The Effect of Corrosion Inhibitors on the Corrosion Behavior of Ductile Cast Iron
Abstract
:1. Introduction
2. Experimental Program
2.1. Microstructure and Morphology Observations
2.2. Electrochemical Testing
2.3. Corrosion Kinetics Analysis
3. Experimental Results
3.1. Characterization of the Microstructure of the Material
3.2. Electrochemical Test Results
3.2.1. Open Circuit Potentials (OCPs)
3.2.2. Polarization Curves
3.2.3. EIS
3.3. Flow Rate Immersion Experiments
4. Analysis and Discussion
4.1. Corrosion Inhibition Mechanism of PTEA
4.2. Corrosion Inhibition Mechanism of SHMP
4.3. Comparison Between PTEA and SHMP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, W.H.; Wahman, D.G.; Lytle, D.A.; Pressman, J.G.; Chung, J. Microelectrode evaluation of in situ oxidant reactivity and pH variability at new ductile iron and copper coupon surfaces. Water Res. 2023, 243, 120352. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Du, C.; Luo, X.; Liu, C.; Wu, Z.; Li, X. Failure analysis in buried ductile iron pipelines: A study of leakage in drinking water distribution systems. Eng. Fail. Anal. 2023, 151, 107361. [Google Scholar] [CrossRef]
- Dąbrowski, W.; Li, F. Mortar Lining as a Protective Layer for Ductile Iron Pipes. Int. J. Civ. Eng. 2020, 19, 369–380. [Google Scholar] [CrossRef]
- Robert, D.J.; Jiang, R.; Rajeev, P.; Kodikara, J. Contribution of Cement Mortar Lining to Structural Capacity of Cast Iron Water Mains. ACI Mater. J. 2016, 113, 295–306. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Bi, Q. Investigation of the leaching behavior of mortar pipe lining in drinking water. J. Wuhan Univ. Technol. Sci. Ed. 2010, 25, 893–896. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Zhang, R.; Guo, H.; Zhao, W.; Huang, J. Corrosion behavior and mechanism of ductile iron with different degrees of deterioration of cement mortar lining in reclaimed water pipelines. RSC Adv. 2020, 10, 39627–39639. [Google Scholar] [CrossRef]
- Nguyen, V.; White, C.; Jefferson, H. Field Trial: Inspection of Cement Mortar-Lined Ductile Iron Pipe. In Pipelines 2014: From Underground to the Forefront of Innovation and Sustainability; ASCE Press: Reston, VA, USA, 2014; pp. 207–216. [Google Scholar]
- Brito, V.S.; Bastos, I.N.; Costa, H.R.M. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel. Mater. Des. 2012, 41, 282–288. [Google Scholar] [CrossRef]
- Chen, L.; Lu, D.; Zhang, Y. Organic compounds as corrosion inhibitors for carbon steel in HCl solution: A comprehensive review. Materials 2022, 15, 2023. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Shim, J.-J.; Kim, J.-G. Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water. J. Alloy. Compd. 2004, 391, 162–169. [Google Scholar] [CrossRef]
- Negm, N.A.; Kandile, N.G.; Badr, E.A.; Mohammed, M.A. Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl. Corros. Sci. 2012, 65, 94–103. [Google Scholar] [CrossRef]
- Lim, B.; Kim, K.; Chang, H.; Park, H.; Kim, Y. The Effect of Tungstate and Ethanolamines Added in Tap Water on Corrosion Inhibition of Ductile Cast Iron Pipe for Nuclear Power Plants. Metals 2020, 10, 1597. [Google Scholar] [CrossRef]
- Munis, A.; Zhao, T.; Zheng, M.; Rehman, A.U.; Wang, F. A newly synthesized green corrosion inhibitor imidazoline derivative for carbon steel in 7.5% NH4Cl solution. Sustain. Chem. Pharm. 2020, 16, 100258. [Google Scholar] [CrossRef]
- Söylev, T.; Richardson, M. Corrosion inhibitors for steel in concrete: State-of-the-art report. Constr. Build. Mater. 2008, 22, 609–622. [Google Scholar] [CrossRef]
- Naveen, E.; Ramnath, B.V.; Elanchezhian, C.; Nazirudeen, S.M. Influence of organic corrosion inhibitors on pickling corrosion behaviour of sinter-forged C45 steel and 2% Cu alloyed C45 steel. J. Alloy. Compd. 2017, 695, 3299–3309. [Google Scholar] [CrossRef]
- Lekbach, Y.; Bennouna, F.; El Abed, S.; Balouiri, M.; El Azzouzi, M.; Aouniti, A.; Ibnsouda Koraichi, S. Green corrosion inhibition and adsorption behaviour of cistus ladanifer extract on 304L stainless steel in hydrochloric acid solution. Arab. J. Sci. Eng. 2021, 46, 103–113. [Google Scholar] [CrossRef]
- Wu, G.Q. Research on the Application of Phosphate in Corrosion Inhibition Control of Water Supply Pipelines. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Mohamed, A.; Martin, U.; Bastidas, D.M. Adsorption and Surface Analysis of Sodium Phosphate Corrosion Inhibitor on Carbon Steel in Simulated Concrete Pore Solution. Materials 2022, 15, 7429. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Lgaz, H.; Chung, I.M. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium. J. Colloid Interface Sci. 2020, 560, 225–236. [Google Scholar] [CrossRef]
- Chen, S.Q. Study on Inhibitors and Inhibition Mechanism of Aluminum Anode in Cl−-Containing Media. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2012. [Google Scholar]
- Kim, K.T.; Chang, H.Y.; Lim, B.T.; Park, H.B.; Kim, Y.S. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron. Adv. Mater. Sci. Eng. 2016, 2016, 4935602. [Google Scholar] [CrossRef]
- Kumar, H.; Chaudhary, R.S. Influence of Sodium Hexa Metaphosphate Antiscalant on the Corrosion of Carbon Steel in Industrial Cooling Water System. Indian J. Chem. Technol. 2010, 17, 181–190. [Google Scholar]
- Wang, B.; Liu, T.; Tao, K.; Zhu, L.; Liu, C.; Yong, X.; Cheng, X. A Study of the Mechanisms and Kinetics of the Localized Corrosion Aggravation of Ductile Iron in a Harsh Water Quality Environment. Metals 2022, 12, 2103. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, G.; Chen, Y.; Zhao, P.; Tian, Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci. Rep. 2017, 7, 6865. [Google Scholar] [CrossRef] [PubMed]
- ASTM-G102; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International: West Conshohocken, PA, USA, 1994.
- Palumbo, G.; Górny, M.; Bitka, A. Influence of the Cooling Rate on Mechanical and Corrosion Properties of Ferritic Si–Mo Ductile Cast Iron. Met. Mater. Trans. A 2023, 54, 2362–2373. [Google Scholar] [CrossRef]
- Deyab, M.A. Hydroxyethyl cellulose as efficient organic inhibitor of zinc–carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies. J. Power Sources 2015, 280, 190–194. [Google Scholar] [CrossRef]
- Nkuna, A.A.; Akpan, E.D.; Obot, I.; Verma, C.; Ebenso, E.E.; Murulana, L.C. Impact of selected ionic liquids on corrosion protection of mild steel in acidic medium: Experimental and computational studies. J. Mol. Liq. 2020, 314, 113609. [Google Scholar] [CrossRef]
- Obot, I.B.; Macdonald, D.D.; Gasem, Z.M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corros. Sci. 2015, 99, 1–30. [Google Scholar] [CrossRef]
- Brycki, B.E.; Kowalczyk, I.H.; Szulc, A.; Kaczerewska, O.; Pakiet, M. Organic corrosion inhibitors. Corros. Inhib. Princ. Recent Appl. 2018, 3, 33. [Google Scholar]
- Li, H.; Zhang, Y.; Li, C.; Zhou, Z.; Nie, X.; Chen, Y.; Cao, H.; Liu, B.; Zhang, N.; Said, Z.; et al. Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean J. Chem. Eng. 2022, 39, 1107–1134. [Google Scholar] [CrossRef]
- Ahmed, M.H.O.; Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B.; Gaaz, T.S. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid. Results Phys. 2018, 8, 728–733. [Google Scholar] [CrossRef]
- Bellal, Y.; Benghanem, F.; Keraghel, S. A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. J. Mol. Struct. 2021, 1225, 129257. [Google Scholar] [CrossRef]
- Shaker, L.; Al-Amiery, A.; Al-Hamid, M.A.I.; Al-Azzawi, W.K. Understanding the mechanism of organic corrosion inhibitors through density functional theory. Koroze a Ochr. Mater. 2024, 68, 9–21. [Google Scholar] [CrossRef]
- Lee, T.H.; Tsai, J.H.; Chen, H.Y.; Huang, P.T. Polytriphenylamine and poly (styrene-co-hydroxystyrene) blends as high-performance ant icorrosion coating for iron. Polymers 2021, 13, 1629. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, B.; Sun, L.; Liu, C.; Cheng, X.; Li, X. The coupling mechanism of shrinkage defects and graphite on the corrosion resistance of ductile iron. Corros. Sci. 2023, 227, 111798. [Google Scholar] [CrossRef]
- Asmara, Y.P.; Herlina, F.; Sutjipto, A.G.E. Selection of Inhibitor and Recent Advances in Enhancing Corrosion Prevention. In Defect and Diffusion Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2024; Volume 431, pp. 69–76. [Google Scholar]
- Saha, G.; Kurmaih, N. The mechanism of corrosion inhibition by phosphate-based cooling system corrosion inhibitors. Corrosion 1986, 42, 233–235. [Google Scholar] [CrossRef]
- Lata, S.; Chaudhary, R.S. Some triphosphates as corrosion inhibitors for mild steel in 3% NaCl solution. Indian J. Chem. Technol. 2008, 15, 364–374. [Google Scholar]
- Mi, Z.L.; Zhang, X.J.; Wang, Y.; Chen, C.; Gu, J.N. Comparison of the effects of different polyphosphate dosages on controlling iron release in water distribution networks. Water Wastewater Eng. 2012, 48 (Suppl. S2), 222–225. [Google Scholar] [CrossRef]
- Girčienė, O.; Ramanauskas, R.; Burokas, V.; Martušienė, A. Formation of Phosphate Coatings on Steel and Corrosion Performance of Phosphated Specimens in Alkaline Solutions. Trans. IMF 2004, 82, 137–140. [Google Scholar] [CrossRef]
Environment | Hardness (mg/L) | Cl− (mg/L) | Water Temperature (°C) | pH | Corrosion Inhibitor Type |
---|---|---|---|---|---|
1 | 80 | 20 | 90 | 7 | No additions |
2 | PTEA | ||||
3 | SHMP | ||||
4 | 80 | 20 | 90 | 11 | No additions |
5 | PTEA | ||||
6 | SHMP |
Environment | OCP/mV | ||
---|---|---|---|
0 d | 3 d | 10 d | |
1 | −792 | −638 | −625 |
2 | −720 | −488 | −543 |
3 | −726 | −615 | −494 |
4 | −641 | −520 | −597 |
5 | −460 | −502 | −493 |
6 | −258 | −403 | −451 |
Environment | Ecorr (mV) | icorr (μA/cm2) | ||||
---|---|---|---|---|---|---|
0 Days | 3 Days | 10 Days | 0 Days | 3 Days | 10 Days | |
1 | −759 | −928 | −986 | 41.4 | 297 | 776 |
2 | −761 | −783 | −762 | 20.8 | 28.8 | 25.7 |
3 | −775 | −666 | −641 | 8.5 | 18.2 | 19.4 |
4 | −498 | −917 | −894 | 8.5 | 239 | 489 |
5 | −657 | −738 | −774 | 6.3 | 15.8 | 18.6 |
6 | −332 | −379 | −448 | 1.6 | 10.2 | 17.3 |
Environment | Corrosion Inhibitors | Corrosion Inhibition Efficiency | ||
---|---|---|---|---|
0 Days | 3 Days | 10 Days | ||
pH = 7 | PTEA | 51.8% | 90.3% | 96.7% |
SHMP | 79.5% | 93.9% | 97.5% | |
pH = 11 | PTEA | 25.9% | 93.4% | 96.2% |
SHMP | 81.2% | 95.7% | 96.5% |
Immersion Time | Environment | Rs | Qf | Rf | Qdl | Rct | ||
---|---|---|---|---|---|---|---|---|
Ω·cm2 | Y0 (10−3 Ω−1·cm−2·sn) | n | Ω·cm2 | Y0 (10−3 Ω−1·cm−2·sn) | n | Ω·cm2 | ||
0 days | 1 | 90.19 | 1.90 | 0.79 | 96.1 | 1.30 | 0.80 | 392.6 |
2 | 79.68 | 0.32 | 0.98 | 27.1 | 1.12 | 0.60 | 2524 | |
3 | 86.09 | 1.29 | 0.83 | 111.7 | 5.76 | 0.65 | 981.3 | |
4 | 155 | 0.07 | 0.90 | 202 | 0.08 | 0.87 | 18,790 | |
5 | 119 | 0.20 | 0.87 | 230.5 | 0.02 | 0.65 | 37,690 | |
6 | 100 | 0.01 | 0.73 | 103.1 | 0.44 | 0.89 | 89,930 | |
3 days | 1 | 102.2 | 0.08 | 0.59 | 258.7 | 0.08 | 0.94 | 4426 |
2 | 131.8 | 0.84 | 0.60 | 83.7 | 1.38 | 0.73 | 4297 | |
3 | 127 | 0.14 | 0.83 | 158.7 | 0.12 | 0.38 | 8940 | |
4 | 251.3 | 0.79 | 0.44 | 542.8 | 1.03 | 0.89 | 7744 | |
5 | 191.1 | 0.21 | 0.60 | 800.1 | 1.19 | 0.85 | 12,270 | |
6 | 133.1 | 0.23 | 0.81 | 4576 | 0.34 | 0.73 | 17,800 | |
10 days | 1 | 159.9 | 4.99 | 0.58 | 173.7 | 3.31 | 0.79 | 1297 |
2 | 101.1 | 0.86 | 0.63 | 330.5 | 3.86 | 0.72 | 2755 | |
3 | 121.5 | 1.66 | 0.83 | 120.6 | 1.49 | 0.58 | 6108 | |
4 | 28.7 | 0.80 | 0.42 | 43.8 | 0.06 | 0.86 | 7026 | |
5 | 272.2 | 2.88 | 0.63 | 396.1 | 1.23 | 0.91 | 12,380 | |
6 | 225.8 | 0.31 | 0.53 | 414.2 | 0.44 | 0.71 | 12,660 |
Environment | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Weight loss corrosion rate (mm/a) | 3.542 | 2.984 | 2.371 | 1.353 | 0.954 | 0.135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, B.; Chen, T.; Hao, L.; Wu, J.; Liu, C. The Effect of Corrosion Inhibitors on the Corrosion Behavior of Ductile Cast Iron. Metals 2025, 15, 70. https://doi.org/10.3390/met15010070
Liu J, Wang B, Chen T, Hao L, Wu J, Liu C. The Effect of Corrosion Inhibitors on the Corrosion Behavior of Ductile Cast Iron. Metals. 2025; 15(1):70. https://doi.org/10.3390/met15010070
Chicago/Turabian StyleLiu, Jing, Bingqin Wang, Tianqi Chen, Lianjun Hao, Jun Wu, and Chao Liu. 2025. "The Effect of Corrosion Inhibitors on the Corrosion Behavior of Ductile Cast Iron" Metals 15, no. 1: 70. https://doi.org/10.3390/met15010070
APA StyleLiu, J., Wang, B., Chen, T., Hao, L., Wu, J., & Liu, C. (2025). The Effect of Corrosion Inhibitors on the Corrosion Behavior of Ductile Cast Iron. Metals, 15(1), 70. https://doi.org/10.3390/met15010070