Microstructural Evolution and Tensile Properties of Al-Si Piston Alloys during Long-Term Thermal Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microstructural Examination
2.3. Tensile Testing
3. Results
3.1. Microstructural Evolution
3.2. Tensile Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirzaee-Moghadam, M.; Lashgari, H.R.; Zangeneh, S.; Rasaee, S.; Seyfor, M.; Asnavandi, M.; Mojtahedi, M. Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds. Mater. Chem. Phys. 2022, 279, 125758. [Google Scholar]
- Liu, Y.X.; Xiong, S.M. Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys. Metals 2024, 14, 370. [Google Scholar] [CrossRef]
- Cao, H.S.; Liu, F.J.; Li, H.; Qi, F.G.; Ouyang, X.P.; Zhao, N.; Liao, B. High temperature tribological performance and thermal conductivity of thick Ti/Ti-DLC multilayer coatings with the application potential for Al alloy pistons. Diam. Relat. Mater. 2021, 117, 108466. [Google Scholar] [CrossRef]
- Liu, L.; Tang, C.W.; Feng, W.; Yu, H.L.; He, Z.B.; Chu, X.C.; Wang, P.; Yang, Z.; Guo, Y.C. Effect of Cu addition on the microstructure, thermal physical properties and cyclic ablation of C/C-AlSi composite. J. Alloys Compd. 2023, 969, 172378. [Google Scholar] [CrossRef]
- Han, L.; Sui, Y.; Wang, Q.; Wang, K.; Jiang, Y. Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. J. Alloys Compd. 2017, 695, 1566–1572. [Google Scholar] [CrossRef]
- Efzan, M.N.; Kong, H.J.; Kok, C.K. Review: Effect of alloying element on Al-Si alloys. Adv. Mater. Res. 2013, 845, 355–359. [Google Scholar] [CrossRef]
- Mfusi, B.J.; Popoola, P.A.; Mathe, N.R. Optimisation of the Heat Treatment Profile for Powder-Bed Fusion Built AlSi10Mg by Age Hardening and Ice-Water Quenching. Metals 2024, 14, 292. [Google Scholar] [CrossRef]
- Jung, J.G.; Lee, S.H.; Lee, J.M.; Cho, Y.H.; Kim, S.H.; Yoon, W.H. Improved mechanical properties of near-eutectic AleSi piston alloy through ultrasonic melt treatment. Mater. Sci. Eng. A 2016, 669, 187–195. [Google Scholar] [CrossRef]
- Javidani, M.; Larouche, D. Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 2014, 59, 132–158. [Google Scholar] [CrossRef]
- Ye, H. An overview of the development of Al-Si-Alloy based material for engine applications. J. Mater. Eng. Perform. 2003, 12, 288–297. [Google Scholar] [CrossRef]
- Samuel, E.; Tahiri, H.; Samuel, A.M.; Samuel, F.H. Heterogenous Grain Nucleation in Al-Si Alloys: Types of Nucleant Inoculation. Metals 2024, 14, 271. [Google Scholar] [CrossRef]
- Kasprzak, W.; Chen, D.L.; Shaha, S.K. Heat treatment development for a rapidly solidified heat resistant cast Al-Si alloy. J. Mater. Eng. Perform. 2013, 22, 1838–1847. [Google Scholar] [CrossRef]
- Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L. Effect of Zr, V and Ti on hot compression behavior of the Al-Si cast alloy for powertrain applications. J. Alloys Compd. 2014, 615, 1019–1031. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, Y.M.; Lee, K.M.; Cho, H.S.; Hong, S.K.; Kim, Y.C.; Kang, C.S.; Kumai, S. The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al-Si-Cu-Mg foundry alloys. J. Alloys Compd. 2014, 617, 654–659. [Google Scholar] [CrossRef]
- Sepehrband, P.; Mahmudi, R.; Khomamizadch, F. Effect of Zr addition on the aging behavior of A319 aluminum cast alloy. Scr. Mater. 2005, 52, 253–257. [Google Scholar] [CrossRef]
- Zeren, M. The effect of heat-treatment on aluminum-based piston alloys. Mater. Des. 2007, 28, 2511–2517. [Google Scholar] [CrossRef]
- Teng, D.; Zhang, G.Z.; Zhang, S.; Li, J.W.; Jia, H.F.; He, Q.; Guan, R.G. Microstructure evolution and strengthening mechanism of A356/Al-X-Ce(Ti, C) system by inoculation treatment. J. Mater. Res. Technol. 2024, 28, 1233–1246. [Google Scholar] [CrossRef]
- Li, R.; Du, Z.H.; Yang, H.; He, L.M.; Cui, X.H. Microstructure evolution of 5052 aluminum alloy after electromagnetic-driven stamping following different heat treatment conditions. J. Mater. Res. Technol. 2024, 30, 485–494. [Google Scholar] [CrossRef]
- Jia, Z.H.; Zhou, G.W.; Zhou, H.Y.; Liu, F.; Ding, L.P.; Weng, Y.Y.; Xiang, K.Y.; Zhao, H.D. Effects of Cu content and heat treatment process on microstructures and mechanical properties of Al−Si−Mg−Mn−xCu cast aluminum alloys. Trans. Nonferrous Met. Soc. China. 2024, 34, 737–754. [Google Scholar] [CrossRef]
- Shin, D.; Shyam, A.; Lee, S.; Yamamoto, Y.; Haynes, J.A. Solute segregation at the Al/θ′-Al2Cu interface in Al-Cu alloys. Acta Mater. 2017, 141, 327–340. [Google Scholar] [CrossRef]
- Huang, C.L.; Shuai, S.S.; Wang, J.; Shi, L.; Li, S.L.; Nan, R.B.; Li, C.J.; Wang, J.; Ren, Z.M. Magnetic field-induced variation of solid/liquid interfacial energy of solid Al2Cu and Al-Cu eutectic melt. J. Alloys Compd. 2024, 941, 168977. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Chen, Z.; Tsalanidis, A.; Weyland, M.; Findlay, S.; Allen, L.J.; Li, J.; Medhekar, N.V. The enhanced theta-prime (θ′) precipitation in an Al-Cu alloy with trace Au additions. Acta Mater. 2017, 125, 340–350. [Google Scholar] [CrossRef]
- Sandoval, J.H.; Garza, G.H.; Samuel, A.M.; Valtiierra, S.; Samuel, F.H. The ambient and high temperature deformation behavior of AleSieCueMg alloy with minor Ti, Zr, Ni additions. Mater. Des. 2014, 58, 89–101. [Google Scholar] [CrossRef]
- Feng, J.; Ye, B.; Zuo, L.; Bao, Q.; Kong, X.; Jiang, H.; Ding, W. Effects of Ni content on low cycle fatigue and mechanical properties of Al-12Si-0.9Cu-0.8Mg-xNi at 350 °C. Mater. Sci. Eng. A 2017, 706, 27–37. [Google Scholar] [CrossRef]
- Milligan, B.; Ma, D.; Allard, L.; Clarke, A.; Shyam, A. Dislocation-θ′ (Al2Cu) interactions during creep deformation of an Al-Cu alloy. Scr. Mater. 2022, 217, 114739. [Google Scholar] [CrossRef]
- Li, M.X.; Yang, W.K.; Tian, X.L.; Chen, L.W.; Hou, H.; Zhao, Y.H. Precipitation and refining of Al2Cu in graphene nanoplatelets reinforced 2024 Al composites. Mater. Charact. 2023, 200, 112854. [Google Scholar] [CrossRef]
- Ehlers, F.J.; Wenner, H.S.; Andersen, S.J.; Marioara, C.D.; Lefebvre, W.; Boothroyd, C.B.; Holmestad, R. Phase stabilization principle and precipitatehost lattice influences for AleMgeSieCu alloy precipitates. J. Mater. Sci. 2014, 49, 6413–6426. [Google Scholar] [CrossRef]
- Veiga, R.; Bellon, B.; Papadimitriou, I.; Manzanares, G.E.; Sabirov, I.; LLorca, J. A multidisciplinary approach to study precipitation kinetics and hardening in an Al-4wt.%Cu alloy. J. Alloys Comp. 2018, 757, 504–519. [Google Scholar] [CrossRef]
- Sui, Y.; Han, L.; Wang, Q. Effects of thermal exposure on the microstructure and mechanical properties of Al-Si-Cu-Ni-Mg-Gd alloy. J. Mater. Eng. Perform. 2019, 28, 908–915. [Google Scholar] [CrossRef]
- Farkoosh, A.R.; Pekguleryuz, M. Enhanced mechanical properties of an Al-Si-Cu-Mg alloy at 350 °C: Effects of Mg and the Q-precipitate phase, Mater. Sci. Eng. A. 2015, 621, 277–286. [Google Scholar] [CrossRef]
- Tian, L.H.; Guo, Y.C.; Li, J.P.; Wang, J.L.; Duan, H.B.; Liang, M.X. Elevated re-aging of a piston aluminium alloy and effect on the microstructure and mechanical properties. Mater. Sci. Eng. A 2018, 738, 375–379. [Google Scholar] [CrossRef]
- Bourgeois, L.; Dwyer, C.; Weyland, M.; Nie, J.F.; Muddle, B.C. The magic thicknesses of θ′ precipitates in Sn-microalloyed Al-Cu. Acta Mater. 2012, 60, 633–644. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liao, X.Z.; Jin, Z.; Valiev, R.Z.; Zhu, Y.T. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004, 52, 4589–4599. [Google Scholar] [CrossRef]
- Ivanisenko, Y.; Lojkowski, W.; Valiev, R.Z.; Fecht, H.J. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Mater. 2005, 51, 5555–5570. [Google Scholar] [CrossRef]
- Wang, H.; Qin, G.L.; Li, C.G.; Liang, G.D. Effect of deformation parameters and Al2Cu evolution on dynamic recrystallization of 2219-O Al alloy during hot compression. J. Mater. Res. Technol. 2023, 26, 4093–4106. [Google Scholar] [CrossRef]
- Chen, C.L.; Richter, A.; Thomson, R.C. Investigation of mechanical properties of intermetallic phases in multi-component Al–Si alloys using hot-stage nanoindentation. Intermetallics 2010, 18, 499–508. [Google Scholar] [CrossRef]
Si | Cu | Mg | Ni | Fe | Zr | Ti | Sc | Ce | Al |
---|---|---|---|---|---|---|---|---|---|
11.5 | 3.9 | 0.9 | 2.25 | 0.16 | 0.18 | 0.17 | 0.18 | 0.25 | Bal. |
EDS Spectrum Number | Fraction of Elements Detected in Each EDS Spectrum (at.%) | Estimated Phase Particles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Si | Cu | Mg | Ni | Fe | Sc | Zr | Ti | ||
1 | 71.7 | 1.3 | ~ | ~ | 25.9 | 0.6 | 0.3 | ~ | 0.2 | ε-Al3Ni |
2 | 58.8 | 0.4 | 18.9 | 0.1 | 21.4 | 0.2 | 0.1 | 0.1 | ~ | δ-Al3CuNi |
3 | 25.1 | 30.5 | 7.4 | 36.8 | 0.1 | ~ | ~ | 0.1 | ~ | Q-Al5Cu2Mg8Si6 |
4 | 3.6 | 95.6 | 0.4 | ~ | 0.2 | ~ | ~ | 0.2 | ~ | Primary Si |
5 | 9.6 | 88.7 | 1.2 | 0.3 | 0.1 | 0.1 | ~ | ~ | ~ | Eutectic Si |
6 | 96.5 | 0.3 | 2.8 | 0.2 | ~ | 0.1 | ~ | ~ | 0.2 | Al matrix |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Dong, X.; Wang, J.; Duan, H.; Ma, Z.; Liang, M. Microstructural Evolution and Tensile Properties of Al-Si Piston Alloys during Long-Term Thermal Exposure. Metals 2024, 14, 535. https://doi.org/10.3390/met14050535
Xia F, Dong X, Wang J, Duan H, Ma Z, Liang M. Microstructural Evolution and Tensile Properties of Al-Si Piston Alloys during Long-Term Thermal Exposure. Metals. 2024; 14(5):535. https://doi.org/10.3390/met14050535
Chicago/Turabian StyleXia, Feng, Xiongbo Dong, Jianli Wang, Hongbo Duan, Zhijun Ma, and Minxian Liang. 2024. "Microstructural Evolution and Tensile Properties of Al-Si Piston Alloys during Long-Term Thermal Exposure" Metals 14, no. 5: 535. https://doi.org/10.3390/met14050535
APA StyleXia, F., Dong, X., Wang, J., Duan, H., Ma, Z., & Liang, M. (2024). Microstructural Evolution and Tensile Properties of Al-Si Piston Alloys during Long-Term Thermal Exposure. Metals, 14(5), 535. https://doi.org/10.3390/met14050535