Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis Methods
2.3. Experimental Procedure
3. Results and Discussion
3.1. Mineralogical Characteristics of the Clinker
3.2. Optimizing Zinc Recovery: Efficacy of Microwave-Assisted Versus Traditional Electrothermal Calcination of Clinker
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Information Agency INSIDER. Observed Growth in Zinc Prices on the London Metal Exchange (LME) Market Overview. Available online: https://metallicheckiy-portal.ru/index-cen-lme (accessed on 31 March 2024).
- Kaplunov, D.R. Rationale for the role and significance of geotechnological modules in the design of combined development of ore deposits. In Combined Geotechnology: Comprehensive Development and Preservation of the Earth’s Subsoil; Magnitogorsk State Technical University: Magnitogorsk, Russia, 2011; pp. 12–22. [Google Scholar]
- Annually, Kazakhstan Produces 300 Thousand Tons of Zinc and 150 Thousand Tons of Lead. Available online: https://dknews.kz/ru/ekonomika/105991-v-kazahstane-ezhegodno-proizvoditsya-300-tysyach-tonn (accessed on 18 June 2020).
- Review of Price Dynamics for Key Products in the Mining and Metallurgical Sector. Available online: https://home.kpmg/content/dam/kpmg/ru/pdf/2019/10/ru-ru-metals-and-mining-prices-report-3q-2019.pdf (accessed on 22 December 2023).
- Esezobor, D.E.; Balogun, S.A. Zinc accumulation during recycling of iron oxide wastes in the blast furnace. Ironmak. Steelmak. 2006, 33, 419–425. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2020; U.S. Geological Survey: Reston, VA, USA, 2020; p. 200. [Google Scholar] [CrossRef]
- Yang, C.; Sun, B. Modeling, Optimization, and Control of Zinc Hydrometallurgical Purification Process. In Emerging Methodologies and Applications in Modelling; Identification and Control; Academic Press: Cambridge, MA, USA, 2021; pp. 213–221. [Google Scholar] [CrossRef]
- Klein, S.E.; Kozlov, P.A.; Naboychenko, S.S. Extraction of Zinc from Ore Raw Materials; Ural State Mining University: Yekaterinburg, Russia, 2009; p. 492. [Google Scholar]
- Akhtamov, F.E.; Nishonov, B.U. On the issue of processing zinc cakes. Theory Technol. Metall. Prod. 2016, 1, 69–72. Available online: https://cyberleninka.ru/article/n/k-voprosu-pererabotki-tsinkovyh-kekov (accessed on 22 December 2023).
- Naboychenko, S.S.; Karelov, S.V.; Mamayachenkov, S.V.; Yakornov, S.A. Complex processing of zinc-containing technogenic wastes of Ural copper smelting enterprises. Min. J. 1997, 11–12, 250–255. [Google Scholar]
- Kozlov, P.A. Extraction of a range of non-ferrous and rare metals from industrial waste: Physico-chemical basis and technical solutions. Tsvetnye Met. 2020, 5, 28–36. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Fediuk, R.; Kolesnikova, O.G.; Zhanikulov, N.N.; Zhakipbayev, B.; Kuraev, R.M.; Akhmetova, E.; Shal, A. Processing of Waste from Enrichment with the Production of Cement Clinker and the Extraction of Zinc. Materials 2022, 15, 324. [Google Scholar] [CrossRef]
- Yessengaziyev, A.; Kenzhaliyev, B.; Berkinbayeva, A.; Sharipov, R.; Suleimenov, E. Electrochemical Extraction of Pb and Zn from a Collective Concentrate Using a Sulfur-Graphite Electrode as a Cathode. J. Chem. Technol. Metall. 2017, 52, 975–980. [Google Scholar]
- Beisembaev, B.B.; Kenzhaliyev, B.K.; Gorkun, V.I.; Govyadovskaya, O.U.; Ignatyev, M.M. Deep Processing of Lead-Zinc Ores and Intermediary Products with Receiving of Products with Increased Marketability. Almaty 2002, 3, 220. [Google Scholar]
- Singh, C.; Khanna, V.; Singh, S. Sustainability of Microwave Heating in Materials Processing Technologies. Materials Today: Proceedings. 2022. Available online: https://www.sciencedirect.com/science/article/pii/S2214785322048398 (accessed on 25 July 2022).
- Toshkodirova, R.E.; Abdurakhmonov, S. Processing of Clinker—Technogenic Waste of Zinc Production. Univers. Tech. Sci. 2020, 11, 78–81. [Google Scholar] [CrossRef]
- Lobanov, V.G.; Kolmachikhina, O.B.; Polygalov, S.E.; Khabibulina, R.E.; Sokolov, L.V. Features of the Presence of Precious Metals in the Zinc Production Clinker. Russ. J. Non-Ferr. Met. 2022, 63, 594–598. [Google Scholar] [CrossRef]
- Li, J.; Niu, H.; Peng, J.; Zhang, S.; Zhang, L.; Wei, X.; Fan, X.; Huang, M. Present Situation and Prospect about Comprehensive Utilization of Zinc Kiln Slags. Multipurp. Util. Miner. Resour. 2008, 6, 44–48. [Google Scholar] [CrossRef]
- Ramesh, S.; Teng, W.D.; Sopyan, I.; Bang, L.T.; Sarhan, A.A.D. Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia. Ceram. Int. 2018, 44, 8922–8927. [Google Scholar] [CrossRef]
- Kamariah, N.; Kalebic, D.; Xanthopoulos, P.; Blannin, R.; Araujo, F.P.; Koelewijn, S.F.; Spooren, J. Conventional versus microwave-assisted roasting of sulfidic tailings: Mineralogical transformation and metal leaching behavior. Miner. Eng. 2022, 183, 107587. [Google Scholar] [CrossRef]
- Soni, A.; Smith, J.; Thompson, A.; Brightwell, G. Microwave-induced thermal sterilization-A review on history, technical progress, advantages, and challenges as compared to conventional methods. Trends Food Sci. Technol. 2020, 97, 433–442. [Google Scholar] [CrossRef]
- Kalebic, D.; Dehaen, W.; Spooren, J. Additive-Free Aqueous Extraction of Copper and Zinc from Sulfidic Tailings Using Fast Microwave-Assisted Pre-and Post-Treatments. Ind. Eng. Chem. Res. 2022, 61, 13303–13313. [Google Scholar] [CrossRef]
- Wei, W.; Shao, Z.; Zhang, Y.; Qiao, R.; Gao, J. Fundamentals and applications of microwave energy in rock and concrete processing—A review. Appl. Therm. Eng. 2019, 157, 113751. [Google Scholar] [CrossRef]
- Feng, D.; Bai, L.; Xie, H.; Tong, X. Study on separation of low-grade zinc oxide ore with sulfurization-amination flotation. Physicochem. Probl. Miner. Process. 2019, 55, 1082–1090. [Google Scholar]
- Hamidi, A.; Nazari, P.; Shakibania, S.; Rashchi, F. Microwave irradiation for the recovery enhancement of fly ash components: Thermodynamic and kinetic aspects. Chem. Eng. Process. 2023, 191, 109472. [Google Scholar] [CrossRef]
- Kumar, P.; Ingle, A.; Jhavar, S. Parametric review of microwave-based materials processing and its applications. J. Mater. Res. Technol. 2019, 8, 3306–3326. [Google Scholar] [CrossRef]
- Ma, A.; Zheng, X.; Gao, L.; Li, K.; Omran, M.; Chen, G. Enhanced Leaching of Zinc from Zinc-Containing Metallurgical Residues via Microwave Calcium Activation Pretreatment. Metals 2021, 11, 1922. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, L.; Yang, K. Application of the Microwave and Ultrasonic Combined Technique in the Extraction of Refractory Complex Zinc Ore. Superalloys 2023, 13, 356. [Google Scholar] [CrossRef]
- Erans, M.; Durán-Jimenez, G.; Rodríguez, J.M.; Stevens, L.; Dodds, C. Microwave Thermal Pre-treatment and Calcination of Biomineralised Sorbents for Calcium Looping. J. CO2 Util. 2024, 83, 102794. [Google Scholar] [CrossRef]
- Okress, O. (Ed.) Title in English: Microwave Power Engineering; Mir: Moscow, Russia, 1971; p. 272. [Google Scholar]
- Karimi, S.; Rashchi, F.; Ghahreman, A. The Evaluation of Sphalerite Surface Formed During Oxidative Leaching in Acidic Ferric Sulfate Media. J. Sustain. Metall. 2021, 7, 1304–1313. [Google Scholar] [CrossRef]
- Li, Y.; Tan, W.; Wu, Y. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials. J. Eur. Ceram. Soc. 2020, 40, 2130–2140. [Google Scholar] [CrossRef]
- Junwei, H.; Liu, W.; Zhang, T.; Xue, K.; Li, W.; Fen, J.; Qin, W. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature. Sci. Rep. 2017, 7, 42536. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-K.; Yang, C.-Y. A study on the preparation of zinc ferrite. Scand. J. Metall. 2001, 30, 238–241. [Google Scholar]
- Xin, C.; Xia, H.; Jiang, G.; Zhang, Q.; Zhang, L.; Xu, Y. Studies on Recovery of Valuable Metals by Leaching Lead–Zinc Smelting Waste with Sulfuric Acid. Minerals 2022, 12, 1200. [Google Scholar] [CrossRef]
- Li, H.X.; Li, B.W.; Deng, L.B.; Xu, P.F.; Du, Y.S.; Ouyang, S.L.; Liu, Z.X. Evidence for non-thermal microwave effect in processing of tailing-based glass-ceramics. J. Eur. Ceram. Soc. 2019, 39, 1389–1396. [Google Scholar] [CrossRef]
- Li, H.; Shi, S.; Lin, B.; Lu, J.; Lu, Y.; Ye, Q.; Wang, Z.; Hong, Y.; Zhu, X. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal. Fuel Process. Technol. 2019, 189, 49–61. [Google Scholar] [CrossRef]
Elemental Content, % | |||||||||||
O | Na | Mg | Al | Si | P | S | Cl | K | Ca | Ti | Cr |
41.644 | 0.173 | 1.030 | 0.912 | 4.581 | 0.055 | 0.807 | 0.011 | 0.109 | 3.807 | 0.101 | 0.020 |
Mn | Fe | Ni | Cu | Zn | As | Sr | Zr | Mo | Sb | Ba | Pb |
0.110 | 37.532 | 0.033 | 1.037 | 1.217 | 0.138 | 0.043 | 0.012 | 0.026 | 0.034 | 0.825 | 0.154 |
Compound Name | Formula | S-Q, % |
---|---|---|
Hematite | Fe2O3 | 24.2% |
Magnesium iron oxide | Mg1.55Fe1.6O4 | 18.2% |
Diopside, ferrian | Ca1.007(Mg0.805Fe0.214) ((Si1.75Fe0.241)O6) | 16.5% |
Calcium magnesium iron aluminum silicate | Ca2(Mg,Fe+3,Al)6(Si,Al)6O20 | 15.1% |
Gypsum | CaSO4·2H2O | 12.2% |
Quartz | SiO2 | 8.1% |
Albite, potassian | (K0.22Na0.78)(AlSi3O8) | 4.4% |
Sphalerite | ZnS | 1.4% |
Indicator Name | Experiment No. 1 | Experiment No. 2 | Experiment No. 3 | Experiment No. 4 |
---|---|---|---|---|
Microwave power, kW | 25 | 25 | 25 | 25 |
Wave frequency, MHz | 915 | 915 | 915 | 915 |
Duration of experiment, min | 5–7 | 5–7 | 5–7 | 5–7 |
Temperature, °C | 250 | 460 | 600 | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhaliyev, B.; Surkova, T.; Berkinbayeva, A.; Baltabekova, Z.; Smailov, K. Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker. Metals 2024, 14, 699. https://doi.org/10.3390/met14060699
Kenzhaliyev B, Surkova T, Berkinbayeva A, Baltabekova Z, Smailov K. Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker. Metals. 2024; 14(6):699. https://doi.org/10.3390/met14060699
Chicago/Turabian StyleKenzhaliyev, Bagdaulet, Tatiana Surkova, Ainur Berkinbayeva, Zhazira Baltabekova, and Kenzhegali Smailov. 2024. "Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker" Metals 14, no. 6: 699. https://doi.org/10.3390/met14060699
APA StyleKenzhaliyev, B., Surkova, T., Berkinbayeva, A., Baltabekova, Z., & Smailov, K. (2024). Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker. Metals, 14(6), 699. https://doi.org/10.3390/met14060699