scholar] [CrossRef]
- Li, X.; Fang, J.; Guan, X. Unified Principal S–N Equation for Friction Stir Welding of 5083 and 6061 Aluminum Alloys. Chin. J. Mech. Eng. 2021, 34, 15. [Google Scholar] [CrossRef]
- Shaik, C.B.; Pawale, D.M.; Suryanarayanan, R.; Sridhar, V.G. Improving the Mechanical properties of 6061 and 5083 welded joint using Friction stir lap welding. J. Phys. Conf. Ser. 2021, 1969, 012017. [Google Scholar] [CrossRef]
- Pereira, M.A.R.; Galv, I.; Costa, D.; Amaro, A.M. Joining of Fibre-Reinforced Thermoplastic Polymer Composites by Friction Stir Welding—A Review. Appl. Sci. 2022, 12, 2744. [Google Scholar] [CrossRef]
- Sidhu, M.S.; Chatha, S.S. Friction Stir Welding—Process and its Variables: A Review. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 275–279. [Google Scholar]
- Jayaprakash, S.; Siva Chandran, S.; Sathish, T.; Gugulothu, B.; Ramesh, R.; Sudhakar, M.; Subbiah, R. Effect of tool profile influence in dissimilar friction stir welding of aluminium alloys (AA5083 and AA7068). Adv. Mater. Sci. Eng. 2021, 2021, 7387296. [Google Scholar] [CrossRef]
- Testing, P. Effect of tool material on microstructure and mechanical properties in friction stir welding. Mater. Test. 2016, 58, 36–42. [Google Scholar]
- Organized, T.; Degree, A.M.; Energy, R. Effect of Holding Time on the Physical Mechanical Properties of Dissimilar Metal Diffusion Welded between Aluminum and Steel by Ali Jebril Saad Jebril Nim: S951208008 Postgraduate Program. Ph.D. Thesis, UNS (Sebelas Maret University), Kota Surakarta, Indonesia, 2014. [Google Scholar]
- Piccini, J.M.; Svoboda, H.G. Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar Aluminum-steel joints. Procedia Mater. Sci. 2015, 9, 504–513. [Google Scholar] [CrossRef]
- Wronska, A.; Andres, J.; Altamer, T.; Dudek, A.; Ulewicz, R. Effect of tool pin length on microstructure and mechanical strength of the FSW joints of Al 7075 metal sheets. Commun. Sci. Lett. Univ. Žilina 2019, 21, 40–47. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Seleman, M.M.E.S.; Eid, R.G.; Albaijan, I.; Touileb, K. The Influence of Tool Pin Geometry and Speed on the Mechanical Properties of the Bobbin Tool Friction Stir Processed AA1050. Materials 2022, 15, 4684. [Google Scholar] [CrossRef] [PubMed]
- El Rayes, M.M.; Soliman, M.S.; Abbas, A.T.; Pimenov, D.Y.; Erdakov, I.N.; Abdel-Mawla, M.M. Effect of Feed Rate in FSW on the Mechanical and Microstructural Properties of AA5754 Joints. Adv. Mater. Sci. Eng. 2019, 2019, 4156176. [Google Scholar] [CrossRef]
- Hunt, F.; Badarinarayan, H.; Okamoto, K. Design of Experiments for Friction Stir Stitch Welding of Aluminum Alloy 6022-T4—Friction Stir Welding of Aluminum for Automotive Applications (3); SAE Technical Paper 2006-01-0970; SAE International: Warrendale, PA, USA, 2006. [Google Scholar] [CrossRef]
- Khanna, N.; Bharati, M.; Sharma, P.; Badheka, V.J. Design-of-experiments application in the friction stir welding of aluminium alloy AA 8011-h14 for structural application. Multidiscip. Model. Mater. Struct. 2020, 16, 606–622. [Google Scholar] [CrossRef]
- Kumar, K.K.; Kumar, A.; Satyanarayana, M.V.N.V. Enhancing corrosion resistance and mechanical properties of dissimilar friction stir welded 5083-6061 aluminium alloys using external cooling environment. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 2692–2708. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, E.D. Optimization of Submerged Arc Welding Parameters for Joining Dissimilar Materials Using Taguchi Method. IOSR J. Mech. Civ. Eng. 2017, 14, 51–54. [Google Scholar] [CrossRef]
- Mustafa, F.F.; Kadhym, A.H.; Yahya, H.H. Tool geometries optimization for friction stir welding of AA6061-T6 aluminum alloy T-joint using taguchi method to improve the mechanical behavior. J. Manuf. Sci. Eng. Trans. ASME 2015, 137, 031018. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Eyvazian, A. Friction-based welding processes: Friction welding and friction stir welding. J. Adhes. Sci. Technol. 2020, 34, 2613–2637. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Shahmirzaloo, A.; Hashemi, R.; Farahani, M. Using digital image correlation for characterizing the elastic and plastic parameters of ultrafine-grained Al 1050 strips fabricated via accumulative roll bonding process. Mater. Res. Express 2019, 6, 086542. [Google Scholar] [CrossRef]
- Sharma, A.; Dwivedi, V.K.; Singh, Y.P. Effect on ultimate tensile strength on varying rotational speed, plunge depth and welding speed during friction stir welding process of aluminium alloy AA7075. Mater. Today Proc. 2019, 26, 2055–2057. [Google Scholar] [CrossRef]
- Ramesh, N.R.; Kumar, V.S.S. Experimental erosion-corrosion analysis of friction stir welding of AA 5083 and AA 6061 for sub-sea applications. Appl. Ocean Res. 2020, 98, 102121. [Google Scholar] [CrossRef]
- Yilmaz, M.; Yilmaz, I.O.; Saray, O. Fatigue and Impact Behavior of Friction Stir Processed Dual-Phase (DP600) Steel Sheets. Metals 2024, 14, 305. [Google Scholar] [CrossRef]
- Zainulabdeen, A.A.; Abbass, M.K.; Ataiwi, A.H.; Khanna, S.K.; Jashti, B.; Widener, C. Investigation of Fatigue Behavior and Fractography of Dissimilar Friction Stir Welded Joints of Aluminum Alloys 7075-T6 and 5052-H34. Int. J. Mater. Sci. Eng. 2014, 2, 115–121. [Google Scholar] [CrossRef]
- Asmare, A.; Al-Sabur, R.; Messele, E. Experimental investigation of friction stir welding on 6061-t6 aluminum alloy using taguchi-based gra. Metals 2020, 10, 1480. [Google Scholar] [CrossRef]
- Manuel, N.; Galvão, I.; Leal, R.M.; Costa, J.D.; Loureiro, A. Nugget formation and mechanical behaviour of friction stirwelds of three dissimilar aluminum alloys. Materials 2020, 13, 2664. [Google Scholar] [CrossRef]
Element | Mg | Mn | Zn | Fe | Cu | Si | Cr | Al |
---|---|---|---|---|---|---|---|---|
AA6061-T6 | 0.84 | 0.01 | 0.06 | 0.40 | 0.24 | 0.24 | 0.18 | bal |
AA5083-H111 | 0.01 | 0.27 | 5.1 | 0.13 | 6.7 | 0.01 | 1.2 | bal |
Element | Yield Stress (MPa) | Tensile Strength (MPa) | Elongation % |
---|---|---|---|
AA6061-T6 | 306 | 342 | 17 |
AA5083-H111 | 387 | 471 | 20 |
Factor Symbol | Parameter | Level | ||
---|---|---|---|---|
Low (−1) | Center (0) | High (+1) | ||
Th | Thickness (mm) | 3 | 4 | 5 |
Tt | Holding time (s) | 15 | 20 | 25 |
L | Length (mm) | 0.1 | 0.2 | 0.3 |
SS | Spindle Speed (rpm) | 800 | 1200 | 1600 |
Fr | Feed Rate (mm/min) | 30 | 60 | 90 |
Run Order | Input Parameters (Factors) | ||||
---|---|---|---|---|---|
Th | Tt | L | SS | Fr | |
1 | 3 | 25 | 0.3 | 1600 | 90 |
2 | 3 | 15 | 0.3 | 800 | 90 |
3 | 5 | 25 | 0.1 | 1600 | 90 |
4 | 4 | 20 | 0.2 | 1200 | 60 |
5 | 3 | 25 | 0.1 | 1600 | 30 |
6 | 5 | 15 | 0.3 | 1600 | 90 |
7 | 3 | 25 | 0.1 | 800 | 90 |
8 | 5 | 25 | 0.3 | 1600 | 30 |
9 | 4 | 20 | 0.2 | 1200 | 60 |
10 | 3 | 15 | 0.1 | 1600 | 90 |
11 | 4 | 20 | 0.2 | 1200 | 60 |
12 | 5 | 15 | 0.1 | 1600 | 30 |
13 | 3 | 15 | 0.1 | 800 | 30 |
14 | 3 | 15 | 0.3 | 1600 | 30 |
15 | 3 | 25 | 0.3 | 800 | 30 |
16 | 5 | 25 | 0.3 | 800 | 90 |
17 | 5 | 15 | 0.3 | 800 | 30 |
18 | 5 | 25 | 0.1 | 800 | 30 |
19 | 5 | 15 | 0.1 | 800 | 90 |
Dimension | Thickness | |
---|---|---|
L | Length of tool pin (mm) | d—(0.1, 0.2, 0.3) mm, less than the material thickness for FSW welding |
d | Diameter of tool pin (mm) | material thickness to be welded |
C | d—1 mm, 1 mm, Depth digging groove × 2 | Depth digging in surface of shoulder = 0.5 mm |
D | Diameter of shoulder (mm) | (d*3) + 2 mm [5] |
Pin profile: Cylindrical flat Tilt angle (1.6°) |
Run Order | Input Parameters (Factors) | Response | |||||
---|---|---|---|---|---|---|---|
Th | Tt | L | SS | Fr | Average Measured Value (TS) | % Error | |
1 | 3 | 25 | 0.3 | 1600 | 90 | 282 | 0.89 |
2 | 3 | 15 | 0.3 | 800 | 90 | 209 | 0.67 |
3 | 5 | 25 | 0.1 | 1600 | 90 | 211 | 0.80 |
4 | 4 | 20 | 0.2 | 1200 | 60 | 209 | 0.72 |
5 | 3 | 25 | 0.1 | 1600 | 30 | 282 | 0.57 |
6 | 5 | 15 | 0.3 | 1600 | 90 | 146 | 0.66 |
7 | 3 | 25 | 0.1 | 800 | 90 | 282 | 0.88 |
8 | 5 | 25 | 0.3 | 1600 | 30 | 227 | 0.68 |
9 | 4 | 20 | 0.2 | 1200 | 60 | 195 | 0.65 |
10 | 3 | 15 | 0.1 | 1600 | 90 | 155 | 0.78 |
11 | 4 | 20 | 0.2 | 1200 | 60 | 209 | 0.90 |
12 | 5 | 15 | 0.1 | 1600 | 30 | 155 | 1.23 |
13 | 3 | 15 | 0.1 | 800 | 30 | 146 | 0.94 |
14 | 3 | 15 | 0.3 | 1600 | 30 | 195 | 1.36 |
15 | 3 | 25 | 0.3 | 800 | 30 | 227 | 0.89 |
16 | 5 | 25 | 0.3 | 800 | 90 | 285 | 0.96 |
17 | 5 | 15 | 0.3 | 800 | 30 | 146 | 1.15 |
18 | 5 | 25 | 0.1 | 800 | 30 | 237 | 0.98 |
19 | 5 | 15 | 0.1 | 800 | 90 | 164 | 0.79 |
No. | Input Parameters (Factors) | Response Average Measured Value (TS) MPa | ||||||
---|---|---|---|---|---|---|---|---|
Thickness (mm) | Time Holding (Second) | Length (mm) | Rotation Tool Speed (rpm) | Linear Tool Speed (mm/min) | Yield Stress (MPa) | Elongation % | TS (MPa) Used New Design Tool | |
1 | 3 | 25 | 0.3 | 1600 | 90 | 255 | 0.512 | 285 |
2 | 3 | 15 | 0.3 | 800 | 90 | 240 | 8.335 | 280 |
3 | 5 | 25 | 0.1 | 1600 | 90 | 210 | 7.82 | 250 |
4 | 4 | 20 | 0.2 | 1200 | 60 | 210 | 0.817 | 245 |
5 | 3 | 25 | 0.1 | 1600 | 30 | 300 | 2.249 | 317 |
6 | 5 | 15 | 0.3 | 1600 | 90 | 195 | 0.92 | 197 |
7 | 3 | 25 | 0.1 | 800 | 90 | 270 | 1.14 | 290 |
8 | 5 | 25 | 0.3 | 1600 | 30 | 210 | 0.861 | 270 |
9 | 4 | 20 | 0.2 | 1200 | 60 | 230 | 0.531 | 240 |
10 | 3 | 15 | 0.1 | 1600 | 90 | 134 | 0.561 | 205 |
11 | 4 | 20 | 0.2 | 1200 | 60 | 140 | 0.878 | 245 |
12 | 5 | 15 | 0.1 | 1600 | 30 | 168 | 0.555 | 215 |
13 | 3 | 15 | 0.1 | 800 | 30 | 140 | 0.262 | 153 |
14 | 3 | 15 | 0.3 | 1600 | 30 | 142 | 0.923 | 220 |
15 | 3 | 25 | 0.3 | 800 | 30 | 215 | 8.65 | 250 |
16 | 5 | 25 | 0.3 | 800 | 90 | 230 | 1.07 | 285 |
17 | 5 | 15 | 0.3 | 800 | 30 | 194 | 1.037 | 196 |
18 | 5 | 25 | 0.1 | 800 | 30 | 270 | 9.301 | 278 |
19 | 5 | 15 | 0.1 | 800 | 90 | 66 | 0.703 | 190 |
No. | TS (MPa) Normal Design Tool | TS (MPa) New Design Tool | Improvement (%) | Young’s Modulus (GPa) |
---|---|---|---|---|
1 | 282 | 285 | 1.1 | 183 |
2 | 209 | 280 | 33.9 | 179 |
3 | 211 | 250 | 18.5 | 180 |
4 | 209 | 245 | 17.2 | 188 |
5 | 282 | 317 | 12.4 | 191 |
6 | 146 | 197 | 34.9 | 101 |
7 | 282 | 290 | 2.8 | 180 |
8 | 227 | 270 | 18.9 | 182 |
9 | 195 | 240 | 23 | 178 |
10 | 155 | 205 | 32.4 | 118 |
11 | 209 | 245 | 17.2 | 144 |
12 | 155 | 215 | 38.7 | 107 |
13 | 146 | 153 | 4.8 | 100 |
14 | 195 | 220 | 12.8 | 123 |
15 | 227 | 250 | 10.1 | 179 |
16 | 285 | 285 | 0 | 188 |
17 | 146 | 196 | 34.2 | 112 |
18 | 237 | 278 | 17.2 | 171 |
19 | 164 | 190 | 15.9 | 113 |
No. of Samples | Optimize TS | Microhardness (Average SZ) | Error Margins |
---|---|---|---|
MPa | HV | ||
1 | 285 | 120 | 15 |
2 | 280 | 118 | 11 |
5 | 317 | 122 | 17 |
7 | 290 | 105 | 20 |
8 | 270 | 105 | 25 |
18 | 278 | 105 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalafe, W.H.; Sheng, E.L.; Bin Isa, M.R.; Shamsudin, S.B. Enhancing Mechanical Characteristics of 6061-T6 with 5083-H111 Aluminum Alloy Dissimilar Weldments: A New Pin Tool Design for Friction Stir Welding (FSW). Metals 2024, 14, 534. https://doi.org/10.3390/met14050534
Khalafe WH, Sheng EL, Bin Isa MR, Shamsudin SB. Enhancing Mechanical Characteristics of 6061-T6 with 5083-H111 Aluminum Alloy Dissimilar Weldments: A New Pin Tool Design for Friction Stir Welding (FSW). Metals. 2024; 14(5):534. https://doi.org/10.3390/met14050534
Chicago/Turabian StyleKhalafe, Wazir Hassan, Ewe Lay Sheng, Mohd Rashdan Bin Isa, and Shazarel Bin Shamsudin. 2024. "Enhancing Mechanical Characteristics of 6061-T6 with 5083-H111 Aluminum Alloy Dissimilar Weldments: A New Pin Tool Design for Friction Stir Welding (FSW)" Metals 14, no. 5: 534. https://doi.org/10.3390/met14050534
APA StyleKhalafe, W. H., Sheng, E. L., Bin Isa, M. R., & Shamsudin, S. B. (2024). Enhancing Mechanical Characteristics of 6061-T6 with 5083-H111 Aluminum Alloy Dissimilar Weldments: A New Pin Tool Design for Friction Stir Welding (FSW). Metals, 14(5), 534. https://doi.org/10.3390/met14050534