Combinatorial Design of an Electroplated Multi-Principal Element Alloy: A Case Study in the Co-Fe-Ni-Zn Alloy System
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- In the as-deposited sample with a thickness of about 4 μm, the Zn content varied between 18 and 44 at%, mainly at the expense of Co, but the average concentrations of Fe and Ni also decreased when the Zn content increased. In the whole studied compositional range, the structure was a single-phase FCC, in accordance with the prediction of the empirical VEC rule. The lattice constant of the FCC phase increased with increasing Zn content, which was successfully explained by the variation in the average atomic radius in the close-packed FCC structure. The layer had a 220 crystallographic texture and a nanocrystalline microstructure with a crystallite size of about 18 nm, irrespective of the chemical composition.
- The hardness and the elastic modulus of the combinatorial coating were about 4.5 and 130 GPa, respectively, for the Zn concentrations between 25 and 44 at%. For lower Zn contents, both mechanical parameters had smaller values (3 and 110 GPa for the hardness and the Young’s modulus, respectively). These values were much lower than those obtained for a formerly studied electrodeposited Co-Fe-Ni-Zn layer with similar composition, which can be attributed to the secondary BCC and amorphous phases in the previously investigated coating. This difference in the phase composition was caused by the partly dissimilar processing conditions.
- The relatively small variation in the mechanical properties as a function of the deposit composition as well as the small surface roughness of the deposits support electroplating as a prospective technology for the successful preparation of MPEA coatings with good mechanical performance. Should a minor variation in deposit composition arise from either the uneven current distribution or the uneven precursor supply, the resulting composition variation would not deteriorate the desired high coating hardness. This aspect of the electrodeposition process may play a crucial role in potential industrial applications, especially in cases where even current density (and concomitantly, even deposit composition) cannot be achieved due to the complex shape of the workpieces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Ritchie, R.O.; Meyers, M.A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345. [Google Scholar] [CrossRef]
- Li, W.; Xie, D.; Li, D.; Zhang, Y.; Gao, Y.; Liaw, P.K. Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 2021, 118, 100777. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef]
- Yu, B.; Ren, Y.; Zeng, Y.; Ma, W.; Morita, K.; Zhan, S.; Lei, Y.; Lv, G.; Li, S.; Wu, J. Recent progress in high-entropy alloys: A focused review of preparation processes and properties. J. Mater. Res. Technol. 2024, 29, 2689–2719. [Google Scholar] [CrossRef]
- Krishna, S.A.; Noble, N.; Radhika, N.; Saleh, B. A comprehensive review on advances in high entropy alloys: Fabrication and surface modification methods, properties, applications, and future prospects. J. Manuf. Process. 2024, 109, 583–606. [Google Scholar] [CrossRef]
- Sharma, P.; Dwivedi, V.K.; Dwivedi, S.P. Development of high entropy alloys: A review. Mater. Today Proc. 2021, 43, 502–509. [Google Scholar] [CrossRef]
- Yan, X.H.; Li, J.S.; Zhang, W.R.; Zhang, Y. A brief review of high-entropy films. Mater. Chem. Phys. 2018, 210, 12–19. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Z.; Liu, H.; Zhang, Y.; Li, H.; Shi, C.; Liu, P.; Yan, D. Recent progress on the microstructure and properties of high entropy alloy coatings prepared by laser processing technology: A review. J. Manuf. Process. 2022, 76, 397–411. [Google Scholar] [CrossRef]
- Kumar, S. Comprehensive review on high entropy alloy-based coating. Surf. Coat. Technol. 2024, 477, 130327. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Meisenkothen, F.; Miracle, D.B.; Woodward, C.F. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 2012, 47, 4062–4074. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, H.J.; Mun, S.C.; Jumaev, E.; Hong, S.H.; Song, G.; Kim, J.T.; Park, Y.K.; Kim, K.S.; Jeong, S.I.; et al. Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering. J. Alloys Compd. 2019, 797, 834–841. [Google Scholar] [CrossRef]
- Haciismailoglu, M.C.; Sarlar, K.; Tekgül, A.; Kucuk, I. Thermally evaporated FeMGaMnSi (M[dbnd]Co, Ni) high entropy alloy thin films: Magnetic and magnetoresistance properties. J. Non-Cryst. Solids 2020, 539, 120063. [Google Scholar] [CrossRef]
- Özbilen, S.; Vasquez, J.F.B.; Abbott, W.M.; Yin, S.; Morris, M.; Lupoi, R. Mechanical milling/alloying, characterization and phase formation prediction of Al0.1–0.5(Mn)CoCrCuFeNi-HEA powder feedstocks for cold spray deposition processing. J. Alloys Compd. 2023, 961, 170854. [Google Scholar] [CrossRef]
- Khan, N.A.; Akhavan, B.; Zhou, C.; Zhou, H.; Chang, L.; Wang, Y.; Liu, Y.; Fu, L.; Bilek, M.M.; Liu, Z. RF magnetron sputtered AlCoCrCu0.5FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition. J. Alloys Compd. 2020, 836, 155348. [Google Scholar] [CrossRef]
- Nagy, P.; Rohbeck, N.; Roussely, G.; Sortais, P.; Lábár, J.L.; Gubicza, J.; Michler, J.; Pethö, L. Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film. Surf. Coat. Technol. 2020, 386, 125465. [Google Scholar] [CrossRef]
- Zhang, W.; Clauss, M.; Guebey, J.; Schwager, F. Low-ammonia, high-speed palladium—Nickel electroplating process for connector applications: One-year industrial practice results for Pallamet 600 support claims regarding the process’ suitability as a hard gold replacement. Met. Finish. 2009, 107, 22–26. [Google Scholar] [CrossRef]
- Zhu, Z.; Meng, H.; Ren, P. CoNiWReP high entropy alloy coatings prepared by pulse current electrodeposition from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129404. [Google Scholar] [CrossRef]
- Pavithra, C.L.P.; Janardhana, R.K.S.K.; Reddy, K.M.; Murapaka, C.; Joardar, J.; Sarada, B.V.; Tamboli, R.R.; Hu, Y.; Zhang, Y.; Wang, X.; et al. An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Sci. Rep. 2021, 11, 8836. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P.; Péter, L.; Czigány, Z.; Chinh, N.Q.; Gubicza, J. Processing and characterization of an electrodeposited nanocrystalline Co–Fe–Ni–Zn multi-principal element alloy film. Surf. Coat. Technol. 2023, 467, 129740. [Google Scholar] [CrossRef]
- Dolique, V.; Thomann, A.L.; Brault, P.; Tessier, Y.; Gillon, P. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surf. Coat. Technol. 2010, 204, 12–13. [Google Scholar] [CrossRef]
- Gubicza, J. Combinatorial Design of Novel Multiprincipal Element Alloys Using Experimental Techniques. Adv. Eng. Mater. 2023, 26, 2301673. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Xie, D.; Qin, H.; Liu, W.; Liang, M.; Li, X.; Liu, C.; Huang, M. A new type of gradient structure FeCoCrNiWMo high entropy alloy layer by plasma solid-state surface metallurgy. Surf. Coat. Technol. 2023, 457, 129320. [Google Scholar] [CrossRef]
- Schweidler, S.; Schopmans, H.; Reiser, P.; Boltynjuk, E.; Olaya, J.J.; Singaraju, S.A.; Fischer, F.; Hahn, H.; Friederich, P.; Velasco, L. Synthesis and Characterization of High-Entropy CrMoNbTaVW Thin Films Using High-Throughput Methods. Adv. Eng. Mater. 2023, 25, 2200870. [Google Scholar] [CrossRef]
- Marshal, A.; Pradeep, K.G.; Music, D.; Wang, L.; Petracic, O.; Schneider, J.M. Combinatorial evaluation of phase formation and magnetic properties of FeMnCoCrAl high entropy alloy thin film library. Sci. Rep. 2019, 9, 7864. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P.; Rohbeck, N.; Hegedűs, Z.; Michler, J.; Pethö, L.; Lábár, J.L.; Gubicza, J. Microstructure, Hardness, and Elastic Modulus of a Multibeam-Sputtered Nanocrystalline Co-Cr-Fe-Ni Compositional Complex Alloy Film. Materials 2021, 14, 3357. [Google Scholar] [CrossRef]
- Nagy, P.; Rohbeck, N.; Widmer, R.N.; Hegedűs, Z.; Michler, J.; Pethö, L.; Lábár, J.L.; Gubicza, J. Combinatorial Study of Phase Composition, Microstructure and Mechanical Behavior of Co-Cr-Fe-Ni Nanocrystalline Film Processed by Multiple-Beam-Sputtering Physical Vapor Deposition. Materials 2022, 15, 2319. [Google Scholar] [CrossRef]
- Kauffmann, A.; Stüber, M.; Leiste, H.; Ulrich, S.; Schlabach, S.; Szabó, D.V.; Seils, S.; Gorr, B.; Chen, H.; Seifert, H.J.; et al. Combinatorial exploration of the High Entropy Alloy System Co-Cr-Fe-Mn-Ni. Surf. Coat. Technol. 2017, 325, 174–180. [Google Scholar] [CrossRef]
- Shojaei, Z.; Khayati, G.R.; Darezereshki, E. Review of electrodeposition methods for the preparation of high-entropy alloys. Int. J. Min. Met. Mater. 2022, 29, 1683–1696. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, P.; Tao, S.; Wang, L.; Zhang, S.; Pang, N.; Pan, M. Fabrication and magnetic properties of novel rare-earth-free Fe-Mn-Bi-P thin films by one-step electrodeposition. Thin Solid Film 2017, 638, 400–405. [Google Scholar] [CrossRef]
- Pavithra, C.L.P.; Janardhana, R.K.S.K.; Reddy, K.M.; Murapaka, C.; Wang, X.; Dey, S.R. One-dimensional Co–Cu–Fe–Ni–Zn high-entropy alloy nanostructures. Mater. Res. Lett. 2021, 9, 285–290. [Google Scholar] [CrossRef]
- Dehestani, M.; Sharafi, S.; Khayati, G.R. The effect of pulse current density on the microstructure, magnetic, mechanical, and corrosion properties of high-entropy alloy coating Fe–Co–Ni–Mo–W, achieved through electro co-deposition. Intermetallics 2022, 147, 107610. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Kruemmling, J.; Zanella, C. Electrodeposition of High Entropy Alloy of Ni-Co-Cu-Mo-W from an Aqueous Bath. J. Electrochem. Soc. 2022, 169, 082515. [Google Scholar] [CrossRef]
- Haché, M.J.R.; Tam, J.; Erb, U.; Zou, Z. Electrodeposited nanocrystalline medium-entropy alloys—An effective strategy of producing stronger and more stable nanomaterials. J. Alloys Compd. 2022, 899, 163233. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, C.; Wang, Y.; Dong, M.; You, Y.; Wang, J.; Liu, H.; Liu, J.; Wang, Y.; Zhu, Z. Microstructure and properties of FeCoNiCrX (X]Mn, Al) high-entropy alloy coatings. J. Alloys Compd. 2022, 921, 166061. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Gao, X.; Peng, L.; Qiao, Q.; Xiao, J.; Guo, F.; Wang, R.; Yu, J. Electrochemical Deposition and Corrosion Resistance Characterization of FeCoNiCr High-Entropy Alloy Coatings. Coatings 2023, 13, 1167. [Google Scholar] [CrossRef]
- Reddy, K.S.K.J.; Chokkakula, L.P.P.; Dey, S.R. Strategies to engineer FeCoNiCuZn high entropy alloy composition through aqueous electrochemical deposition. Electrochim. Acta 2023, 453, 142350. [Google Scholar] [CrossRef]
- Haché, M.J.R.; Tam, J.; Erb, U.; Zou, Y. Electrodeposited NiFeCo-(Mo, W) high-entropy alloys with nanocrystalline and amorphous structures. J. Alloys Compd. 2023, 952, 170026. [Google Scholar] [CrossRef]
- Bian, H.; Wang, R.; Zhang, K.; Zheng, H.; Wen, M.; Li, Z.; Li, Z.; Wang, G.; Xie, G.; Liu, X.; et al. Facile electrodeposition synthesis and super performance of nano-porous Ni-Fe-Cu-Co-W high entropy alloy electrocatalyst. Surf. Coat. Technol. 2023, 459, 129407. [Google Scholar] [CrossRef]
- Sundaram, M.; Branta, A.; Rajurkar, K. Electrochemical additive manufacturing of NiCoFeCuMo high entropyalloys using a combined dissolution-deposition system. CIRP Ann. Manuf. Technol. 2022, 71, 153–156. [Google Scholar] [CrossRef]
- Csik, A.; Vad, K.; Tóth-Kádár, E.; Péter, L. Spontaneous near-substrate composition modulation in electrodeposited Fe-Co-Ni alloys. Electrochem. Commun. 2009, 11, 1289–1291. [Google Scholar] [CrossRef]
- Péter, L.; Csik, A.; Vad, K.; Tóth-Kádár, E.; Pekker, Á.; Molnár, G. On the composition depth profile of electrodeposited Fe–Co–Ni alloys. Electrochim. Acta 2010, 55, 4734–4741. [Google Scholar] [CrossRef]
- Péter, L.; Rozman, K.Z.; Sturm, S. Structure and composition of electrodeposited FeCoNi alloys studied by transmission electron microscopy. J. Electrochem. Soc. 2018, 165, D384–D392. [Google Scholar] [CrossRef]
- Neuróhr, K.; Csik, A.; Vad, K.; Molnár, G.; Bakonyi, I.; Péter, L. Near-substrate composition depth profile of direct current-plated and pulse-plated Fe–Ni alloys. Electrochim. Acta 2013, 103, 179–187. [Google Scholar] [CrossRef]
- Péter, L.; Vad, K.; Csik, A.; Muníz, R.; Lobo, L.; Pereiro, R.; Sturm, S.; Rozman, K.Z.; Molnár, G.; Németh, K.; et al. In-depth component distribution in electrodeposited alloys and multilayers. J. Electrochem. Sci. Eng 2018, 8, 49–71. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Hessami, S.; Tobias, C.W. A Mathematical Model for Anomalous Codeposition of Nickel-Iron on a Rotating Disk Electrode. J. Electrochem. Soc. 1989, 136, 3611–3616. [Google Scholar] [CrossRef]
- Vaes, J.; Fransaer, J.; Celis, J.P. The Role of Metal Hydroxides in NiFe Deposition. J. Electrochem. Soc. 2000, 147, 3718–3724. [Google Scholar] [CrossRef]
- Larson, R.S. The Role of Homogeneous Chemical Kinetics in the Anomalous Codeposition of Binary Alloys. J. Electrochem. Soc. 2007, 154, D427–D434. [Google Scholar] [CrossRef]
- Matlosz, M. Competitive Adsorption Effects in the Electrodeposition of Iron-Nickel Alloys. J. Electrochem. Soc. 1993, 140, 2272–2279. [Google Scholar] [CrossRef]
- Zech, N.; Podlaha, E.J.; Landolt, D. Anomalous Codeposition of Iron Group Metals II. Mathematical Model. J. Electrochem. Soc. 1999, 146, 2892–2900. [Google Scholar] [CrossRef]
- Zhuang, Y.; Podlaha, E.J. NiCoFe Ternary Alloy Deposition. III. A Mathematical Model. J. Electrochem. Soc. 2003, 150, C225–C233. [Google Scholar] [CrossRef]
- Gubicza, J. X-ray Line Profile Analysis in Materials Science; IGI Global: Hershey, PA, USA, 2014. [Google Scholar] [CrossRef]
- Leineweber, A.; Mittemeijer, E.J. Diffraction line broadening due to lattice-parameter variations caused by a spatially varying scalar variable: Its orientation dependence caused by locally varying nitrogen content in ε-FeN0.433. J. Appl. Crystallogr. 2004, 37, 123–135. [Google Scholar] [CrossRef]
- Li, M.; Gazquez, J.; Borisevich, A.; Mishra, R.; Flores, K.M. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics 2018, 95, 110–118. [Google Scholar] [CrossRef]
- Yang, S.; Lu, J.; Xing, F.; Zhang, L.; Zhong, Y. Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design-A case study with Al–Co–Cr–Fe–Ni system. Acta Mater. 2020, 192, 11–19. [Google Scholar] [CrossRef]
- Weller, M.; Overton, T.; Rourke, J.; Armstrong, F. Inorganic Chemistry, 7th ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
Name of the Chemical [Formula of the Compound Used for the Bath Preparation] | Concentration of the Component (mmol/L) | |
---|---|---|
Starting Solution | Semi-Blank ZnSO4 Solution | |
Nickel chloride [NiCl2·6H2O] | 164 | 0 |
Iron(II) ammonium sulfate [(NH4)2Fe(SO4)2·6H2O] | 134 | 0 |
Cobalt chloride [CoCl2·6H2O] | 56.4 | 0 |
Zinc sulfate [ZnSO4·6H2O] | 13.4 | 360 |
Potassium chloride KCl | 164 | 0 |
Boric acid [H3BO3] | 250 | 250 |
Saccharin [C7H5NO3S] | 27.3 | 0 |
Ascorbic acid [C6H8O6] | 5.7 | 0 |
Sodium dodecylsulfate [CH3(CH2)11OSO3Na] | 1.4 | 0 |
Positions | Co (%) | Fe (%) | Ni (%) | Zn (%) |
---|---|---|---|---|
1 | 30.7 | 27.4 | 23.6 | 17.7 |
2 | 28.5 | 27.7 | 22.7 | 20.5 |
3 | 27.7 | 21.5 | 25.6 | 24.6 |
4 | 25.9 | 23.2 | 22.1 | 28.3 |
5 | 22.7 | 24.4 | 20 | 32.8 |
6 | 22.8 | 15.3 | 25.8 | 35.8 |
7 | 20.5 | 10.1 | 29 | 39.5 |
8 | 20.9 | 11.9 | 24.8 | 42.3 |
9 | 19.1 | 16.9 | 19.9 | 44.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, P.; Péter, L.; Kolonits, T.; Nagy, A.; Gubicza, J. Combinatorial Design of an Electroplated Multi-Principal Element Alloy: A Case Study in the Co-Fe-Ni-Zn Alloy System. Metals 2024, 14, 700. https://doi.org/10.3390/met14060700
Nagy P, Péter L, Kolonits T, Nagy A, Gubicza J. Combinatorial Design of an Electroplated Multi-Principal Element Alloy: A Case Study in the Co-Fe-Ni-Zn Alloy System. Metals. 2024; 14(6):700. https://doi.org/10.3390/met14060700
Chicago/Turabian StyleNagy, Péter, László Péter, Tamás Kolonits, Attila Nagy, and Jenő Gubicza. 2024. "Combinatorial Design of an Electroplated Multi-Principal Element Alloy: A Case Study in the Co-Fe-Ni-Zn Alloy System" Metals 14, no. 6: 700. https://doi.org/10.3390/met14060700
APA StyleNagy, P., Péter, L., Kolonits, T., Nagy, A., & Gubicza, J. (2024). Combinatorial Design of an Electroplated Multi-Principal Element Alloy: A Case Study in the Co-Fe-Ni-Zn Alloy System. Metals, 14(6), 700. https://doi.org/10.3390/met14060700