Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags
Abstract
:1. Introduction
2. Research Methodology
3. Technosphere and Technospheric Mining
4. Critical and Strategic Metals
5. Recovery of Critical and Strategic Metals from Non-Ferrous Slags
5.1. Tin Slag
Origin (Region) | Nb2O5 [Nb] | Ta2O5 [Ta] | (Ta, Nb)2O5 | TiO2 [Ti] | SnO2 [Sn] | MgO [Mg] | Al2O3 [Al] | MnO [Mn] | WO3 [W] | V2O5 [V] | Cr2O3 [Cr] | Ni2O3 [Ni] | Ce + La | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N/A | 9.35 | 2.6 | 11.95 | 5.9 | - | 5.3 | 6.56 | - | - | - | - | - | - | [52] |
N/A | 5.2 | 7.5 | 12.7 | 1.3 | 0.7 | - | 11.2 | 3.7 | - | - | - | - | - | [53] |
Nigeria | 14.1 | 20.8 | 34.9 | - | 0.37 | 1.2 | 5.1 | 1.7 | - | - | - | - | - | [55] |
Malaysia | 3.43 | 3.05 | 6.48 | 7.97 | 1.33 | - | 10.42 | 0.7 | 1.4 | - | - | - | - | [56,60] |
4 | 4 | 8 | 11 | 0.5 | 0.5 | 9 | 0.5 | 8 | 0.5 | - | - | - | [61] | |
Indonesia | - | - | 2.7 | 13.3 | 0.8 | - | 8.0 | 0.4 | 0.0 | - | - | - | - | [57,60] |
Indonesia | 0.33 | 0.64 | 0.97 | 11.92 | - | - | 11.7 | - | - | - | - | - | - | [62,63] |
(Bangka) | - | - | - | 2.38 | 1.78 | - | 0.52 | - | - | - | - | - | 1.7 | [63] |
Spain | - | - | 18.7 | 7.3 | 0.1 | - | 6.9 | 1.7 | 0.1 | - | - | - | - | [57,60] |
South Korea | - | - | 10.8 | 17.8 | 0.8 | - | 4.7 | 0.7 | 0.1 | - | - | - | - | [57,60] |
Thailand | - | - | 24.9 | 15.5 | 0.7 | - | 7.0 | 2.1 | 1.0 | 0.14 | 0.65 | - | - | [57,60] |
DR Congo | - | - | 12.7 | 1.3 | 0.7 | - | 11.2 | 3.7 | 0.2 | - | - | - | - | [57,60] |
England | - | - | - | - | 16.44 | 2.21 | 10.60 | 0.68 | 7.31 | - | - | - | - | [64] |
Zimbabwe | [29.9] | [27.3] | - | [0.16] | - | - | [0.17] | [2.95] | [0.41] | [0.06] | [0.03] | [0.13] | - | [65] |
Australia | 5.5 | 10 | 15.5 | 9 | - | - | - | - | - | - | - | - | - | [62] |
South Africa | 7 | 5 | 12 | 2 | - | - | - | - | - | - | - | - | - | [62] |
(Smelterskop) | 70.89 * | 1.75 * | 72.64 * | 1.4 | 25.28 | 3.09 | 11.86 | 0.11 | 0.34 | 0.11 | 0.045 | 20.41 * | 456.9 * | A, [59] |
(Elandsberg) | 0.1 | - | 0.1 | 8.61 | 11.19 ᵃ | 2.37 | 7.34 | 0.19 | - | 0.13 | 0.13 | 0.02 ᵇ | - | A, [59] |
Brazil | - | - | - | 0.8 | - | 6.2 | 11.8 | 0.7 | - | - | - | - | - | [66] |
Brazil | [0.3] | [0.5] | - | [1.0] | [2.0] | [4.0] | [2.0] | [0.6] | - | - | - | - | - | [51] |
5.2. Copper Slag
5.3. Nickel Slag
Origin (Region) | Ni | Co | Ti | Al | Mg | Mn | V | Cr | References |
---|---|---|---|---|---|---|---|---|---|
Brazil | 0.08 | 73 ppm | 0.04 | 1.99 | 17.2 | 0.29 | 85 ppm | 0.76 | [120] |
0.38 | 0.02 | - | 0.68 | 5.76 | - | - | 1.11 | [123] | |
1.05 | 0.243 | - | 1.66 | 0.8 | 0.05 | - | - | SC, [122,124] | |
China | 1.48 | 0.6 | - | - | - | - | - | - | C, [125] |
0.9 | 0.12 | - | 1.4 | 5.83 | - | - | - | F, [126] | |
Canada | 0.28 | 0.13 | 0.14 | 3.63 | 1.87 | 0.04 | - | - | F, [127] |
0.66 | 0.21 | 0.16 | 2.62 | 1.54 | 0.04 | - | - | SC, [7] | |
0.31 | 0.14 | 0.1 | 3.73 | 2.0 | 0.03 | - | - | FC, [7] | |
0.19 | 0.11 | 0.21 | 3.97 | 2.1 | 0.05 | - | - | SC, [7] | |
0.05 | 0.1 | 0.02 | 0.78 | 0.49 | 0.02 | - | - | FC, [7] | |
Poland | 0.55 | 0.05 | 0.64 (TiO2) | 11.47 (Al2O3) | 2.76 (MgO) | 0.26 (MnO) | - | - | [128] |
0.02 | 77 ppm | 0.53 (TiO2) | 16.4 (Al2O3) | 5.52 (MgO) | 1.16 (MnO) | - | - | [128] | |
82 ppm | 5 ppm | 0.09 (TiO2) | 2.79 (Al2O3) | 10.06 (MgO) | 0.22 (MnO) | - | - | [128] | |
N/A | 3.64 | 1.05 | - | 1.63 | 0.29 | - | - | - | C, [129] |
0.27 | 0.11 | - | 3.84 | 3.81 | - | - | - | F, [129] | |
0.32 | 0.16 | 0.12 | 2.86 | 2.57 | 0.05 | 0.01 | 0.05 | [121] | |
0.16 | 0.05 | 0.13 | 3.64 | 1.22 | 0.03 | 0.01 | 0.05 | [121] | |
0.12 | 0.02 | - | 6.92 (Al2O3) | 8.49 (MgO) | 0.34 (MnO) | - | - | F, [130] |
5.4. Vanadium Slag
5.5. Titanium Slag
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandt, D.A.; Warner, J.C. Metallurgy Fundamentals Ferrous and Nonferrous, 5th ed.; The Goodheart-Willcox Company, Inc.: Tinley Park, IL, USA, 2009. [Google Scholar]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Lee, J.-C.; Kurniawan; Kim, E.-Y.; Chung, K.W.; Kim, R.; Jeon, H.-S. A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production. J. Mater. Res. Technol. 2021, 12, 343–364. [Google Scholar] [CrossRef]
- Dehaine, Q.; Tijsseling, L.T.; Glass, H.J.; Törmänen, T.; Butcher, A.R. Geometallurgy of cobalt ores: A review. Miner. Eng. 2021, 160, 106656. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, B.; Wang, H.; Wang, M.; Wang, X. Recovery of valuable metals from copper slag. Min. Metall. Explor. 2020, 37, 1241–1251. [Google Scholar] [CrossRef]
- Shen, H.; Forssberg, E. An overview of recovery of metals from slags. Waste Manag. 2003, 23, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Gbor, P.K.; Mokri, V.; Jia, C.Q. Characterization of smelter slags. J. Environ. Sci. Health Part A 2000, 35, 147–167. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K.; Premchand. Characteristics and utilisation of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Lee, J.-C.; Pandey, B.D. Bio-processing of solid wastes and secondary resources for metal extraction—A review. Waste Manag. 2012, 32, 3–18. [Google Scholar] [CrossRef]
- Srichandan, H.; Mohapatra, R.K.; Parhi, P.K.; Mishra, S. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 2019, 189, 105122. [Google Scholar] [CrossRef]
- Potysz, A.; van Hullebusch, E.D.; Kierczak, J.; Grybos, M.; Lens, P.N.L.; Guibaud, G. Copper Metallurgical Slags—Current Knowledge and Fate: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2424–2488. [Google Scholar] [CrossRef]
- Moskalyk, R.; Alfantazi, A. Processing of vanadium: A review. Miner. Eng. 2003, 16, 793–805. [Google Scholar] [CrossRef]
- Shi, J.; Qiu, Y.; Yu, B.; Xie, X.; Dong, J.; Hou, C.; Li, J.; Liu, C. Titanium Extraction from Titania-Bearing Blast Furnace Slag: A Review. J. Miner. Met. Mater. Soc. 2022, 74, 654–667. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Nie, C.; Zhang, J.; Steenari, B.-M.; Ekberg, C. Comprehensive treatments of tungsten slags in China: A critical review. J. Environ. Manag. 2020, 270, 110927. [Google Scholar] [CrossRef]
- Beylot, A.; Dewulf, J.; Greffe, T.; Muller, S.; Blengini, G.-A. Mineral resources depletion, dissipation and accessibility in LCA: A critical analysis. Int. J. Life Cycle Assess. 2024, 29, 890–908. [Google Scholar] [CrossRef]
- Johansson, N.; Krook, J.; Eklund, M.; Berglund, B. An integrated review of concepts and initiatives for mining the technosphere: Towards a new taxonomy. J. Clean. Prod. 2013, 55, 35–44. [Google Scholar] [CrossRef]
- Palm, V.; Östlund, C. Lead and Zinc Flows from Technosphere to Biosphere in a City Region. Sci. Total Environ. 1996, 192, 95–109. [Google Scholar] [CrossRef]
- Hofstetter, P. Perspectives in Life Cycle Impact Assessment: A Structured Approach to Combine Models of the Technosphere, Ecosphere, and Valuesphere; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Karlsson, S. Closing the Technospheric Flows of Toxic Metals: Modeling Lead Losses from a Lead-Acid Battery System for Sweden. J. Ind. Ecol. 1999, 3, 23–40. [Google Scholar] [CrossRef]
- Palm, V. Material Flow Analysis in Technosphere and Biosphere. Ph.D. Thesis, Royal Institute of Technology, Universitetsservice US AB, Stockholm, Sweden, 2002. [Google Scholar]
- Zalasiewicz, J.; Williams, M.; Waters, C.N.; Barnosky, A.D.; Palmesino, J.; Rönnskog, A.-S.; Edgeworth, M.; Neal, C.; Cearreta, A.; Ellis, E.C.; et al. Scale and diversity of the physical technosphere: A geological perspective. Anthr. Rev. 2017, 4, 9–22. [Google Scholar] [CrossRef]
- Krook, J.; Svensson, N.; Eklund, M. Landfill Mining: A Critical Review of Two Decades of Research. Waste Manag. 2011, 32, 513–520. [Google Scholar] [CrossRef]
- Krook, J.; Carlsson, A.; Eklund, M.; Frändegård, P.; Svensson, N. Urban mining: Hibernating copper stocks in local power grids. J. Clean. Prod. 2011, 19, 1052–1056. [Google Scholar] [CrossRef]
- Reid, S.; Tam, J.; Yang, M.; Azimi, G. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment. Sci. Rep. 2017, 7, 15252. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, D.; Cleall, P.; Harbottle, M. In Situ Resource Recovery from Waste Repositories: Exploring the Potential for Mobilization and Capture of Metals from Anthropogenic Ores. J. Sustain. Metall. 2017, 3, 375–392. [Google Scholar] [CrossRef]
- Kim, J.; Azimi, G. Technospheric mining of niobium and titanium from electric arc furnace slag. Hydrometallurgy 2020, 191, 105203. [Google Scholar] [CrossRef]
- Lim, B.; Alorro, R.D. Technospheric Mining of Mine Wastes: A Review of Applications and Challenges. Sustain. Chem. 2021, 2, 686–706. [Google Scholar] [CrossRef]
- Pramanik, S.; Kumari, A.; Sahu, S.K.; Munshi, B. Extraction of metal values from iron-rich mine tailings via chloridized roasting and water leaching. Waste Manag. Bull. 2024, 2, 113–121. [Google Scholar] [CrossRef]
- Simandl, G.J.; Akam, C.; Paradis, S. Which materials are ‘critical’ and ‘strategic’. In Symposium on Strategic and Critical Metals; British Columbia Ministry of Energy and Mines: Victoria, BC, Canada, 2015; pp. 1–4. [Google Scholar]
- Jin, Y.; Kim, J.; Guillaume, B. Review of critical material studies. Resour. Conserv. Recycl. 2016, 113, 77–87. [Google Scholar] [CrossRef]
- Hofmann, M.; Hofmann, H.; Hagelüken, C.; Hool, A. Critical raw materials: A perspective from the materials science community. Sustain. Mater. Technol. 2018, 17, e00074. [Google Scholar] [CrossRef]
- Ailshie, J.F. Minerals in National Defense. ABA Sec. Miner. Nat. Res. L. Proc. 1939, 70. Available online: https://heinonline.org/HOL/LandingPage?handle=hein.journals/pabminn1&div=6&id=&page= (accessed on 3 July 2024).
- Antwerpen, F.V. Strategic Raw Materials. Ind. Eng. Chem. 1939, 31, 520–530. [Google Scholar] [CrossRef]
- Gunn, G. Critical Metals Handbook; Wiley: Hoboken, NJ, USA, 2013; pp. 1–439. [Google Scholar]
- Korinek, J.; Kim, J. Export restrictions on strategic raw materials and their impact on trade and global supply. J. World Trade 2011, 45, 255–281. [Google Scholar]
- Cote, G. Hydrometallurgy of Strategic Metals. Solvent Extr. Ion Exch. 2000, 18, 703–727. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Lobanov, K.V.; Volkov, A.V.; Galyamov, A.L.; Vikent’ev, I.V.; Tarasov, N.N.; Distler, V.V.; Lalomov, A.V.; Aristov, V.V.; Murashov, K.Y.; et al. Strategic metal deposits of the Arctic Zone. Geol. Ore Depos. 2015, 57, 433–453. [Google Scholar] [CrossRef]
- European Commission. Study on the Critical Raw Materials for the EU 2023—Final Report; Publications Office ofthe European Union: Luxembourg, 2023. [Google Scholar]
- Australian Government. Critical Minerals List 2023 Update; Critical Minerals Office: Canberra, ACT, Australia, 2023. [Google Scholar]
- Su, Y.; Hu, D. Global Dynamics and Reflections on Critical Minerals. E3S Web Conf. 2022, 352, 03045. [Google Scholar] [CrossRef]
- Applegate, J.D. 2021 Draft List of Critical Minerals; U.S. Geological Survey, Department of the Interior, Ed.; Federal Publisher: Alexandria, NSW, Australia, 2021; pp. 62199–62203. [Google Scholar]
- BGS. Risk List; British Geological Survey: Nottingham, UK, 2015. [Google Scholar]
- Mines, M.O. Critical Minerals For India; Government of India: New Delhi, India, 2023. [Google Scholar]
- OECD. OECD Secretary-General’s Report to Ministers 2021; OECD Publishing: Paris, France, 2021. [Google Scholar]
- OECD. A Sustainable Materials Management Case Study Critical Metals and Mobile Devices; OECD Publishing: Paris, France, 2011. [Google Scholar]
- USGS. 2022 Final List of Critical Minerals; Department of the Interior: Washington, DC, USA, 2022.
- United States Department of Energy. Critical Minerals and Materials; United States Department of Energy: Washington, DC, USA, 2021.
- Suliva, J.; Deese, B. Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-Based Growth; The White House: Washington, DC, USA, 2021; pp. 1–250. [Google Scholar]
- Nassar, N.T.; Fortier, S.M. Methodology and Technical Input for the 2021 Review and Revision of the US Critical Minerals List; U.S. Geological Survey: Reston, VA, USA, 2021. [Google Scholar]
- Anes, I.A.; Garjulli, F.; Siqueira de Carvalho, M.; Tenório, J.A.S.; Espinosa, D.C.R.; Coleti, J.L. Extraction of niobium in one step from tin slag by NH4F-HCl leaching process. Can. J. Chem. Eng. 2024, 102, 168–176. [Google Scholar] [CrossRef]
- Brocchi, E.A.; Moura, F.J. Chlorination methods applied to recover refractory metals from tin slags. Miner. Eng. 2008, 21, 150–156. [Google Scholar] [CrossRef]
- Gaballah, I.; Allain, E.; Djona, M. Extraction of tantalum and niobium from tin slags by chlorination and carbochlorination. Metall. Mater. Trans. B 1997, 28, 359–369. [Google Scholar] [CrossRef]
- Gaballah, I.; Allain, E. Recycling of strategic metals from industrial slag by a hydro-and pyrometallurgical process. Resour. Conserv. Recycl. 1994, 10, 75–85. [Google Scholar] [CrossRef]
- Odo, J.U.; Okafor, W.C.; Ekpe, S.O.; Nwogbu, C.C. Extraction of Niobium from Tin Slag. Int. J. Sci. Anc Res. Publ. 2014, 4. Available online: http://www.ijsrp.org/research-paper-1114.php?rp=P353322 (accessed on 3 July 2024).
- Subramanian, C.; Suri, A.K. Recovery of niobium and tantalum from low grade tin slag—A hydrometallurgical approach. Environ. Waste Manag. Non-Ferr. Metall. Ind. 1998, 831, 100–107. [Google Scholar]
- Allain, E.; Kanari, N.; Diot, F.; Yvon, J. Development of a process for the concentration of the strategic tantalum and niobium oxides from tin slags. Miner. Eng. 2019, 134, 97–103. [Google Scholar] [CrossRef]
- Sulaiman, M.Y. Simultaneous determination of thorium and uranium in tin slag. Sci. Total Environ. 1993, 130–131, 187–195. [Google Scholar] [CrossRef]
- Chirikure, S.; Heimann, R.B.; Killick, D. The technology of tin smelting in the Rooiberg Valley, Limpopo Province, South Africa, ca. 1650–1850 CE. J. Archaeol. Sci. 2010, 37, 1656–1669. [Google Scholar] [CrossRef]
- Gaballah, I.; Allain, E.; Meyer-Joly, M.C.; Malua, K. A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags. Metall. Mater. Trans. B 1992, 23, 249–259. [Google Scholar] [CrossRef]
- Gustison, R. Electric Furnace Method of Beneficiating Tantalum-And Noibium-Containing Tin Slags and The Like; Kawecki Berylco Industries, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Soedarsono, J.W.; Permana, S.; Hutauruk, J.K.; Adhyputra, R.; Rustandi, A.; Maksum, A.; Widana, K.S.; Trinopiawan, K.; Anggraini, M. Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching. IOP Conf. Ser. Mater. Sci. Eng. 2018, 316, 012052. [Google Scholar] [CrossRef]
- Munir, B.; Permana, B.; Amilia, A.; Maksum, A.; Soedarsono, J.W. Initial Study for Cerium and Lanthanum Extraction from Bangka Tin Slag through NaOH and HClO4 Leaching. MATEC Web Conf. 2019, 269, 07003. [Google Scholar] [CrossRef]
- Tylecote, F.; Photos-Jones, E.; Earl, B. The composition of tin slags from the south-west of England. World Archaeol. 1989, 20, 434–445. [Google Scholar] [CrossRef]
- Mudzanapabwe, N.T.; Chinyamakobvu, O.S.; Simbi, D.J. In situ carbothermic reduction of a ferro-columbite concentrate in the recovery of Nb and Ta as metal matrix composite from tin smelting slag waste dump. Mater. Des. 2004, 25, 297–302. [Google Scholar] [CrossRef]
- Fredericci, C.; Pizani, P.S.; Morelli, M.R. Crystallization of blast furnace slag glass melted in SnO2 crucible. J. Non-Cryst. Solids 2007, 353, 4062–4065. [Google Scholar] [CrossRef]
- Permana, S.; Soedarsono, J.W.; Rustandi, A.; Maksum, A. Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate. IOP Conf. Ser. Mater. Sci. Eng. 2016, 131, 012006. [Google Scholar] [CrossRef]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. 8—Use of Glass Cullet in Road Pavement Applications, in Sustainable Construction Materials. In Sustainable Construction Materials: Glass Cullet; Obe, R.K.D., De Brito, J., Ghataora, G.S., Lye, C.Q., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 297–325. [Google Scholar]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. 9—Use of Glass Cullet in Ceramics and Other Applications, in Sustainable Construction Materials. In Sustainable Construction Materials: Glass Cullet; Obe, R.K.D., De Brito, J., Ghataora, G.S., Lye, C.Q., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 327–387. [Google Scholar]
- Wang, L.; Xu, Y.; Tian, L.; Chen, Y.; Yang, A.; Gan, G.; Ma, Y.; Du, Y. Two-stage method recovery of metals from copper slag: Realize the resource utilization of all components. Miner. Eng. 2024, 206, 108503. [Google Scholar] [CrossRef]
- Miganei, L.; Gock, E.; Achimovičová, M.; Koch, L.; Zobel, H.; Kähler, J. New residue-free processing of copper slag from smelter. J. Clean. Prod. 2017, 164, 534–542. [Google Scholar] [CrossRef]
- Teğin, İ.; Ziyadanogullari, R. Recovery of Copper and Cobalt from Converter Slag with a New Flotation Method Using H2S. J. Environ. Sci. Eng. A 2018, 7, 69–75. [Google Scholar]
- Yuksel, U.; Teğin, İ.; Ziyadanogullari, R. Recovery of Copper and Cobalt from Copper Slags as Selective. J. Environ. Sci. Eng. A 2017, 6, 388–394. [Google Scholar] [CrossRef]
- Bulut, G.; Perek, K.T.; Gűl, A.; Arslan, F.; Őnal, G. Recovery of metal values from copper slags by flotation and roasting with pyrite. Min. Metall. Explor. 2007, 24, 13–18. [Google Scholar] [CrossRef]
- Bulut, G. Recovery of copper and cobalt from ancient slag. Waste Manag. Res. 2006, 24, 118–124. [Google Scholar] [CrossRef]
- Arslan, C.; Arslan, F. Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy 2002, 67, 1–7. [Google Scholar] [CrossRef]
- Kıyak, B.; Őzer, A.; Altundoǧan, H.S.; Erdem, M.; Tűmen, F. Cr(VI) reduction in aqueous solutions by using copper smelter slag. Waste Manag. 1999, 19, 333–338. [Google Scholar] [CrossRef]
- Altundoǧan, H.S.; Tümen, F. Metal recovery from copper converter slag by roasting with ferric sulphate. Hydrometallurgy 1997, 44, 261–267. [Google Scholar] [CrossRef]
- Yucel, O.; Addemir, O.; Tekin, A.; Nizamoglu, S. Recovery of Cobalt from Copper Slags. Miner. Process. Extr. Metall. Rev. 1992, 10, 99–107. [Google Scholar] [CrossRef]
- Mikoda, B.; Potysz, A.; Kmiecik, E. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. J. Environ. Manag. 2019, 236, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Potysz, A.; Kierczak, J.; Fuchs, Y.; Grybos, M.; Guibaud, G.; Lens, P.N.L.; van Hullebusch, E.D. Characterization and pH-dependent leaching behaviour of historical and modern copper slags. J. Geochem. Explor. 2016, 160, 1–15. [Google Scholar] [CrossRef]
- Potysz, A.; Kierczak, J.; Pietranik, A.; Kądziołka, K. Mineralogical, geochemical, and leaching study of historical Cu-slags issued from processing of the Zechstein formation (Old Copper Basin, southwestern Poland). Appl. Geochem. 2018, 98, 22–35. [Google Scholar] [CrossRef]
- Rudnik, E.; Burzyńska, L.; Gumowska, W. Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag. Miner. Eng. 2009, 22, 88–95. [Google Scholar] [CrossRef]
- Yang, W.J.; Wang, C.Y.; Ma, B.Z.; Wang, Z.; Chen, Y.Q.; Yin, F. Recovery of cobalt from copper converter slag by a selective reduction-roasting process. Adv. Mater. Res. 2012, 550, 2186–2189. [Google Scholar] [CrossRef]
- Zhai, X.-J.; Li, N.-J.; Zhang, X.; Fu, Y.; Jiang, L. Recovery of cobalt from converter slag of Chambishi Copper Smelter using reduction smelting process. Trans. Nonferrous Met. Soc. China 2011, 21, 2117–2121. [Google Scholar] [CrossRef]
- Yang, Z.; Rui-lin, M.; Wang-dong, N.; Hui, W. Selective leaching of base metals from copper smelter slag. Hydrometallurgy 2010, 103, 25–29. [Google Scholar] [CrossRef]
- Banza, A.N.; Gock, E.; Kongolo, K. Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy 2002, 67, 63–69. [Google Scholar] [CrossRef]
- Tshiongo, N.; Mbaya, R.K.K.; Maweja, K.; Tshabalala, L.C. Effect of cooling rate on base metals recovery from copper matte smelting slags. World Acad. Sci. Eng. Technol. 2010, 46, 273–277. [Google Scholar]
- Vítková, M.; Ettler, V.; Johan, Z.; Kríbek, B.; Sebek, O.; Mihaljevic, M. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 2010, 74, 581–600. [Google Scholar] [CrossRef]
- Ettler, V.; Johan, Z.; Kříbek, B.; Šebek, O.; Mihaljevič, M. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl. Geochem. 2009, 24, 1–15. [Google Scholar] [CrossRef]
- Rozendaal, A.; Horn, R. Textural, mineralogical and chemical characteristics of copper reverb furnace smelter slag of the Okiep Copper District, South Africa. Miner. Eng. 2013, 52, 184–190. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Särkijärvi, S.; Puhakka, J.A.; Peuraniemi, E.; Junnikkala, S.; Tuovinen, O.H. Solid phase changes in chemically and biologically leached copper smelter slag. Miner. Eng. 2017, 106, 97–101. [Google Scholar] [CrossRef]
- Palacios, J.; Sánchez, M. Wastes as resources: Update on recovery of valuable metals from copper slags. Miner. Process. Extr. Metall. 2011, 120, 218–223. [Google Scholar] [CrossRef]
- Parada, F.; Parra, R.; Watanabe, T.; Hino, M.; Palacios, J.; Sánchez, M. Recovery of iron-molybdenum alloy from copper slags. In Proceedings of the VIII International Conference on ‘Molten Slags, Fluxes and Salts’, Santiago, Chile, 18–21 January 2009. [Google Scholar]
- Cardona Valencia, N. The Physical Chemistry of Copper Smelting Slags and Copper Losses at the Paipote Smelter Part 2—Characterisation of industrial slags. Can. Metall. Q. 2011, 50, 330–340. [Google Scholar] [CrossRef]
- Sukla, L.B.; Panda, S.C.; Jena, P.K. Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometallurgy 1986, 16, 153–165. [Google Scholar] [CrossRef]
- Anand, S.; Rao, K.S.; Jena, P.K. Pressure leaching of copper converter slag using dilute sulphuric acid for the extraction of cobalt, nickel and copper values. Hydrometallurgy 1983, 10, 305–312. [Google Scholar] [CrossRef]
- Anand, S.; Rao, P.K.; Jena, P.K. Recovery of metal values from copper converter and smelter slags by ferric chloride leaching. Hydrometallurgy 1980, 5, 355–365. [Google Scholar] [CrossRef]
- Manasse, A.; Mellini, M.; Viti, C. The copper slags of the Capattoli Valley, Campiglia Marittima, Italy. Eur. J. Mineral. Eur. J. Miner. 2001, 13, 949–960. [Google Scholar] [CrossRef]
- Michailova, I.; Mehandjiev, D. Characterization of Fayalite from Copper Slags. J. Univ. Chem. Technol. Metall. 2010, 45, 317–326. [Google Scholar]
- Deng, T.; Ling, Y. Processing of copper converter slag for metal reclamation. Part I: Extraction and recovery of copper and cobalt. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 2007, 25, 440–448. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2024; U.S. Geological Survey: Reston, VA, USA, 2024; p. 212.
- LME. Cobalt Price; LME: London, UK, 2024. [Google Scholar]
- Jones, R.; Denton, R.T.; Reynolds, Q.G.; Parker, J.A.L.; van Tonder, G.J.J. Recovery of cobalt from slag in a DC arc furnace at Chambishi, Zambia. J. South. Afr. Inst. Min. Metall. 2002, 102, 5–9. [Google Scholar]
- Skirrow, R.G.; Huston, D.L.; Mernagh, T.P.; Thorne, J.P.; Dulfer, H.; Senior, A.B. Critical Commodities for a High-Tech World: Australia’s Potential to Supply Global Demand; Geoscience Australia: Canberra, NSW, Australia, 2013. [Google Scholar]
- Ziyadanogullari, B. Recovery of Copper and Cobalt from Concentrate and Converter Slag. Sep. Sci. Technol. 2000, 35, 1963–1971. [Google Scholar] [CrossRef]
- Hamamci, C.; Ziyadanoğullari, B. Effect of Roasting with Ammonium Sulfate and Sulfuric Acid on the Extraction of Copper and Cobalt from Copper Converter Slag. Sep. Sci. Technol. 1991, 26, 1147–1154. [Google Scholar] [CrossRef]
- Tümen, F.; Bailey, N.T. Recovery of metal values from copper smelter slags by roasting with pyrite. Hydrometallurgy 1990, 25, 317–328. [Google Scholar] [CrossRef]
- Arslan, F.; Giray, K.; Őnal, G.; Gürkan, V. Development of a flowsheet for recovering copper and tin from copper refining slags. Eur. J. Miner. Process. Environ. Prot. 2002, 2, 94–102. [Google Scholar]
- Anand, S.; Das, R.P.; Jena, P.K. Reduction-roasting and ferric chloride leaching of copper converter slag for extracting copper, nickel and cobalt values. Hydrometallurgy 1981, 7, 243–252. [Google Scholar] [CrossRef]
- Yin, F.; Xing, P.; Li, Q.; Wang, C.; Wang, Z. Magnetic separation-sulphuric acid leaching of Cu–Co–Fe matte obtained from copper converter slag for recovering Cu and Co. Hydrometallurgy 2014, 149, 189–194. [Google Scholar] [CrossRef]
- Banda, W.; Morgan, N.; Eksteen, J.J. The role of slag modifiers on the selective recovery of cobalt and copper from waste smelter slag. Miner. Eng. 2002, 15, 899–907. [Google Scholar] [CrossRef]
- Altundogan, H.S.; Boyrazli, M.; Tumen, F. A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate. Miner. Eng. 2004, 17, 465–467. [Google Scholar] [CrossRef]
- Erüst, C.; Akcil, A.; Gahan, C.S.; Tuncuk, A.; Deveci, H. Biohydrometallurgy of secondary metal resources: A potential alternative approach for metal recovery. J. Chem. Technol. Biotechnol. 2013, 88, 2115–2132. [Google Scholar] [CrossRef]
- Potysz, A.; van Hullebusch, E.D.; Kierczak, J. Perspectives regarding the use of metallurgical slags as secondary metal resources—A review of bioleaching approaches. J. Environ. Manag. 2018, 219, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Potysz, A.; Kierczak, J. Prospective (bio) leaching of historical copper slags as an alternative to their disposal. Minerals 2019, 9, 542. [Google Scholar] [CrossRef]
- Vestola, E.A.; Kuusenaho, M.K.; Närhi, H.M.; Tuovinen, O.H.; Puhakka, J.A.; Plumb, J.J.; Kaksonen, A.H. Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 2010, 103, 74–79. [Google Scholar] [CrossRef]
- Mehta, K.; Pandey, B. Bio-assisted leaching of copper, nickel and cobalt from copper converter slag. Mater. Trans. JIM 1999, 40, 214–221. [Google Scholar] [CrossRef]
- Parada, F.; Sanchez, M.; Ulloa, A.; Carrasco, J.C.; Palacios, J.; Reghezza, A. Recovery of molybdenum from roasted copper slags. Miner. Process. Extr. Metall. 2010, 119, 171–174. [Google Scholar] [CrossRef]
- Ettler, V.; Kvapil, J.; Šebek, O.; Johan, Z.; Mihaljevič, M.; Ratié, G.; Garnier, J.; Quantin, C. Leaching behaviour of slag and fly ash from laterite nickel ore smelting (Niquelândia, Brazil). Appl. Geochem. 2016, 64, 118–127. [Google Scholar] [CrossRef]
- Jia, C.Q.; Xiao, J.Z.; Orr, R.G. Behavior of metals in discard nickel smelter slag upon reacting with sulfuric acid. J. Environ. Sci. Health Part A 1999, 34, 1013–1034. [Google Scholar] [CrossRef]
- Li, Y.; Perederiy, I.; Papangelakis, V.G. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching. J. Hazard. Mater. 2008, 152, 607–615. [Google Scholar] [CrossRef]
- Ibiapina, V.F.; Medeiros, M.E.; Afonso, J.C.; dos Santos, I.D. Oxidative Acidic Leaching of Ferronickel Slag for Sustainable Metals Recovery and Liability Reduction. J. Sustain. Metall. 2024, 10, 587–602. [Google Scholar] [CrossRef]
- Li, Y.; Papangelakis, V.G.; Perederiy, I. High pressure oxidative acid leaching of nickel smelter slag: Characterization of feed and residue. Hydrometallurgy 2009, 97, 185–193. [Google Scholar] [CrossRef]
- Huang, F.; Liao, Y.; Zhou, J.; Wang, Y.; Li, H. Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution. Sep. Purif. Technol. 2015, 156, 572–581. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, G.-L.; Zhu, D.-Q.; Zhou, X.-L. Utilization of nickel slag using selective reduction followed by magnetic separation. Trans. Nonferrous Met. Soc. China 2013, 23, 3421–3427. [Google Scholar] [CrossRef]
- Gbor, P.K.; Ahmed, I.B.; Jia, C.Q. Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag. Hydrometallurgy 2000, 57, 13–22. [Google Scholar] [CrossRef]
- Kierczak, J.; Neel, C.; Puziewicz, J.; Bril, H. The mineralogy and weathering of slag produced by the smelting of lateritic Ni ores, Szklary, Southwestern Poland. Can. Mineral. 2009, 47, 557–572. [Google Scholar] [CrossRef]
- Baghalha, M.; Papangelakis, V.G.; Curlook, W. Factors affecting the leachability of Ni/Co/Cu slags at high temperature. Hydrometallurgy 2007, 85, 42–52. [Google Scholar] [CrossRef]
- Sakaroglou, M.; Anastassakis, G. Nickel recovery from electric arc furnace slag by magnetic separation. J. Min. Metall. A Min. 2017, 53, 3–15. [Google Scholar] [CrossRef]
- Mubarok, M.; Hanif, L. Cobalt and nickel separation in nitric acid solution by solvent extraction using Cyanex 272 and Versatic 10. Procedia Chem. 2016, 19, 743–750. [Google Scholar] [CrossRef]
- Koladkar, D.; Dhadke, P. Cobalt–Nickel separation: The extraction of cobalt (II) and nickel (II) with Bis (2-ethylhexyl) Phosphinic Acid (pia-8) in Toluene. Solvent Extr. Ion Exch. 2001, 19, 1059–1071. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Adekola, F.A.; Baba, A.A.; Ximba, B.J.; Fatoki, O.S. Application of Cyanex extractant in cobalt/nickel separation process by solvent extraction. Int. J. Phys. Sci. 2013, 8, 89–97. [Google Scholar]
- Liu, S.; Wang, L.; Chen, J.; Ye, L.; Du, J. Research progress of vanadium extraction processes from vanadium slag: A review. Sep. Purif. Technol. 2024, 342, 127035. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Chen, M.; Nueraijemaiti, A.; Du, J.; Fan, X.; Tao, C.-Y. Enhanced leaching of vanadium slag in acidic solution by electro-oxidation. Hydrometallurgy 2016, 159, 1–5. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhang, L.; Gu, S. Mechanism of vanadium slag roasting with calcium oxide. Int. J. Miner. Process. 2015, 138, 20–29. [Google Scholar] [CrossRef]
- Gao, F.; Olayiwola, A.U.; Liu, B.; Wang, S.; Du, H.; Li, J.; Wang, X.; Chen, D.; Zhang, Y. Review of vanadium production part I: Primary resources. Miner. Process. Extr. Metall. Rev. 2021, 43, 466–488. [Google Scholar] [CrossRef]
- Wang, X.; Gao, D.; Chen, B.; Meng, Y.; Fu, Z.; Wang, M. A clean metallurgical process for separation and recovery of vanadium and chromium from V-Cr-bearing reducing slag. Hydrometallurgy 2018, 181, 1–6. [Google Scholar] [CrossRef]
- Wang, G.; Lin, M.-M.; Diao, J.; Li, H.-Y.; Xie, B.; Li, G. Novel strategy for green comprehensive utilization of vanadium slag with high-content chromium. ACS Sustain. Chem. Eng. 2019, 7, 18133–18141. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, T.; Lü, G.; Zhang, Y.; Liu, Y.; Zhang, W. Effects of Microwave Roasting on the Kinetics of Extracting Vanadium from Vanadium Slag. JOM 2016, 68, 577–584. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.-Y.; Yin, X.-C.; Yan, Z.-M.; Yan, X.-M.; Xie, B. Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid. Int. J. Miner. Process. 2014, 133, 105–111. [Google Scholar] [CrossRef]
- Jiang, T.; Wen, J.; Zhou, M.; Xue, X. Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag. J. Alloys Compd. 2018, 742, 402–412. [Google Scholar] [CrossRef]
- Ning, P.; Lin, X.; Wang, X.; Cao, H. High-efficient extraction of vanadium and its application in the utilization of the chromium-bearing vanadium slag. Chem. Eng. J. 2016, 301, 132–138. [Google Scholar] [CrossRef]
- Liu, Z.; Nueraihemaiti, A.; Chen, M.; Du, J.; Fan, X.; Tao, C. Hydrometallurgical leaching process intensified by an electric field for converter vanadium slag. Hydrometallurgy 2015, 155, 56–60. [Google Scholar] [CrossRef]
- Wang, H.G.; Wang, M.Y.; Wang, X.W. Leaching behaviour of chromium during vanadium extraction from vanadium slag. Miner. Process. Extr. Metall. 2015, 124, 127–131. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, S.; Wang, S.; Qin, Y.; Du, H.; Zhang, Y. Electrochemical decomposition of vanadium slag in concentrated NaOH solution. Hydrometallurgy 2015, 151, 51–55. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Zhou, W.; Gao, H.; Xue, X. A cleaner and efficient process for extraction of vanadium from high chromium vanadium slag: Leaching in (NH4)2SO4-H2SO4 synergistic system and NH4+ recycle. Sep. Purif. Technol. 2019, 216, 126–135. [Google Scholar] [CrossRef]
- Ji, Y.; Shen, S.; Liu, J.; Xue, Y. Cleaner and effective process for extracting vanadium from vanadium slag by using an innovative three-phase roasting reaction. J. Clean. Prod. 2017, 149, 1068–1078. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, K.; Hua, W.-H.; Yang, Z.; Zhou, W.; Xie, B. Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate. Hydrometallurgy 2016, 160, 18–25. [Google Scholar] [CrossRef]
- Yan, X.-M.; Xie, B.; Jiang, L.; Guo, H.-P.; Li, H.-Y. Leaching of Vanadium from the Roasted Vanadium Slag with High Calcium Content by Direct Roasting and Soda Leaching. In Rare Metal Technology 2015; Neelameggham, N.R., Alam, S., Oosterhof, H., Jha, A., Dreisinger, D., Wang, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 209–216. [Google Scholar]
- Ning, P.; Lin, X.; Cao, H.; Zhang, Y. Selective extraction and deep separation of V(V) and Cr(VI) in the leaching solution of chromium-bearing vanadium slag with primary amine LK-N21. Sep. Purif. Technol. 2014, 137, 109–115. [Google Scholar] [CrossRef]
- Liu, H.B.; Liu, B.; Li, L.J.; Zheng, S.L.; Du, H.; Wang, S.N.; Chen, D.H.; Qi, J.; Zhang, Y. Novel methods to extract vanadium from vanadium slag by liquid oxidation technology. Adv. Mater. Res. 2012, 396, 1786–1793. [Google Scholar] [CrossRef]
- United States Geological Survey. Mineral Commodity Summaries 2020; United States Geological Survey: Reston, VA, USA, 2020; p. 204.
- Li, X.S.; Xie, B. Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching. Int. J. Miner. Metall. Mater. 2012, 19, 595–601. [Google Scholar] [CrossRef]
- Liu, B.; Du, H.; Wang, S.-N.; Zhang, Y.; Zheng, S.-L.; Li, L.-J.; Chen, D.-H. A Novel Method to Extract Vanadium and Chromium from Vanadium Slag using Molten NaOH-NaNO3 Binary System. AIChE J. 2013, 59, 541–552. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Zheng, S.-L.; Wang, S.-N.; Liu, B.; Wang, D.-W.; Du, H.; Zhang, Y. Research and prospect on extraction of vanadium from vanadium slag by liquid oxidation technologies. Trans. Nonferrous Met. Soc. China 2014, 24, 1273–1288. [Google Scholar] [CrossRef]
- Chen, B.; Wang, M.; Huang, S.; Ge, Q.; Wang, X.; Sun, B. Extraction of vanadium from V-Cr bearing reduced residue by selective oxidation combined with alkaline leaching. Can. Metall. Q. 2018, 57, 434–438. [Google Scholar] [CrossRef]
- Wang, M.; Chen, B.; Huang, S.; Wang, X.; Liu, B.; Ge, Q.; Xie, S. A novel technology for vanadium and chromium recovery from V-Cr-bearing reducing slag. Hydrometallurgy 2017, 171, 116–122. [Google Scholar] [CrossRef]
- Chen, B.; Huang, S.; Liu, B.; Ge, Q.; Wang, M.; Wang, X. Separation and recovery of vanadium and chromium from acidic leach solution of V-Cr-bearing reducing slag. J. Environ. Chem. Eng. 2017, 5, 4702–4706. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Zhang, M.; Guo, M.; Wang, X. The Influence of SiO2 on the Extraction of Ti Element from Ti-bearing Blast Furnace Slag. Steel Res. Int. 2011, 82, 607–614. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.N.; Wang, M.Y.; Li, G.Q.; Sui, Z.T. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng. 2007, 20, 684–693. [Google Scholar] [CrossRef]
- Han, J.-Q.; Zhang, J.; Zhang, J.-H.; Chen, X.; Zhang, L.; Tu, G.-F. Recovery of Fe, V, and Ti in modified Ti-bearing blast furnace slag. Trans. Nonferrous Met. Soc. China 2022, 32, 333–344. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Mao, S.; Xiao, Y.; Li, J. Extraction of Valuable Metals from Titanium-bearing Blast Furnace Slag by Acid Leaching. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2024, 39, 376–385. [Google Scholar] [CrossRef]
- Chen, D.-S.; Zhao, L.-S.; Qi, T.; Hu, G.-P.; Zhao, H.-X.; Li, J.; Wang, L.-N. Desilication from titanium–vanadium slag by alkaline leaching. Trans. Nonferrous Met. Soc. China 2013, 23, 3076–3082. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Middlemas, S.; Guo, J.; Fan, P. A new, energy-efficient chemical pathway for extracting Ti metal from Ti minerals. J. Am. Chem. Soc. 2013, 135, 18248–18251. [Google Scholar] [CrossRef]
- Dong, H.; Jiang, T.; Guo, Y.; Chen, J.; Fan, X. Upgrading a Ti-slag by a roast-leach process. Hydrometallurgy 2012, 113, 119–121. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, K.; Peng, J.; Chen, J. Optimization of combined mechanical activation-roasting parameters of titania slag using response surface methodology. Adv. Powder Technol. 2010, 21, 331–335. [Google Scholar] [CrossRef]
- Guo, C.; Chen, J.; Peng, J.-H.; Wan, R.-D. Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment. Trans. Nonferrous Met. Soc. China 2010, 20, s198–s204. [Google Scholar]
- Cai, Y.; Song, N.; Yang, Y.; Sun, L.; Hu, P.; Wang, J. Recent progress of efficient utilization of titanium-bearing blast furnace slag. Int. J. Miner. Metall. Mater. 2022, 29, 22–31. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Wang, M.; Li, G.; Sui, Z. Dynamic oxidation of the Ti-bearing blast furnace slag. ISIJ Int. 2006, 46, 458–465. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Zhang, L.; Zhang, L.; Tu, G.; Sui, Z. Effect of oxidization on enrichment behavior of TiO2 in titanium-bearing slag. Rare Met. 2006, 25, 106–110. [Google Scholar] [CrossRef]
Technospheric Stocks | Status | References |
---|---|---|
In-use stocks (In-use mining) | Active | [17] |
Landfills (Landfill mining) | Controlled inactive | |
Tailings (Tailing mining) | ||
Slags (Slag mining) | ||
Hibernating stocks (Hibernation mining) | Uncontrolled inactive | |
Dissipated stocks (Dissipation mining) | ||
Urban technosphere | Active | [22] |
Rural technosphere | Uncontrolled inactive | |
Subterranean technosphere | Controlled inactive | |
Marine technosphere | Uncontrolled inactive | |
Aerial technosphere | Uncontrolled inactive |
Metals | AG [40] | BGS [43] | CG [41] | EU [39] | GI [44] | OECD [36] | USA [42] |
---|---|---|---|---|---|---|---|
Aluminium (Al) | X | X | X | X | X | X | X |
Antimony (Sb) | X | X | X | X | X | ||
Arsenic (As) | X | X | X | X | X | ||
Barium (Ba) | X | X 1 | X | ||||
Beryllium (Be) | X | X | X | X | |||
Bismuth (Bi) | X | X | X | X | |||
Cadmium (Cd) | X | X | |||||
Carbon * (C) | X | X | X | X | X | X | X |
Chromium (Cr) | X | X | X | X | X | X | |
Cobalt (Co) | X | X | X | X | X | X | X |
Copper (Cu) | X | X | X | X | X | X | |
Fluorspar (F) | X | X | X | ||||
Gallium (Ga) | X | X | X | X | X | ||
Germanium (Ge) | X | X | X | X | X | ||
Gold (Au) | X | X | X | ||||
Hafnium (Hf) | X | X | X | X | |||
HREEs | X | X | X | X | X | X | X |
Indium (In) | X | X | X | X | X | ||
Iron (Fe) | X | X | X | X | |||
Lead (Pb) | X | X | X | ||||
Lithium (Li) | X | X | X | X | X | X | X |
LREEs | X | X | X | X | X | X | X |
Magnesium (Mg) | X | X | X | X | X | X | |
Manganese (Mn) | X | X | X | X | X | ||
Molybdenum (Mo) | X | X | X | X | X | ||
Nickel (Ni) | X | X | X | X | X | X | X |
Niobium (Nb) | X | X | X | X | X | X | |
PGMs | X | X | X | X | X | ||
Rhenium (Re) | X | X | |||||
Selenium (Se) | X | X | X | ||||
Silicon metal (Si) | X | X | X | ||||
Silver (Ag) | X | X | |||||
Strontium (Sr) | X | X | X | ||||
Tantalum (Ta) | X | X | X | X | |||
Thorium (Th) | X | X | |||||
Tin (Sn) | X | X | X | X | X | ||
Titanium (Ti) | X | X | X | X | X | X | |
Tungsten (W) | X | X | X | X | X | ||
Uranium (U) | X | X | |||||
Vanadium (V) | X | X | X | X | X | X | |
Zinc (Zn) | X | X | X | X | |||
Zirconium (Zr) | X | X | X | X | X | ||
HREEs = Heavy Rare Earth Elements | Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lutetium, Terbium, Thulium, Ytterbium, Scandium, Yttrium | ||||||
LREEs = Light Rare Earth Elements | Cerium, Lanthanum, Neodymium, Praseodymium, Samarium | ||||||
PGMs = Platinum Group Metals | Iridium, Palladium, Platinum, Rhodium, Ruthenium |
Samples | Methods (Pyrometallurgical, Hydrometallurgical and Combined) | Optimum Conditions | Recovery (Grade) | References |
---|---|---|---|---|
Tin slag | - (Pre-treatment) Leaching - Chlorination - Carbochlorination | LGC (Low grade concentrate) 1000 °C, 24 h | Nb2O5 98.4% Ta2O5 99.4% | [53] |
Tin slag | - Hydrochloric acid leaching - Carbochlorination - Carbon-tetrachloride chlorination | 20% Charcoal 900 °C, 40 min | Nb2O5 79.8% Ta2O5 64.5% TiO2 74.3% Converted | [52] |
Tin slag (Thailand, Zaire, Indonesia) | - Successive acid and base leaching (HF, HCl and NaOH) - Carbochlorination/halogenation (Cl2 + N2 + CO) | Leaching NaOH 2 N HCl 2 N HF 1.4 N, 70 °C, 1 h Solid/Liquid: 50 g/L Carbochlorination HGC, 500 °C, 24 h | Nb2O5 99.71% Ta2O5 98.36% | [54] |
Zimbabwe tin slag | In situ carbothermic reduction | Reducing agents: Collie coal, 1275 °C, 30 min | NbC 31.81% Nb2O5 48.11% TaC 12.49% Ta2O5 10.37% | [65] |
Tin slag (Congo, Indonesia, Malaysia, South Korea, Spain, Thailand) | Acid-Base-Acid leaching | HCl 2 M HF 1.2 M NaOH 2 M 70 °C, 4 h, Solid/Liquid: 50 g/L | (Ta + Nb)2O5 85.6% (63.3%) | [57] |
Malaysian tin slag | - Alkali pre-treatment (Caustic leaching, alkali pugging, caustic fusion) - Hydrochloric acid leaching | Alkali processing Slag/NaOH: 1/2, 250 °C, 4 h Acid Leaching HCl: 3.25 N, 50 °C, 15 min | Nb2O5 86.5% (10.6%) Ta2O5 95.5% (10.4%) | [56] |
Indonesian tin slag | Roasting Water-quenching Leaching (HF/HCl and NaOH) | Roasting 900 °C, 2 h Leaching HF 8%, 2 h HCl 6 M, 2 h NaOH 10 M, 20 h | Nb2O5 91% (1.34%) Ta2O5 87.5% (0.66%) | [67] |
Roasting Water-quenching Successive leaching (NaOH and HClO4) | −200 + 250 mesh Solid/Liquid: 1/10 Roasting 900 °C, 2 h Leaching NaOH 8 M, 2 h, 25 °C | Ce (4.35%) La (1.45%) TiO2 (3.23%) Sn (6.49%) | [63] | |
Roasting Water-quenching Alkali and acid leaching | Roasting 800 °C, 1 h −100 + 150 mesh Leaching Solid/Liquid: 1/10 NaOH 5 M, 20 min HCl 5 M, 50 min 25 °C | Nb2O5 (1.11%) Ta2O5 (1.56%) TiO2 (21%) | [62] |
Origin (Region) | Co | Ni | Al2O3 (Al) | MgO (Mg) | MnO (Mn) | TiO2 (Ti) | V | Cr | Mo | Sr | Y | Sb | Sn | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Germany | 0.013 | 0.012 | (7.27) | (3) | (0.26) | (0.42) | 0.16 | 0.026 | 0.021 | 0.03 | 33 ppm | - | - | F, [71] |
Turkey | 0.023 | - | - | - | - | - | - | - | - | - | - | 0.021 | - | [72,73] |
0.51 | 35 ppm | - | - | - | - | - | - | - | - | - | - | - | A, [74,75] | |
0.095 | 0.065 | - | - | - | - | - | - | - | - | - | - | - | F, C, [76] | |
0.104 | 0.015 | 2.4 | 2.82 | (0.042) | - | - | - | - | - | - | - | - | F, [77] | |
0.36 | 0.045 | - | - | - | - | - | - | - | - | - | - | - | C, [78] | |
0.43 | 0.035 | - | - | - | - | - | - | - | - | - | - | - | [79] | |
Poland | 0.145 | - | 5.73 | 4.99 | - | - | 0.123 | - | 0.077 | - | 0.026 (ƩREE) | - | - | F, [80,81] |
0.063 | - | 12.45 | 6.48 | - | - | 0.012 | - | 0.0296 | - | 0.031 (ƩREE) | - | - | F, [80,81] | |
- | - | 14.7 | 2.42 | 0.35 | 0.69 | - | - | - | - | - | - | - | A, [81,82] | |
5.8 | 0.4 | - | - | - | - | - | - | - | - | - | - | - | C, [83] | |
China | 0.16 | 0.53 | (3.90) | (3.53) | - | - | - | - | - | - | - | - | - | [5] |
0.49 | 0.27 | 1.36 | 1.34 | - | - | - | - | - | - | - | - | - | C, [84] | |
0.60 | 0.23 | - | - | - | - | - | - | - | - | - | - | - | C, [85] | |
4.09 | 0.043 | (3.22) | (2.15) | (0.14) | (0.19) | - | 0.075 | 0.01 | 0.012 | - | - | 0.14 | [86] | |
Congo | 0.72 | - | (2.56) | (2.53) | - | - | - | - | - | - | - | - | - | [87] |
1.7 | - | 6.0 | 5.6 | - | - | - | - | - | - | - | - | - | F, [88] | |
0.789 | 79 ppm | 8.12 | 3.36 | 0.074 | 0.53 | - | 0.185 | 0.017 | - | - | 8.61 ppm | 19 ppm | [89] | |
Namibia | 0.051 | 73 ppm | 5.22 | 3.09 | 0.2 | 0.22 | - | - | - | - | - | 0.073 | - | [90] |
South Africa | 0.032 | 0.024 | 6.61 | 4.52 | 0.13 | 0.78 | 0.03 | 0.11 | 68 ppm | 0.023 | 0.04 (ƩREE) | - | 15 ppm | [91] |
Finland | 0.04 | 0.05 | 3.8 | 1.0 | (0.07) | - | - | - | 0.07 | - | - | 0.04 | 0.1 | F, C, [92] |
Chile | - | - | (0.31) | - | - | - | - | - | 0.3 | - | - | - | - | [93] |
- | - | 25.75 | 1.15 | F, [94] | ||||||||||
- | - | 2.72 | 0.83 | - | - | - | - | - | - | - | - | - | F, C, [95] | |
India | 0.48 | 1.98 | (0.08) | (2.65) | - | - | - | - | - | - | - | - | - | C, [96,97] |
0.19 | 0.23 | (1.58) | (0.97) | - | - | - | - | - | - | - | - | - | F, [98] | |
Italy | - | - | 4.66 | 0.89 | 1.57 | 0.19 | - | - | - | - | - | - | - | A, [99] |
N/A | 0.1 | 0.027 | - | 1.035 | - | - | - | 0.024 | - | - | - | 0.043 | - | F, C, [100] |
0.44 | <0.1 | (0.83) | (0.38) | - | (10 ppm) | - | 0.16 | <0.1 | - | - | 50 ppm | <0.5 | C, [101] |
Samples | Methods | Optimum Conditions | Recovery (Grade) | References |
---|---|---|---|---|
Turkish Copper Slag | Sulphurisation Roasting Water leaching | −100 mesh (150 µm) Sulphurisation: Closed system, gas mixture; 6 g H2S + 25 g H2O, 130 °C, 1 h, solid-gas interaction, Roasting: 600 °C, 6 h, Water leaching | Co 98.8% | [106] |
Roasting Water leaching | −100 mesh (150 µm), Roasting: 200 °C, Sulphating agent; 1.5 stoichiometric amount H2SO4, 1 h, muffle furnace, Water leaching | Co 96% | [107] | |
Pre-roasting Roasting Water leaching | −63 µm pyrite, various for slag Pre-roasting: 550 °C, 1 h. Roasting: 550 °C, 3 h, pyrite/slag 0.25 Water leaching: 15 min, ambient temperature, pulp density 10% | Co 98.4% Ni 22.2% | [108] | |
Roasting Leaching (Microwave acid digestion) | −150 µm, Roasting: Slag: Pyrite: Copper concentrate 3:6:6 (220 g), iron powder 2.2 g, 600 °C, 5 h, closed medium Leaching (Microwave acid digestion): 0.2 g dried sample, 1450 W, 37% HCl 2.5 mL + 65% HNO3 7.5 mL | Co 98.4% | [73] | |
Acid roasting Leaching | −0.1 mm, Acid roasting: H2SO4, 2 h, 150 °C, acid/slag 3:1 Leaching: Hot water, 70 °C, 1 h | Co 87% | [76] | |
Flotation Leaching | −150 + 300 mesh Flotation: Collector; X−231 100 g/t, Na2S 300 g/t Leaching: HCl 150 g/t, 2 h, 80 °C, S/L 1/10 | Flotation tail Sn 73% (2.58%) | [109] | |
Turkish ancient copper slag | Flotation Roasting Leaching | −0.1 mm, Flotation: Na2S 300 g/t, Aero 211 200 g/t, pH 7~7.2, Pulp density 15%, 1300 rpm Roasting: 500 °C, 1 h, pyrite: slag 3:1, Leaching: H2SO4 10 g/L | Co 86.5% | [74] |
Leaching | H2SO4 120 g/L, 2 h, 60 °C | Co 90% | [75] | |
Indian copper slag | Roasting Leaching Precipitation | −75 µm, Roasting (1st and 2nd): 1 stoichiometric amount of H2SO4, 150 °C, 1 h/650 °C, Leaching with water Precipitation (iron removal): NH3 or CaO, pH 2.5–3 | Co 95% Ni 95% | [96] |
Pressure leaching | Pulp density 10%, H2SO4 0.35 N, 130 °C, 0.59 MPa, 4 h, 840 rpm | Co >95% Ni >95% | [97] | |
Reductive roasting Leaching | Reductive roasting: 10% furnace oil, 850 °C, 2 h Leaching: 1.25 stoichiometric amount of FeCl3, 2 h | Co 80% Ni 95% | [98,110] | |
Chinese copper slag | Reductive—sulfidising reduction Magnetic separation Leaching | Reductive—sulfidising reduction: Product—Cu-Co-Fe matte (Start material), Magnetic separation: 40 mT, Feed rate 100 mL/min Leaching: H2SO4 1.15 stoichiometric, 1 h, 80 °C, 500 rpm, 10% (w/v) | Co 95.57% | [111] |
Reduction-roasting | Reduction-roasting: MoSi2 electric furnace (12 kW), 1350 °C, 1 h, Reducing agent; coke powder 7%, Curing agent; pyrite 30% | Co 95% | [84] | |
Reduction smelting | Reduction smelting: 1350 °C, 2.5 h, reducing agent; activated carbon 5%, Modifiers; TiO2 5%, CaO 4% | Co 94.02% (1.76%) | [85] | |
Leaching Precipitation | −180 µm, Leaching (20g slag): H2SO4 17 g, oxidant; NaClO3 2.5 g, 95 °C, 3 h Neutralisation (Precipitation): Ca (OH)2 4.3 g, pH 2, 1 h | Co 98% | [86] | |
German Copper slag | Sorting Roasting Leaching Precipitation Complexation Solvent extraction | −100 µm Sorting: Crystalline: Vitreous 3:1 Leaching: 37% HCl, 70 °C, 1 h, pH 2.5 (start), Solid/liquid 100 g/L Precipitation: NH4HCO3, pH 7 Precipitate complexation: NH4OH + H2O2, pH 10 Solvent extraction: H2SO4 | Various products | [71] |
Congolese copper slag | Oxidising leaching Solvent extraction Precipitation Solvent extraction | −100 µm Oxidising leaching: 500 kg/t H2SO4 + 62.5 L/t H2O2, 70 °C, pH 2.5, 2 h, S/L 10% Solvent extraction: Copper—12% v/v LIX 984 in Kerosene, pH 2.5, A/O 1:1 Precipitation: Iron—300 g/L CaCO3, pH 3.5, 85 °C Solvent extraction: Zinc and Cobalt—20% v/v D2EPHA in kerosene, 25 °C, pH 3.5, A/O 1:1 Cobalt stripping—H2SO4, 25 °C, pH 2.5, Zinc stripping—H2SO4, 25 °C, pH 1 | Co 90% | [87] |
Polish copper slag | Reduction roasting Electrolytic dissolution Ammoniacal leaching Electrowinning | Reduction roasting: electric furnace, 80–90 V, 900–950 A, fluxing agents; limestone 8.6% + dolomite 8.6%, reducing agents; coke breeze 2.7% + pig iron 2.0%, 1425–1570 °C Electrolytic dissolution: ammonia-ammonium chloride electrolyte, NH3 + NH4+ 2.5 M, Cl− 1 M, pH 10.1, circulation rate 15 dm3/h, 50 °C, anodic current density 350 A/m2 Ammoniacal leaching (for anode slime from previous stage): NH3 + NH4Cl Electrowinning: copper—pH 0, cobalt—pH 6 | Co (92%) | [83] |
Chilean copper slag | Reduction (Slag cleaning) Water quenching Drying Milling Reduction (Removal of carbon contamination) | Reduction (Slag cleaning): 800 g power mixture; SiO2, CaO, Al2O3 and MgO, Induction furnace (10 kHz, 15 kW), Reductant; graphite, Pure argon atmosphere, Modifier; TiO2 11 wt% Water quenching Drying: Muffle furnace, 100 °C Milling: −75 µm Reduction (Removal of carbon contamination): Muffle furnace, 8 h, 700 °C | Recovery Co/Recovery Fe ratio 1.5 | [112] |
Copper converter slag | Curing Leaching Cementation Precipitation | −75 µm, Curing: H2SO4, 2 h, 85 °C Leaching: 1.2 times of stoichiometric amount H2SO4, 90 min, 75 °C Cementation (Cobalt and Zinc): Cementation reagent; Manganese, Mn/Co molar ratio 7, initial pH 3, 45 min Precipitation (Cobalt sulphide): initial pH 4, 90 min, 100 °C, Precipitate reagent; Barium sulphide, BaS/Co molar ratio 3 | Co 98% | [101] |
Samples | Methods | Optimum Conditions | Recovery (Grade) | References |
---|---|---|---|---|
Chinese slag | High-pressure oxidative acid leaching | 0.3 M H2SO4, 200 °C, 80 min, 600 kPa, −150 + 74 µm, Solid/liquid 1 g/7 mL | >97% Ni, Co | [125] |
Brazilian slag | High-pressure oxidative acid leaching | 20% Acid, 250° C, 2 h, 500 kPa, Solid/liquid 25% | >99% Ni, Co | [124] |
High-temperature pressure oxidative acid leaching | 20% Acid, 250 °C, 2 h, 200–300 kPa, Solid/liquid 25%, Acid consumption 38.5 kg H2SO4/t slag Oxygen consumption 84 kg O2/t slag | >99% Ni, Co | [122] | |
Nickel slag | Oxidative pressure acid leaching | H2SO4, Acid/slag 0.3, 250 °C, 1 h, 250 kPa | >90% Ni, Co | [129] |
Canadian slag | Aqueous sulphur dioxide leaching | Aqueous SO2 1 M SO2 (aq.), 200 mL/min, 70 min Leaching 900 mL 1 M SO2 (aq.) + 9 g slag, 600 rpm, −106 + 75 µm | Co 77% Ni 35% | [127] |
Nickel slag | Sulphuric acid leaching | H2SO4 0.1 M, 20 h, Solid/liquid 1/10 | Co 75% Ni 65% | [121] |
Chinese slag | Selective reduction Magnetic separation | Selective Reduction 5% coal, 1200 °C, 20 min Magnetic Separation 131.34 kA/m, 75 µm | Ni 82.2% (3.25%) | [126] |
Nickel slag | Magnetic separation | Hand magnet (Low-intensity magnetic separator), −8 + 4.7 mm | Ni 65.92% (1.31%) | [130] |
Origin (Region) | V2O5 (V) | Cr2O3 (Cr) | TiO2 (Ti) | Al2O3 (Al) | MnO (Mn) | MgO (Mg) | References |
---|---|---|---|---|---|---|---|
China (Sichuan) | (6.85) | (5.66) | (5.94) | - | (4.81) | (2.10) | [139] |
(8.57) | - | (8.08) | - | (7.05) | (4.06) | [135] | |
16.17 | 1.18 | 11.97 | 3.85 | 8.43 | 1.95 | [140] | |
14.3 | 4.4 | 7.4 | 2.1 | 8.5 | 3.7 | [136] | |
8.55 | 2.29 | 10.98 | - | 8.45 | 3.07 | [141] | |
(Chengde) | 13.72 | 9.19 | 10.45 | 1.30 | 6.73 | 1.17 | [142] |
(Liaoning) | (3.3~5.2) | (3.4~5.7) | - | - | - | - | [143] |
(Panzhihua) | (7.15) | (2.19) | (6.86) | (1.55) | (5.92) | (1.38) | [144] |
(8.15) | (2.77) | (7.75) | (1.79) | (6.91) | (2.73) | [145] | |
(Hebei) | 10.20 | 4.15 | 11.03 | 2.42 | 5.22 | 1.60 | [146] |
14.42 | 9.45 | 11.19 | - | 7.03 | - | [147] | |
China | 12.22 | 5.14 | 10.82 | 2.22 | 5.72 | 2.95 | [148] |
15.44 | - | 11.45 | - | 6.67 | 3.53 | [149] | |
14.08 | - | 10.63 | 1.67 | 6.50 | 3.25 | [150] | |
(12.0) | (6.48) | (0.02) | (0.04) | - | - | [151] | |
N/A | 10.45 | 3.54 | 9.75 | 1.1 | 5.22 | 2.15 | [152] |
Samples | Methods | Optimum Conditions | Recovery (Grade) | References |
China (Sichuan) | Sulphating roasting Reduction leaching Selective oxidisation Precipitation | Sulphating roasting: H2SO4 40 wt%, 160 °C, 2 h Reduction leaching: Na2SO3 2%, S/L 1 g/4 mL, 95 °C, 1 h Selective oxidisation: oxidant; CrO3 6 g/100 mL, (NH4)2SO4 16 g/L, pH 2.0, 95 °C, 2 h - Filtration; 1.5 H, 105 °C - Calcination for vanadium; 550 °C, 2.5 h Precipitation: pH 3.2~3.8 by Na2CO3 (Fe removal), pH 8.5 by NaOH at 90 °C (Cr) | V2O5 (99.1%) Cr2O3 (98.9%) | [138] |
Electro-oxidation leaching | −200 mesh, H2SO4 40 wt%, S/L 250 g/L, 75 °C, 4 h, anode current 0.4 A, operating potential 2.8~3.0 V, electrode spacing 20 mm, M (V slag:MnSO4) 2.5:1 | V 75.64% | [135] | |
Microwave roasting Leaching | −75 µm, Microwave roasting: 2450 MHz, 350 °C, 1 h Leaching: H2SO4 250 g/L, 1 h, 90 °C, 350 rpm | V 94% | [140] | |
Calcification roasting Acid leaching | −75 µm, Calcification roasting: M (V slag:CaO) 16:1, muffle furnace, 850 °C, 2 h Acid leaching: H2SO4 15%, 55 °C, S/L 1:10, 150 rpm | V 93% | [141] | |
Direct roasting Soda leaching | −75 µm, Direct roasting: Na2CO3 160 g/L, 850 °C, 1 h Soda leaching: 95 °C, 150 min, S/L 1:10 | V > 90% | [154] | |
China (Liaoning) | Salt roasting Water leaching Solvent extraction Precipitation Roasting | Roasting: muffle furnace, sodium salt Water leaching Solvent extraction: LK-N21, mixing 15 min, 20 °C Precipitation: Ammonium salt Roasting: high temperature to produce vanadium pentoxide | V2O5 98.5% (99.5%) | [143] |
China (Panzhihua) | Salt roasting Electro-oxidation leaching | Roasting: sodium salt Electro-oxidation leaching: current density 1000 A/m2, S/L 1 g/4 mL, 80 °C, 40 min | V 93.67% | [144] |
Salt roasting Water leaching | Roasting: NaCl 30% + Na2CO3 20%, 700 °C, 2 h Leaching: 95 °C, 3 h | V 96% Cr 91% | [145] | |
China (Hebei) | Leaching (Electrochemical decomposition) | −200 mesh, NaOH 40 wt%, 120 °C, slot current density 750 A/m2, M(alkali:ore) 4:1, 1000 rpm, 6 h | V 95% Cr 90% | [146] |
Roasting | −200 mesh, NaOH-NaNO3 binary melt reaction system, liquid/solid 4:1, base/salt 1:1, 400 °C, 6 h, O2 flow 0.5 L/min | V 93.7% Cr 88.2% | [155] | |
China | Roasting | NaOH-added pellet, 700 °C, R(Na/Cr) 7.67, 15 min | V 99.2% | [148] |
Calcification roasting Ammonium carbonate leaching | −74 µm, Calcification roasting: V/Ca molar ratio 1:1.1, muffle furnace, 900 °C, 2 h Ammonium carbonate leaching: (NH4)2CO3 600 g/L, 70 min, 80 °C, S/L 1:20 | V 96% | [149] | |
Roasting Leaching | −200 mesh, Roasting: No additives, 950 °C, 2.5 h Leaching: Na2CO3 160 g/L, 95 °C, 1 h, S/L 1/10 palacios | V 94.13% | [150] | |
Salt roasting Leaching Solvent extraction Stripping | Roasting: Sodium salt Water leaching Solvent extraction: LK-N21 15 vol%, pH 5.0, 15 min Stripping: NaOH 0.1 M, 45 °C, 15 min | V > 90% Cr > 90% in raffinate | [151] | |
N/A | Roasting (Liquid oxidation) | −200 mesh, NaOH-NaNO3 binary molten salt medium, 375 °C, 1 h, 700 rpm, O2 flow 0.3 L/min, liquid (NaOH-NaNO3)/ore 4:1, M(NaOH/NaNO3) 2.2:1.8 | V 90% Cr 80% | [156] |
Roasting (Liquid oxidation) | KOH 75 wt%, 240 °C, 1 h, liquid (KOH mass)/ore 4:1, 700 rpm, O2 flow 1 L/min | V 95% Cr 93% | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, B.; Aylmore, M.; Alorro, R.D. Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags. Metals 2024, 14, 804. https://doi.org/10.3390/met14070804
Lim B, Aylmore M, Alorro RD. Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags. Metals. 2024; 14(7):804. https://doi.org/10.3390/met14070804
Chicago/Turabian StyleLim, Bona, Mark Aylmore, and Richard Diaz Alorro. 2024. "Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags" Metals 14, no. 7: 804. https://doi.org/10.3390/met14070804
APA StyleLim, B., Aylmore, M., & Alorro, R. D. (2024). Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags. Metals, 14(7), 804. https://doi.org/10.3390/met14070804