Effect of B2 Precipitation on Hot Ductility of Fe–22Mn–9Al–0.6C Low-Density Steel
Abstract
:1. Introduction
2. Material and Experimental Methods
3. Results
3.1. High-Temperature Tensile Properties
3.2. Precipitates after High-Temperature Tensile Tests
3.3. Precipitates under High Temperature
4. Discussion
5. Conclusions
- (1)
- The reduction in high-temperature strength at 800 °C to 850 °C is much higher than for other deformation temperature intervals, which is presumably attributable to the dissolution of κ-carbide.
- (2)
- The hot ductility decreases to half of the maximum, from approximately 60% to 30%, at deformation temperatures of 850–900 °C, which is presumably attributable to the formation of B2 in Fe–22Mn–9Al–0.6C low-density steel.
- (3)
- The secondary phase transformations that occur as the temperature increases from 800 °C to 950 °C are considered to be α + DO3 + κ→B2→δ + κ in the matrix.
- (4)
- The reduction in hot ductility tends to cause cracks in the alloy during the hot-forging process and may even lead to scrapping, which needs to be taken care of during hot deformation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, D.; Mi, Z.; Chen, Y. Technology and research and development of advanced automobile steel abroad. Iron Steel 2005, 40, 1–4. [Google Scholar]
- Churyumov, A.Y.; Kazakova, A.A.; Pozdniakov, A.V.; Churyumova, T.A.; Prosviryakov, A.S. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe–35Mn–10Al–1C steel. Metals 2022, 12, 831. [Google Scholar] [CrossRef]
- Kim, H.; Suh, D.W.; Kim, N.J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties. Sci. Technol. Adv. Mater. 2013, 14, 1–11. [Google Scholar] [CrossRef]
- Zargaran, A.; Kim, H.S.; Kwak, J.H.; Kim, N.J. Effects of Nb and C additions on the microstructure and tensile properties of lightweight ferritic Fe–8Al–5Mn alloy. Scr. Mater. 2014, 89, 37–40. [Google Scholar] [CrossRef]
- Sutou, Y.; Kamiya, N.; Umino, R.; Ohnuma, I.; Ishida, K. High-strength Fe–20Mn–Al–C-based alloys with low density. ISIJ Int. 2010, 50, 893–899. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U. Microstructures and mechanical properties of high-strength Fe–Mn–Al–C light-weight TRIPLEX steels. Steel Res. Int. 2006, 77, 627–633. [Google Scholar] [CrossRef]
- Chen, S.; Rana, R.; Haldar, A.; Ray, R.K. Current state of Fe–Mn–Al–C low density steels. Prog. Mater. Sci. 2017, 89, 345–391. [Google Scholar] [CrossRef]
- Chang, K.M.; Chao, C.G.; Liu, T.F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8 C alloy. Scr. Mater. 2010, 63, 162–165. [Google Scholar] [CrossRef]
- Yao, M.J.; Welsch, E.; Ponge, D.; Haghighat, S.M.H.; Sandlöbes, S.; Choi, P.; Herbig, M.; Bleskov, I.; Hickel, T.; Lipinska-Chwalek, M.; et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel. Acta Mater. 2017, 140, 258–273. [Google Scholar] [CrossRef]
- Haase, C.; Zehnder, C.; Ingendahl, T.; Bikar, A.; Tang, F.; Hallstedt, B.; Hu, W.; Bleck, W.; Molodov, D.A. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater. 2017, 122, 332–343. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.Y.; Meng, Q.W.; Wang, L.Y.; Li, Y.Z.; Xu, W. Tailoring retained austenite and mechanical property improvement in Al-Si-V containing medium Mn steel via direct intercritical rolling. Mater. Sci. Eng. A 2022, 855, 143904. [Google Scholar] [CrossRef]
- Choi, K.; Seo, C.H.; Lee, H.; Kim, S.K.; Kwak, J.H.; Chin, K.G.; Park, K.T.; Kim, N.J. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8 C steel. Scr. Mater. 2010, 63, 1028–1031. [Google Scholar] [CrossRef]
- Frommeyer, G.; Drewes, E.J.; Engl, B. Physical and mechanical properties of iron-aluminium- (Mn, Si) lightweight steels. Metall. Res. Technol. 2000, 97, 1245–1253. [Google Scholar] [CrossRef]
- Imandoust, A.; Zarei-Hanzaki, A.; Sabet, M.; Abedi, H.R. An analysis of the deformation characteristics of a dual phase twinning-induced plasticity steel in warm working temperature regime. Mater. Des. 2012, 40, 556–561. [Google Scholar] [CrossRef]
- Kim, Y.G.; Park, Y.S.; Han, J.K. Low temperature mechanical behavior of microalloyed and controlled-rolled Fe–Mn–Al–CX alloys. Metall. Trans. A 1985, 16, 1689–1693. [Google Scholar] [CrossRef]
- Granato, A.; Hikata, A.; Lücke, K. Recovery of damping and modulus changes following plastic deformation. Acta Metall. 1958, 6, 470–480. [Google Scholar] [CrossRef]
- Wu, Z.; Tang, Y.; Chen, W.; Lu, L.; Li, E.; Li, Z.; Ding, H. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map. Vacuum 2019, 159, 447–455. [Google Scholar] [CrossRef]
- Song, C.; Wang, H.; Sun, Z.; Xu, J.; Chen, H.; Yin, W. A new hot-rolled lightweight steel with ultra-high strength and good ductility designed by dislocation character and transformation strain. Scr. Mater. 2022, 212, 114583. [Google Scholar] [CrossRef]
- Yoo, J.D.; Park, K.T. Microband-induced plasticity in a high Mn-Al-C light steel. Mater. Sci. Eng. A 2008, 496, 417–424. [Google Scholar] [CrossRef]
- Yoo, J.D.; Hwang, S.W.; Park, K.T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8 C steel. Mater. Sci. Eng. A 2009, 508, 234–240. [Google Scholar] [CrossRef]
- Ha, M.C.; Koo, J.M.; Lee, J.K.; Hwang, S.W.; Park, K.T. Tensile deformation of a low density Fe–27Mn–12Al–0.8 C duplex steel in association with ordered phases at ambient temperature. Mater. Sci. Eng. A 2013, 586, 276–283. [Google Scholar] [CrossRef]
- Raabe, D.; Springer, H.; Gutiérrez-Urrutia, I.; Roters, F.; Bausch, M.; Seol, J.B.; Koyama, M.; Choi, P.P.; Tsuzaki, K. Alloy design, combinatorial synthesis, and microstructure–property relations for low-density Fe-Mn-Al-C austenitic steels. Jom 2014, 66, 1845–1856. [Google Scholar] [CrossRef]
- Liu, C.; Peng, Q.; Xue, Z. Research Situation of Fe–Mn–Al–C Low-density High-strength Steel. Mater. Rep. 2019, 33, 2572–2581. [Google Scholar]
- Lin, C.L.; Chao, C.G.; Bor, H.Y.; Liu, T.F. Relationship between microstructures and tensile properties of an Fe–30Mn–8.5 Al–2.0 C alloy. Mater. Trans. 2010, 51, 1084–1088. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Yang, M.; Jiang, P.; Yuan, F.; Wu, X. Shock and spall behaviors of a high specific strength steel: Effects of impact stress and microstructure. J. Appl. Phys. 2017, 121, 135901. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scr. Mater. 2013, 68, 343–347. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H.; Kim, N.J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 2015, 518, 77–79. [Google Scholar] [CrossRef]
- Rahnama, A.; Spooner, S.; Sridhar, S. Control of intermetallic nano-particles through annealing in duplex low density steel. Mater. Lett. 2017, 189, 13–16. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Wan, Y.; Wu, X.; Huang, Z. Research Progress of Ordered Precipitates in Low-density Steels. Mater. Rep. 2019, 32, 3979–3989. [Google Scholar]
- Park, G.; Nam, C.H.; Zargaran, A.; Kim, N.J. Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels. Scr. Mater. 2019, 165, 68–72. [Google Scholar] [CrossRef]
- Cheng, W.C.; Cheng, C.Y.; Hsu, C.W.; Laughlin, D. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel. Mater. Sci. Eng. A 2015, 642, 128–135. [Google Scholar] [CrossRef]
- Sundman, B.; Ohnuma, I.; Dupin, N.; Kattner, U.R.; Fries, S.G. An assessment of the entire Al-Fe system including D03 ordering. Acta Mater. 2009, 57, 2896–2908. [Google Scholar] [CrossRef]
- Chao, C.Y.; Hwang, C.N.; Liu, T.F. Grain boundary precipitation behaviors in an Fe–9.8 Al–28.6 Mn–0.8 Si–1.0 C alloy. Scr. Mater. 1996, 34, 75–81. [Google Scholar] [CrossRef]
- Lee, K.; Park, S.J.; Moon, J.; Kang, J.Y.; Lee, T.H.; Han, H.N. β-Mn formation and aging effect on the fracture behavior of high-Mn low-density steels. Scr. Mater. 2016, 124, 193–197. [Google Scholar] [CrossRef]
- Savaedi, Z.; Motallebi, R.; Mirzadeh, H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. J. Alloys Compd. 2022, 903, 163964. [Google Scholar] [CrossRef]
- Moon, J.; Jo, H.H.; Park, S.J.; Kim, S.D.; Lee, T.H.; Lee, C.H.; Lee, M.G.; Hong, H.U.; Suh, D.W.; Raabe, D. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure. Mater. Sci. Eng. A 2021, 808, 140954. [Google Scholar] [CrossRef]
- Moon, J.; Park, S.J.; Lee, C.H.; Hong, H.U.; Lee, B.H.; Kim, S.D. Influence of microstructure evolution on hot ductility behavior of austenitic Fe-Mn-Al-C lightweight steels during hot tensile deformation. Mater. Sci. Eng. A 2023, 868, 144786. [Google Scholar] [CrossRef]
- Lee, K.; Park, S.J.; Lee, J.; Moon, J.; Kang, J.Y.; Kim, D.I.; Suh, J.Y.; Han, H.N. Effect of aging treatment on microstructure and intrinsic mechanical behavior of Fe–31.4 Mn–11.4 Al–0.89 C lightweight steel. J. Alloys Compd. 2016, 656, 805–811. [Google Scholar] [CrossRef]
- Renault, C.; Churyumov, A.Y.; Pozdniakov, A.V.; Churyumova, T.A. Microstructure and hot deformation behavior of FeMnAlCMo steel. J. Mater. Res. Technol. 2020, 9, 4440–4449. [Google Scholar] [CrossRef]
- Hamada, A.S.; Karjalainen, L.P. Hot ductility behaviour of high-Mn TWIP steels. Mater. Sci. Eng. A 2011, 528, 1819–1827. [Google Scholar] [CrossRef]
- GB/T 228.1-202x; Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature. Standardization Administration of China (SAC). State Administration for Market Regulation (SAMR): Beijing, China, 2019.
- Kim, C.W.; Kwon, S.I.; Lee, B.H.; Moon, J.O.; Park, S.J.; Lee, J.H.; Hong, H.U. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel. Mater. Sci. Eng. A 2016, 673, 108–113. [Google Scholar] [CrossRef]
- Brüx, U.; Frommeye, R.G.; Jimenez, J. Light-weight steels based on iron-aluminium-influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties. Steel Res. 2002, 73, 543–548. [Google Scholar] [CrossRef]
- Rana, R.; Liu, C.; Ray, R.K. Low-density low-carbon Fe-Al ferritic steels. Scr. Mater. 2013, 68, 354–359. [Google Scholar] [CrossRef]
- Herrmann, J.; Inden, G.; Sauthoff, G. Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures. Acta Mater. 2003, 51, 2847–2857. [Google Scholar] [CrossRef]
- Liu, T.F.; Chou, J.S.; Wu, C.C. Effect of Si addition on the microstructure of an Fe–8.0 AI–29.0 Mn–0.90 C alloy. Metall. Trans. A 1990, 21, 1891–1899. [Google Scholar] [CrossRef]
- Cheng, W.C. Phase transformations of an Fe–0.85 C–17.9 Mn–7.1 Al austenitic steel after quenching and annealing. Jom 2014, 66, 1809–1820. [Google Scholar] [CrossRef]
- Choo, W.K.; Han, K.H. Phase constitution and lattice parameter relationships in rapidly solidified (Fe 0.65 Mn 0.35) 0.83 Al 0.17–xC and Fe 3 Al–xC pseudo-binary alloys. Metall. Trans. A 1985, 16, 5–10. [Google Scholar] [CrossRef]
- Choo, W.K.; Kim, D.G. Lattice modulation and formation of lamellar duplex ferrite/cubic carbide microstructure in rapidly solidified Fe-Ni-Al-C alloys. Metall. Mater. Trans. A 1987, 18, 759–766. [Google Scholar] [CrossRef]
- Han, K.H.; Yoon, J.C.; Choo, W.K. TEM evidence of modulated structure in Fe– Mn– Al–C austenitic alloys. Scr. Metall. 1986, 20, 33–36. [Google Scholar] [CrossRef]
- Acselrad, O.; Kalashnikov, I.S.; Silva, E.M.; Khadyev, M.S.; Simao, R.A. Diagram of phase transformations in the austenite of hardened alloy Fe–28% Mn–8.5% Al–1% C–1.25% Si as a result of aging due to isothermal heating. Met. Sci. Heat Treat. 2006, 48, 543–553. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Man, T.; Zhou, Y.; Wei, X.; Dong, H. Effect of B2 Precipitation on Hot Ductility of Fe–22Mn–9Al–0.6C Low-Density Steel. Metals 2024, 14, 724. https://doi.org/10.3390/met14060724
Wang J, Man T, Zhou Y, Wei X, Dong H. Effect of B2 Precipitation on Hot Ductility of Fe–22Mn–9Al–0.6C Low-Density Steel. Metals. 2024; 14(6):724. https://doi.org/10.3390/met14060724
Chicago/Turabian StyleWang, Jun, Tinghui Man, Yihao Zhou, Xicheng Wei, and Han Dong. 2024. "Effect of B2 Precipitation on Hot Ductility of Fe–22Mn–9Al–0.6C Low-Density Steel" Metals 14, no. 6: 724. https://doi.org/10.3390/met14060724
APA StyleWang, J., Man, T., Zhou, Y., Wei, X., & Dong, H. (2024). Effect of B2 Precipitation on Hot Ductility of Fe–22Mn–9Al–0.6C Low-Density Steel. Metals, 14(6), 724. https://doi.org/10.3390/met14060724