History of Metallic Orthopedic Materials
Abstract
:1. Introduction
1.1. Objectives and Scope of the Review
1.2. Structure of the Paper
2. Ancient History and Myths
3. From Early Developments to Titanium
4. The Titanium Revolution
Shape-Memory Alloys
5. Beyond Titanium
5.1. Zirconium and Its Alloys
5.2. Niobium and Its Alloys
5.3. Tantalum and Its Alloys
6. The End of the Era of Stainless Steel?
6.1. The Decline of Stainless Steel
6.2. Present of Stainless Steel in Orthopedics
7. Bioresorbable Alloys
7.1. Magnesium-Based Bioresorbable Alloys
7.2. Iron-Based Bioresorbable Alloys
7.3. Zinc-Based Bioresorbable Alloys
8. Materials’ Properties
9. Metal Biocompatibility
10. Coatings and Surface Modifications for Metallic Orthopedic Materials
10.1. Hard Coatings for Wear Resistance
10.2. Bioactive Coatings for Enhancing Osseointegration
11. Additive Manufacturing
12. Novel Alloys’ Composition
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szczęsny, G.; Kopec, M.; Politis, D.J.; Kowalewski, Z.L.; Łazarski, A.; Szolc, T. A review on biomaterials for orthopaedic surgery and traumatology: From past to present. Materials 2022, 15, 3622. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.; Srivastava, S.; Mittal, H. Design, materials and biomechanics of orthopaedic implants: A narrative review. J. Clin. Diagn. Res. 2024, 18, 1. [Google Scholar] [CrossRef]
- Mahyudin, F.; Widhiyanto, L.; Hermawan, H. Biomaterials in Orthopaedics. In Advanced Structured Materials; Springer International Publishing: Cham, Switzerland, 2016; pp. 161–181. [Google Scholar]
- Zieliński, A.; Sobieszczyk, S.; Seramak, T.; Serbiński, W.; Świeczko-Żurek, B.; Ossowska, A. Biocompatibility and bioactivity of load-bearing metallic implants. Adv. Mater. Sci. 2010, 10, 21–31. [Google Scholar] [CrossRef]
- Cacopardo, L. Biomaterials and Biocompatibility. In Human Orthopaedic Biomechanics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 341–359. [Google Scholar]
- Geringer, J.; Forest, B.; Combrade, P. Wear analysis of materials used as orthopaedic implants. Wear 2006, 261, 971–979. [Google Scholar] [CrossRef]
- Geringer, J.; Forest, B.; Combrade, P. Fretting-corrosion of materials used as orthopaedic implants. Wear 2005, 259, 943–951. [Google Scholar] [CrossRef]
- Gibon, E.; Amanatullah, D.F.; Loi, F.; Pajarinen, J.; Nabeshima, A.; Yao, Z.; Hamadouche, M.; Goodman, S.B. The biological response to orthopaedic implants for joint replacement: Part I: Metals. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 2162–2173. [Google Scholar] [CrossRef]
- Ambrose, C.G.; Hartline, B.E.; Clanton, T.O.; Lowe, W.R.; McGarvey, W.C. Polymers in Orthopaedic Surgery. In Advanced Polymers in Medicine; Springer International Publishing: Cham, Switzerland, 2015; pp. 129–145. [Google Scholar]
- Hannouche, D.; Hamadouche, M.; Nizard, R.; Bizot, P.; Meunier, A.; Sedel, L. Ceramics in total hip replacement. Clin. Orthop. Relat. Res. 2005, 430, 62–71. [Google Scholar] [CrossRef]
- Evans, S.L.; Gregson, P.J. Composite technology in load-bearing orthopaedic implants. Biomaterials 1998, 19, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, V.M.; Buckwalter, J.A.; Hayes, W.C.; Koval, K.J. Orthopaedic challenges in an aging population. Instr. Course Lect. 1997, 46, 417–422. [Google Scholar]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R. Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Swenson, S.; Neto, M.Q.; Hall, D.J.; Pourzal, R.; Kohler, J.; Buckwalter, J. Retrieval of a Lane plate 82 years after implantation: Case report, metallurgical analysis, and historical review. Iowa Orthop. J. 2023, 43, 37–43. [Google Scholar] [PubMed]
- Mahalingam, K.; Reidy, D. Smith-Petersen vitallium mould arthroplasty: A 45-year follow-up. J. Bone Jt. Surg. Br. Vol. 1996, 78, 496–497. [Google Scholar] [CrossRef]
- Marin, E.; Boschetto, F.; Pezzotti, G. Biomaterials and biocompatibility: An historical overview. J. Biomed. Mater. Res. A 2020, 108, 1617–1633. [Google Scholar] [CrossRef] [PubMed]
- Linder, L.; Carlsson, A.; Marsal, L.; Bjursten, L.M.; Branemark, P.I. Clinical aspects of osseointegration in joint replacement: A histological study of titanium implants. J. Bone Jt. Surg. Br. 1988, 70-B, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Shega, F.D.; Zhang, H.; Manini, D.R.; Tang, M.; Liu, S. Comparison of effectiveness between cobalt chromium rods versus titanium rods for treatment of patients with spinal deformity: A systematic review and meta-analysis. Adv. Orthop. 2020, 2020, 8475910. [Google Scholar] [CrossRef] [PubMed]
- Shepperd, J.A.N.; Apthorp, H. A contemporary snapshot of the use of hydroxyapatite coating in orthopaedic surgery. J. Bone Jt. Surg. Br. 2005, 87, 1046–1049. [Google Scholar] [CrossRef]
- Drnovšek, N.; Novak, S.; Dragin, U.; Čeh, M.; Gorenšek, M.; Gradišar, M. Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants. Int. Orthop. 2012, 36, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Marin, E. Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater. Today Bio 2023, 23, 100777. [Google Scholar] [CrossRef]
- Marin, E.; Basoli, V. From Ancient Remedies to Modern Contraptions: Tracing the Evolution of Biocompatible Materials. In Engineering Methodologies for Medicine and Sports; Springer Nature: Cham, Switzerland, 2024; pp. 313–326. [Google Scholar]
- Marino, R., Jr. Preconquest Peruvian neurosurgeons: A study of Inca and pre-Columbian trephination and the art of medicine in ancient Peru. Neurosurgery 2001, 49, 477–478. [Google Scholar]
- Demann, E.T.K.; Stein, P.S.; Haubenreich, J.E. Gold as an implant in medicine and dentistry. J. Long. Term. Eff. Med. Implants 2005, 15, 687–698. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006, 33, 17–34. [Google Scholar] [PubMed]
- Muffly, T.M.; Tizzano, A.P.; Walters, M.D. The history and evolution of sutures in pelvic surgery. J. R. Soc. Med. 2011, 104, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Flood, G. Introduction. In The Oxford History of Hinduism; Oxford University Press: Oxford, UK, 2020; pp. 1–32. [Google Scholar]
- Tewari, R. The origins of iron working in India: New evidence from the Central Ganga Plain and the Eastern Vindhyas. Antiquity 2003, 77, 536–544. [Google Scholar] [CrossRef]
- Zuo, K.J.; Olson, J.L. The evolution of functional hand replacement: From iron prostheses to hand transplantation. Plast. Surg. 2014, 22, 44–51. [Google Scholar] [CrossRef]
- Neuhaus, V. Götz von Berlichingen; Handbuch, G., Metzler, J.B., Eds.; Springer: Stuttgart, Germany, 1996; pp. 78–99. [Google Scholar]
- Cohn, H.J. Götz von Berlichingen and the Art of Military Autobiography. In War, Literature and the Arts in Sixteenth-Century Europe; Palgrave Macmillan: London, UK, 1989; pp. 22–40. [Google Scholar]
- Putti, V. Historical prostheses. 1925. J. Hand Surg. Br. 2005, 30, 310–325. [Google Scholar] [CrossRef]
- Sellegren, K.R. An Early History of Lower Limb Amputations and Prostheses. The Iowa 1982, 2, 13–27. [Google Scholar]
- Duffy Hancock, J. The Evolution of Artificial Limbs; University of Louisville School of Medicine: Louisville, KY, USA, 1929. [Google Scholar]
- An Account of a New Method of Treating Diseases of the Joints of the Knee and Elbow: In a Letter to Mr. Percival Pott. 1783. Available online: https://wellcomecollection.org/works/k8prmsey (accessed on 12 February 2025).
- Bican, O.; Kahl, L.K. History of hip surgery. In Essentials in Total Hip Arthroplasty; CRC Press: Boca Raton, FL, USA, 2024; pp. 95–101. [Google Scholar]
- Di Matteo, B.; Tarabella, V.; Filardo, G.; Viganò, A.; Tomba, P.; Marcacci, M. John Rhea Barton: The birth of osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1957–1962. [Google Scholar] [CrossRef] [PubMed]
- Cumston, C.G. Spontaneous dislocation of the hip-joint following acute infectious diseases. Boston Med. Surg. J. 1910, 163, 684–688. [Google Scholar] [CrossRef]
- Myers, K.R.; Sgaglione, N.A.; Grande, D.A. Trends in biological joint resurfacing. Bone Jt. Res. 2013, 2, 193–199. [Google Scholar] [CrossRef]
- Marshall, D.A.; Pykerman, K.; Werle, J.; Lorenzetti, D.; Wasylak, T.; Noseworthy, T.; Dick, D.A.; O’Connor, G.; Sundaram, A.; Heintzbergen, S.; et al. Hip resurfacing versus total hip arthroplasty: A systematic review comparing standardized outcomes. Clin. Orthop. Relat. Res. 2014, 472, 2217–2230. [Google Scholar] [CrossRef]
- Levert, H.S. Experiments on the use of Metallic Ligatures, as applied to Arteries. Am. J. Med. Sci. 1829, 7, 17–22. [Google Scholar] [CrossRef]
- Lister, J. An address on the treatment of fracture of the patella. BMJ 1883, 2, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Guyuron, B.; Vasconez, H.C. Basic Principles of Bone Fixation. In Fundamentals of Maxillofacial Surgery; Springer: New York, NY, USA, 1997; pp. 169–185. [Google Scholar]
- Poon, V.K.M.; Burd, A. In vitro cytotoxity of silver: Implication for clinical wound care. Burns 2004, 30, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Coogan, T.P.; Latta, D.M.; Snow, E.T.; Costa, M. Toxicity and carcinogenicity of nickel compounds. Crit. Rev. Toxicol. 1989, 19, 341–384. [Google Scholar] [CrossRef]
- Affatato, S. Perspectives in Total Hip Arthroplasty: Advances in Biomaterials and Their Tribological Interactions; Woodhead Publishing: New Delhi, India, 2014. [Google Scholar]
- Eynon-Lewis, N.J.; Ferry, D.; Pearse, M.F. Themistocles Gluck: An unrecognised genius. BMJ 1992, 305, 1534–1536. [Google Scholar] [CrossRef]
- Greenhagen, R.M.; Johnson, A.R.; Joseph, A. Internal fixation: A historical review. Clin. Podiatr. Med. Surg. 2011, 28, 607–618. [Google Scholar] [CrossRef]
- Lecture, W.-J. Some landmarks in the surgery of the rheumatic diseases. Ann. R. Coll. Surg. Engl. 1978, 61, 29. [Google Scholar]
- Jones, A.R. Sir William arbuthnot Lane. J. Bone Jt. Surg. Br. 1952, 34-B, 478–482. [Google Scholar] [CrossRef]
- Lane, W.A. Some remarks on the treatment of fractures. Br. Med. J. 1895, 1, 861–863. [Google Scholar] [CrossRef]
- Afshar, A.; Steensma, D.P.; Kyle, R.A. Albin lambotte: Pioneer of osteosynthesis (bone fixation). Mayo Clin. Proc. 2021, 96, 2012–2013. [Google Scholar] [CrossRef]
- Groves, E.W.H. An experimental study of the operative treatment of fractures. Br. J. Surg. 1913, 1, 438–501. [Google Scholar] [CrossRef]
- Key, J.A. Stainless steel and vitallium in internal fixation of bone. Arch. Surg. 1941, 43, 615. [Google Scholar] [CrossRef]
- Laing, P.G. Problems in the use of metals as surgical implants. J. Dent. Res. 1966, 45, 1660–1661. [Google Scholar] [CrossRef]
- Menegau, G.; Odiette, D. Growth of Connective Tissues of Bone in Tissue Cultures in the Presence of Certain Metals; Kanavel, A.B., Moynthan, L., Duval, P., Eds.; International Abstract of Surgery (supplementary to Surgery, Gynecology and Obstetrics): Chicago, IL, USA, 1936; p. 362. [Google Scholar]
- Jones, L. Interaction of bone and various metals. Arch. Surg. 1936, 32, 990. [Google Scholar] [CrossRef]
- Haas, W. “Rustfree” steel in surgery. Arch. f Orthop. u Unfall-Chir. 1936, 37, 606. [Google Scholar]
- Orsos, E. The current generated by bone sutures. Zentralbl Chir. 1925, 56, 1014. [Google Scholar]
- Perves, G.D.J. The importance of the electrolytic factor in osteosynthesis. Mém Acad. Chir. 1938, 64, 650. [Google Scholar]
- Masmonteil, F. The tolerance of bone for metallc foreign bodies. Presse Med. 1935, 43, 1935. [Google Scholar]
- Sherman, W.O. Treatment of compound fractures. Arch. Surg. 1940, 40, 838. [Google Scholar] [CrossRef]
- CS37-31; Steel Bone Plates and Screws. United States Department of Commerce, Bureau of Standards: Washington, DC, USA, 1930.
- Hudack, S. High chromium, low nickel steel in the operative fixation of fractures. Arch. Surg. 1940, 40, 867. [Google Scholar] [CrossRef]
- Lange, M. Krupp Steel Wire as Bone Suture Material. Ztschr f Orthop. Chir. 1926, 58, 1–9. [Google Scholar]
- Desch, C.H. Mr. H. brearley. Nature 1948, 162, 288. [Google Scholar] [CrossRef]
- Spires, W.P., Jr.; Kelman, D.C.; Pafford, J.A. Mechanical Evaluation of ASTM F75 Alloy in Various Metallurgical Conditions. In Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications; 100 Barr Harbor Drive, PO Box C700, Conshohocken, PA 19428-295; ASTM International: West Conshohocken, PA, USA, 1987; pp. 47–59. [Google Scholar]
- Hernigou, P.; Pariat, J. History of internal fixation (part 1): Early developments with wires and plates before World War II. Int. Orthop. 2017, 41, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Festas, A.J.; Ramos, A.; Davim, J.P. Medical devices biomaterials—A review. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 2020, 234, 218–228. [Google Scholar] [CrossRef]
- Hernigou, P. Smith-Petersen and early development of hip arthroplasty. Int. Orthop. 2014, 38, 193–198. [Google Scholar] [CrossRef]
- Venable, C.S.; Stuck, W.G.; Beach, A. The effects on bone of the presence of metals: Based upon electrolysis. Ann. Surg. 1937, 105, 917–938. [Google Scholar] [CrossRef]
- Stuck, W.G. Electrolytic destruction of bone caused by metal fixation devices. J. Bone Jt. Surg. 1937, 19, 1077–1080. [Google Scholar]
- Stuck, C.V.W. Fractures: Recent advances in treatment with non-electrolytic metal appliances. J. Indiana M. A 1938, 31, 335. [Google Scholar]
- Venable, C.S. Application of neutral metal in fractures. South. Surg. 1939, 8, 456. [Google Scholar]
- Roberts, P.; Grigoris, P. Metal on Metal Articulation in Total Hip Replacement. In Interfaces in Total Hip Arthroplasty; Springer: London, UK, 2000; pp. 121–133. [Google Scholar]
- Beksaç, B.; Bek, D.; Miller, A.N.; Salvati, E.A. Thompson hip hemiarthroplasty: Asymptomatic after 44 years a case report. Inj. Extra 2008, 39, 264–266. [Google Scholar] [CrossRef]
- Shen, G. Femoral stem fixation. J. Bone Jt. Surg. Br. 1998, 80, 754–756. [Google Scholar] [CrossRef]
- Dall, D.M.; Learmonth, I.D.; Solomon, M.I.; Miles, A.W.; Davenport, J.M. Fracture and loosening of Charnley femoral stems. Comparison between first-generation and subsequent designs. J. Bone Jt. Surg. Br. 1993, 75, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Ebied, A.; Hoad-Reddick, D.A.; Raut, V. Medium-term results of the Charnley low-offset femoral stem. J. Bone Jt. Surg. Br. 2005, 87, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Munemoto, M.; Grammatopoulos, G.; Tanaka, Y.; Gibbons, M.; Athanasou, N.A. The pathology of failed McKee-Farrar implants: Correlation with modern metal-on-metal-implant failure. J. Mater. Sci. Mater. Med. 2017, 28, 66. [Google Scholar] [CrossRef]
- Brown, S.R.; Davies, W.A.; DeHeer, D.H.; Swanson, A.B. Long-term survival of McKee-Farrar total hip prostheses. Clin. Orthop. Relat. Res. 2002, 402, 157–163. [Google Scholar] [CrossRef]
- Williams, D.F. The Biological Applications of Titanium and Titanium Alloys. In Materials Sciences and Implant Orthopedic Surgery; Springer: Dordrecht, The Netherlands, 1986; pp. 107–116. [Google Scholar]
- Kumar, G.; Narayan, B. Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man. In Classic Papers in Orthopaedics; Springer: London, UK, 2014; pp. 507–509. [Google Scholar]
- Roos, J.; Sennerby, L.; Lekholm, U.; Jemt, T.; Gröndahl, K.; Albrektsson, T. A qualitative and quantitative method for evaluating implant success: A 5-year retrospective analysis of the Brånemark implant. Int. J. Oral. Maxillofac. Implants 1997, 12, 504–514. [Google Scholar] [PubMed]
- Marin, E.; Lanzutti, A. Biomedical applications of titanium alloys: A comprehensive review. Materials 2023, 17, 114. [Google Scholar] [CrossRef]
- Oldani, C.; Dominguez, A. Titanium as a Biomaterial for Implants. In Recent Advances in Arthroplasty; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef]
- Bartlo, L.J. Effect of Microstructure on the Fatigue Properties of Ti-6Al-4V bar. In Fatigue at High Temperature; 100 Barr Harbor Drive, PO Box C700, Conshohocken, PA 19428-2959; ASTM International: Conshohocken, PA, USA, 1969; pp. 144–154. [Google Scholar]
- Jackson, J.D.; Boyd, W.K. Crevice Corrosion of Titanium. In Applications Related Phenomena in Titanium Alloys; 100 Barr Harbor Drive, PO Box C700, Conshohocken, PA 19428-2959; ASTM International: Conshohocken, PA, USA, 1968; pp. 218–226. [Google Scholar]
- Bass, C.D.; Harmsworth, C.L. Fatigue Behavior of Titanium Castings. In Proceedings of the ASME 1969 Gas Turbine Conference and Products Show, Cleveland, OH, USA, 9–13 March 1969. [Google Scholar] [CrossRef]
- El Sawy, A.A.; Shaarawy, M.A. Evaluation of metal ion release from Ti6Al4V and Co-Cr-Mo casting alloys: In vivo and in vitro study. J. Prosthodont. 2014, 23, 89–97. [Google Scholar] [CrossRef]
- Richter, M.; Matusiewicz, H. Metals and metal ions release from metallic implants in the animal body models: A review of experimental investigations. World J. Adv. Res. Rev. 2022, 16, 653–676. [Google Scholar] [CrossRef]
- Engelhart, S.; Segal, R.J. Allergic reaction to vanadium causes a diffuse eczematous eruption and titanium alloy orthopedic implant failure. Cutis 2017, 99, 245–249. [Google Scholar] [PubMed]
- Tsaryk, R.; Peters, K.; Barth, S.; Unger, R.E.; Scharnweber, D.; Kirkpatrick, C.J. The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy. Biomaterials 2013, 34, 8075–8085. [Google Scholar] [CrossRef] [PubMed]
- Hamman, G.; Bardos, D.I. Metallographic Quality Control of Orthopaedic Implants. In Metallography as a Quality Control Tool; Springer: Boston, MA, USA, 1980; pp. 221–245. [Google Scholar]
- Venugopalan, R.; Lucas, L.C. Evaluation of restorative and implant alloys galvanically coupled to titanium. Dent. Mater. 1998, 14, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Semlitsch, M. Titanium alloys for hip joint replacements. Clin. Mater. 1987, 2, 1–13. [Google Scholar] [CrossRef]
- Henriques, V.A.R.; Silva, C.R.M. Production of titanium alloys for medical implants by powder metallurgy. Key Eng. Mater. 2001, 189, 443–448. [Google Scholar] [CrossRef]
- Jablokov, V.R.; Nutt, M.J.; Richelsoph, M.E.; Freese, H.L. The Application of Ti-15Mo Beta Titanium Alloy in High Strength Structural Orthopaedic Applications. In Titanium, Niobium, Zirconium, and Tantalum for Medical and Surgical Applications; 100 Barr Harbor Drive, PO Box C700, Conshohocken, PA 19428-2959; ASTM International: Conshohocken, PA, USA, 2006; pp. 83–100. [Google Scholar]
- Niinomi, M. Low-Modulus Ti Alloys Suitable for Rods in Spinal Fixation Devices. In Interface Oral Health Science 2016; Springer: Singapore, 2017; pp. 3–21. [Google Scholar]
- Qiu, C.; Liu, Q.; Ding, R. Significant enhancement in yield strength for a metastable beta titanium alloy by selective laser melting. Mater. Sci. Eng. A Struct. Mater. 2021, 816, 141291. [Google Scholar] [CrossRef]
- Nastac, L.; Gungor, M.N.; Ucok, I.; Klug, K.L.; Tack, W.T. Advances in investment casting of Ti–6Al–4V alloy: A review. Int. J. Cast. Met. Res. 2006, 19, 73–93. [Google Scholar] [CrossRef]
- McNaney, J.M.; Imbeni, V.; Jung, Y.; Papadopoulos, P.; Ritchie, R.O. An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech. Mater. 2003, 35, 969–986. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Parikh, D.M. A Review on Applications of Nitinol Shape Memory Alloy. In Recent Advances in Mechanical Infrastructure; Springer: Singapore, 2021; pp. 123–132. [Google Scholar]
- Alipour, S.; Taromian, F.; Ghomi, E.R.; Zare, M.; Singh, S.; Ramakrishna, S. Nitinol: From historical milestones to functional properties and biomedical applications. Proc. Inst. Mech. Eng. H 2022, 236, 1595–1612. [Google Scholar] [CrossRef]
- Tarniţă, D.; Tarniţă, D.N.; Hacman, L.; Copiluş, C.; Berceanu, C. In vitro experiment of the modular orthopedic plate based on Nitinol, used for human radius bone fractures. Rom. J. Morphol. Embryol. 2010, 51, 315–320. [Google Scholar] [PubMed]
- Tarnita, D.; Bolcu, D.; Berceanu, C.; Cismaru, F.L. Theoretical and experimental studies for an orthopedic staple made up Nitinol. J. Optoelectron. Adv. Mater. 2010, 12, 2323–2332. [Google Scholar]
- Safranski, D.; Dupont, K.; Gall, K. Pseudoelastic NiTiNOL in orthopaedic applications. Shape Mem. Superelasticity 2020, 6, 332–341. [Google Scholar] [CrossRef]
- Fu, Q.G.; Liu, X.W.; Xu, S.G.; Li, M.; Zhang, C.C. Stress-shielding effect of nitinol swan-like memory compressive connector on fracture healing of upper limb. J. Mater. Eng. Perform. 2009, 18, 797–804. [Google Scholar] [CrossRef]
- Shabalovskaya, S.A.; Tian, H.; Anderegg, J.W.; Schryvers, D.U.; Carroll, W.U.; Van Humbeeck, J. The influence of surface oxides on the distribution and release of nickel from Nitinol wires. Biomaterials 2009, 30, 468–477. [Google Scholar] [CrossRef]
- Srivastava, A.; Xu, R.; Escoto, A.; Ward, C.; Patel, R.V. Design of an Ultra Thin Strain Sensor Using Superelastic Nitinol for Applications in Minimally Invasive Surgery. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banf, AB, Canada, 12–15 July 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Singh, D.; Sinha, S.; Singh, H.; Jagetia, A.; Gupta, S.; Gangoo, P.; Tandon, M. Use of nitinol shape memory alloy staples (NiTi clips) after cervical discoidectomy: Minimally invasive instrumentation and long-term results. Minim. Invasive Neurosurg. 2011, 54, 172–178. [Google Scholar] [CrossRef]
- Mehjabeen, A.; Song, T.; Xu, W.; Tang, H.P.; Qian, M. Zirconium alloys for orthopaedic and dental applications. Adv. Eng. Mater. 2018, 20, 1800207. [Google Scholar] [CrossRef]
- O’Brien, B. Niobium Biomaterials. In Springer Series in Biomaterials Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2015; pp. 245–272. [Google Scholar]
- Mani, G.; Porter, D.; Grove, K.; Collins, S.; Ornberg, A.; Shulfer, R. A comprehensive review of biological and materials properties of Tantalum and its alloys. J. Biomed. Mater. Res. A 2022, 110, 1291–1306. [Google Scholar] [CrossRef]
- King, D.J.M.; Knowles, A.J.; Bowden, D.; Wenman, M.R.; Capp, S.; Gorley, M.; Shimwell, J.; Packer, L.; Gilbert, M.R.; Harte, A. High temperature zirconium alloys for fusion energy. J. Nucl. Mater. 2022, 559, 153431. [Google Scholar] [CrossRef]
- Jiang, N.; Bian, H.; Song, X.; Lei, Y.; Song, Y.; Lin, D.; Chen, X.; Long, W. Recent advances in joining of zirconium and zirconium alloy for nuclear industry. Met. Mater. Int. 2024, 30, 2625–2654. [Google Scholar] [CrossRef]
- Renganathan, G.; Tanneru, N.; Madurai, S.L. Orthopedical and Biomedical Applications of Titanium and Zirconium Metals. In Fundamental Biomaterials: Metals; Elsevier: Amsterdam, The Netherlands, 2018; pp. 211–241. [Google Scholar]
- Andreeva, V.V.; Glukhova, A.I. Corrosion and electrochemical properties of zirconium, titanium and titanium-zirconium alloys in solutions of hydrochloric acid and of hydrochloric acid with oxidising agents. J. Appl. Chem. 2007, 11, 390–397. [Google Scholar] [CrossRef]
- Andreeva, V.V.; Glukhova, A.I. Corrosion and electrochemical properties of titanium, zirconium and titanium-zirconium alloys in acid solutions. II. J. Appl. Chem. 1962, 12, 457–468. [Google Scholar] [CrossRef]
- Northwood, D.O.; London, I.M.; Bähen, L.E. Elastic constants of zirconium alloys. J. Nucl. Mater. 1975, 55, 299–310. [Google Scholar] [CrossRef]
- Helmi Attia, M. On the fretting wear mechanism of Zr-alloys. Tribol. Int. 2006, 39, 1320–1326. [Google Scholar] [CrossRef]
- Nomura, N. Zirconium Alloys for Orthopedic Applications. In Springer Series in Biomaterials Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2015; pp. 215–221. [Google Scholar]
- Zhou, F.Y.; Wang, B.L.; Qiu, K.J.; Li, L.; Lin, J.P.; Li, H.F.; Zheng, Y.F. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 237–246. [Google Scholar] [CrossRef]
- Rosalbino, F.; Macciò, D.; Scavino, G.; Saccone, A. Corrosion behavior of new ternary zirconium alloys as alternative materials for biomedical applications. Mater. Corros. 2015, 66, 1125–1132. [Google Scholar] [CrossRef]
- Xu, L.; Wei, C.; Deng, L.; Wang, P.; Zhong, W.; Huang, W. A review of non-biodegradable alloys implantation induced inflammatory and immune cell responses. J. Alloys Compd. 2024, 977, 173086. [Google Scholar] [CrossRef]
- Li, J.; Ai, H.-J. The responses of endothelial cells to Zr61Ti2Cu25Al12 metallic glass in vitro and in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 40, 189–196. [Google Scholar] [CrossRef]
- Leite, K.L.; Dias, M.D.; Tavares, F.O.; Silva, K.S.; Chevitarese, A.B.; Martins, M.L.; Masterson, D.; Menezes, L.R.; Gonçalves, A.F.; Maia, L.C. A Data mining analysis on niobium in dentistry: Promising alloys for dental materials. Pesqui. Bras. Odontopediatria Clín. Integr. 2024, 24, e230072. [Google Scholar] [CrossRef]
- Ali, A.M.; Thair, L.; Intisar, J. Studying Biomimetic Coated Niobium as an Alternative Dental Implant Material to Titanium (in vitro and in vivo study). Baghdad Sci. J. 2018, 15, 253–261. [Google Scholar]
- Olivares-Navarrete, R.; Olaya, J.J.; Ramírez, C.; Rodil, S.E. Biocompatibility of niobium coatings. Coatings 2011, 1, 72–87. [Google Scholar] [CrossRef]
- Ak, A. Fibroblast cell responses to vanadium and niobium Titanium alloys: A biocompatibility study. ACS Omega 2023, 8, 33802–33808. [Google Scholar] [CrossRef]
- Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001, 22, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.L.; Li, L.; Zheng, Y.F. In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys. Biomed. Mater. 2010, 5, 044102. [Google Scholar] [CrossRef] [PubMed]
- Yolun, A.; Şimşek, M.; Kaya, M.; Annaç, E.E.; Köm, M.; Çakmak, Ö. Fabrication, characterization, and in vivo biocompatibility evaluation of titanium-niobium implants. Proc. Inst. Mech. Eng. H 2021, 235, 99–108. [Google Scholar] [CrossRef]
- Eisenbarth, E.; Velten, D.; Müller, M.; Thull, R.; Breme, J. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials 2004, 25, 5705–5713. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhang, J.; Xie, Z. Electrochemical properties of niobium coating for biomedical application. Coatings 2019, 9, 546. [Google Scholar] [CrossRef]
- Bobyn, J.D.; Poggie, R.A.; Krygier, J.J.; Lewallen, D.G.; Hanssen, A.D.; Lewis, R.J.; Unger, A.S.; O’Keefe, T.J.; Christie, M.J.; Nasser, S.; et al. Clinical validation of a structural porous tantalum biomaterial for adult reconstruction. J. Bone Jt. Surg. Am. 2004, 86 (Suppl. S2), 123–129. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.R.; Sporer, S.; Poggie, R.A.; Della Valle, C.J.; Jacobs, J.J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006, 27, 4671–4681. [Google Scholar] [CrossRef]
- Dunbar, M.J.; Wilson, D.A.J.; Hennigar, A.W.; Amirault, J.D.; Gross, M.; Reardon, G.P. Fixation of a trabecular metal knee arthroplasty component: A prospective randomized study. J. Bone Jt. Surg. Am. 2009, 91, 1578–1586. [Google Scholar] [CrossRef]
- Carraro, F.; Bagno, A. Tantalum as trabecular metal for endosseous implantable applications. Biomimetics 2023, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Christie, M.J. Clinical applications of trabecular Metal. Am. J. Orthop. 2002, 31, 219–220. [Google Scholar]
- Stiehl, J.B. Trabecular metal in hip reconstructive surgery. Orthopedics 2005, 28, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Schildhauer, T.A.; Peter, E.; Muhr, G.; Köller, M. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials. J. Biomed. Mater. Res. A 2009, 88, 332–341. [Google Scholar] [CrossRef]
- Taylor, D.F. Acid corrosion resistance of tantalum, columbium, zirconium, and titanium. Ind. Eng. Chem. 1950, 42, 639. [Google Scholar] [CrossRef]
- Tang, Z.; Xie, Y.; Yang, F.; Huang, Y.; Wang, C.; Dai, K.; Zheng, X.; Zhang, X. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo. PLoS ONE 2013, 8, e66263. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Yu, X.; Feng, Y.; Wang, C.; Yang, K.; Su, D. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2987–2994. [Google Scholar] [CrossRef]
- Kuo, T.-Y.; Chin, W.-H.; Chien, C.-S.; Hsieh, Y.-H. Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying. Surf. Coat. Technol. 2019, 372, 399–409. [Google Scholar] [CrossRef]
- Talha, M.; Ma, Y.; Lin, Y.; Pan, Y.; Kong, X.; Sinha, O.P.; Behera, C.K. Corrosion performance of cold deformed austenitic stainless steels for biomedical applications. Corros. Rev. 2019, 37, 283–306. [Google Scholar] [CrossRef]
- Seah, K.H.W.; Chen, X. A comparison between the corrosion characteristics of 316 stainless steel, solid titanium and porous titanium. Corros. Sci. 1993, 34, 1841–1851. [Google Scholar] [CrossRef]
- Lodhi, M.J.K.; Deen, K.M.; Greenlee-Wacker, M.C.; Haider, W. Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit. Manuf. 2019, 27, 8–19. [Google Scholar] [CrossRef]
- Roed-Petersen, B.; Roed-Petersen, J.; Jørgensen, K.D. Nickel allergy and osteomyelitis in a patient with metal osteosynthesis of a jaw fracture. Contact Dermat. 1979, 5, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Randin, J.P. Corrosion behavior of nickel-containing alloys in artificial sweat. J. Biomed. Mater. Res. 1988, 22, 649–666. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, K.; Wei, M.; Zhu, P.; Wang, R.; Zhang, S.; Jin, X.; Tian, T.; Zhang, Y.; Long, K. Dermatitis due to orthopaedic implants. J. Biomater. Tissue Eng. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Imam, M.A.; Fraker, A.C.; Gilmore, C.M. Corrosion Fatigue of 316L Stainless Steel, Co-Cr-Mo Alloy, and ELI Ti-6Al-4V. Corrosion and Degradation of Implant Materials; 100 Barr Harbor Drive, PO Box C700, Conshohocken, PA 19428-2959; ASTM International: Conshohocken, PA, USA, 1979; pp. 128–143. [Google Scholar]
- Beach, J.E.; Marchica, N.V.; Taylor, D.W.; Ichter, L.L. A fatigue comparison of high strength steel, stainless steel, and titanium in asimulated ocean environment. In Proceedings of the OTC Offshore Technology Conference, Houston, TX, USA, 7 May 1978. [Google Scholar] [CrossRef]
- Lane, I.R.; Golden, L.B.; Acherman, W.L. Corrosion resistance of titanium, zirconium, and stainless steel in organic compounds. Ind. Eng. Chem. 1953, 45, 1067–1070. [Google Scholar] [CrossRef]
- Golden, L.B.; Lane, I.R.; Acherman, W.L. Corrosion resistance of titanium, zirconium, and stainless steel. Ind. Eng. Chem. 1952, 44, 1930–1939. [Google Scholar] [CrossRef]
- Sundgren, J.-E.; Bodö, P.; Lundström, I. Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J. Colloid. Interface Sci. 1986, 110, 9–20. [Google Scholar] [CrossRef]
- Mirvis, S.E.; Geisler, F.; Joslyn, J.N.; Zrebeet, H. Use of titanium wire in cervical spine fixation as a means to reduce MR artifacts. AJNR Am. J. Neuroradiol. 1988, 9, 1229–1231. [Google Scholar]
- Geisler, F.H.; Sutton, L.N.; Mirvis, S.E.; Zrebeet, H.; Joslyn, J.N. Titanium wire internal fixation for stabilization of injury of the cervical spine: Clinical results and postoperative magnetic resonance imaging of the spinal cord. Neurosurgery 1989, 25, 356–362. [Google Scholar] [CrossRef]
- Daga, B.; Rivera, G.; Boeri, R. Review of the regulations for the use of stainless steels for orthopedic implants in Argentina. J. Phys. Conf. Ser. 2007, 90, 012045. [Google Scholar] [CrossRef]
- Baharuddin, M.Y.; Salleh, S.-H.; Suhasril, A.A.; Zulkifly, A.H.; Lee, M.H.; Omar, M.A.; Kader, A.S.A.; Noor, A.M.; Harris, A.R.A.; Majid, N.A. Fabrication of low-cost, cementless femoral stem 316L stainless steel using investment casting technique. Artif. Organs 2014, 38, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, B. Experiences with Implantable Devices—Problems Faced by Developing Countries. In Materials Sciences and Implant Orthopedic Surgery; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Azevedo, C.R.F.; Hippert, E., Jr. Failure analysis of surgical implants in Brazil. Eng. Fail. Anal. 2002, 9, 621–633. [Google Scholar] [CrossRef]
- Bakwatanisa, B.; Enywaku, A.; Kiwanuka, M.; Lamunu, C.; Mbowa, N.; Mukiibi, D.; Namayega, C.N.; Ngabirano, B.; Ntambi, H.; Reichert, W. Biomaterials use in Mulago National Referral Hospital in Kampala, Uganda: Access and affordability. J. Biomed. Mater. Res. A 2016, 104, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Heiden, M.; Walker, E.; Stanciu, L. Magnesium, iron and zinc alloys, the trifecta of bioresorbable orthopaedic and vascular implantation—A review. J. Biotechnol. Biomater. 2015, 5, 1. [Google Scholar] [CrossRef]
- Pina, S.; Ferreira, J.M.F. Bioresorbable plates and screws for clinical applications: A review. J. Healthc. Eng. 2012, 3, 243–260. [Google Scholar] [CrossRef]
- Pietrzak, W.S.; Sarver, D.; Verstynen, M. Bioresorbable implants—Practical considerations. Bone 1996, 19, S109–S119. [Google Scholar] [CrossRef]
- Farraro, K.F.; Kim, K.E.; Woo, S.L.-Y.; Flowers, J.R.; McCullough, M.B. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 2014, 47, 1979–1986. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.; Vaz, M.F.; Colaço, R.; Santos, C.; Carmezim, M. Biodegradable iron and porous iron: Mechanical properties, degradation behaviour, manufacturing routes and biomedical applications. J. Funct. Biomater. 2022, 13, 72. [Google Scholar] [CrossRef]
- Li, P.; Dai, J.; Li, Y.; Alexander, D.; Čapek, J.; Geis-Gerstorfer, J.; Wang, G.; Han, J.; Yu, Z.; Li, A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater. Today Bio 2024, 25, 100932. [Google Scholar] [CrossRef]
- Aljihmani, L.; Alic, L.; Boudjemline, Y.; Hijazi, Z.M.; Mansoor, B.; Serpedin, E.; Qaraqe, K. Magnesium-based bioresorbable Stent materials: Review of reviews. J. Bio Tribo-Corros. 2019, 5, 26. [Google Scholar] [CrossRef]
- Gu, X.-N.; Zheng, Y.-F. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 2010, 4, 111–115. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Wu, S.; Yeung, K.W.K.; Zheng, Y.; Chu, P.K. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater. 2016, 45, 2–30. [Google Scholar] [CrossRef] [PubMed]
- Moravej, M.; Purnama, A.; Fiset, M.; Couet, J.; Mantovani, D. Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta Biomater. 2010, 6, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Frattolin, J.; Roy, R.; Rajagopalan, S.; Walsh, M.; Yue, S.; Bertrand, O.F.; Mongrain, R. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material. Acta Biomater. 2019, 99, 479–494. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, P.M. Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 838–852. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, P.; Wang, Q.; Deng, P.; Yuan, Y.; Fu, X.; Yang, Y.; Tan, L.; Yang, K.; Qi, X. Biodegradable high-nitrogen iron alloy anastomotic staples: In vitro and in vivo studies. Bioact. Mater. 2024, 40, 34–46. [Google Scholar] [CrossRef]
- Hermawan, H.; Dubé, D.; Mantovani, D. Degradable metallic biomaterials: Design and development of Fe-Mn alloys for stents. J. Biomed. Mater. Res. A 2010, 93, 1–11. [Google Scholar] [CrossRef]
- Schinhammer, M.; Steiger, P.; Moszner, F.; Löffler, J.F.; Uggowitzer, P.J. Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1882–1893. [Google Scholar] [CrossRef]
- Dargusch, M.S.; Venezuela, J.; Dehghan-Manshadi, A.; Johnston, S.; Yang, N.; Mardon, K.; Lau, C.; Allavena, R. In vivo evaluation of bioabsorbable Fe-35Mn-1Ag: First reports on in vivo hydrogen gas evolution in Fe-based implants. Adv. Healthc. Mater. 2021, 10, e2000667. [Google Scholar] [CrossRef]
- Kafri, A.; Ovadia, S.; Yosafovich-Doitch, G.; Aghion, E. In vivo performances of pure Zn and Zn-Fe alloy as biodegradable implants. J. Mater. Sci. Mater. Med. 2018, 29, 94. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, H.; Liu, Y.; Xiong, P.; Guo, H.; Huang, H.-H.; Zheng, Y. Comparative studies on degradation behavior of pure zinc in various simulated body fluids. JOM 2019, 71, 1414–1425. [Google Scholar] [CrossRef]
- SathishKumar, G.; Parameswaran, P.; Vijayan, V.; Yokeswaran, R. Effects of Ca, Cu concentration on degradation behavior of Zn alloys in Hank’s solution. Met. Powder Rep. 2020, 76, 10. [Google Scholar] [CrossRef]
- Guo, P.; Bagheri, R.; Ren, T.; Yang, L.; Xu, C.; Lin, J.; Liu, H.; Sun, W.; Song, Z. Corrosion characteristics of zinc–zirconium alloy in c-SBF and its biocompatibility in vitro/in vivo. Mater. Corros. 2020, 71, 196–208. [Google Scholar] [CrossRef]
- Huang, J.; Lai, Y.; Jin, H.; Guo, H.; Ai, F.; Xing, Q.; Yang, X.; Ross, D.J. Preparation and properties of Zn-cu alloy for potential Stent material. J. Mater. Eng. Perform. 2020, 29, 6484–6493. [Google Scholar] [CrossRef]
- Eddy Jai Poinern, G.; Brundavanam, S.; Fawcett, D. Biomedical magnesium alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2013, 2, 218–240. [Google Scholar] [CrossRef]
- Chaya, A.; Yoshizawa, S.; Verdelis, K.; Myers, N.; Costello, B.J.; Chou, D.-T.; Pal, S.; Maiti, S.; Kumta, P.N.; Sfeir, C. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015, 18, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.; Lee, H.-B.; Dong, Z.; Kotoka, R.; Sankar, J.; Huang, N.; Yun, Y. The effects of static and dynamic loading on biodegradable magnesium pins in vitro and in vivo. Sci. Rep. 2017, 7, 14710. [Google Scholar] [CrossRef]
- Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Iulian, A.; Aurora, A.; Ana-Iulia, B.; Florin, M. In vitro biodegradation behavior of some magnesium alloys without aluminium potentially used for trauma implants. Front. Bioeng. Biotechnol. 2016, 4, 203–209. [Google Scholar] [CrossRef]
- He, L.Y.; Zhang, X.M.; Liu, B.; Tian, Y.; Ma, W.H. Effect of magnesium ion on human osteoblast activity. Braz. J. Med. Biol. Res. 2016, 49, e5257. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, X.-Y.; Feng, Y.-F.; Ma, Z.-S.; Ma, T.-C.; Zhang, Y.; Zhang, Y.; Li, X.; Wang, L.; Lei, W. Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/akt signalling pathway. Biol. Trace Elem. Res. 2017, 179, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kim, K.-J.; Cheon, S.; Kim, E.-M.; Kim, Y.-A.; Park, C.; Park, C.; Kim, K.K. Biochemical activity of magnesium ions on human osteoblast migration. Biochem. Biophys. Res. Commun. 2020, 531, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xie, B.; Wang, L.; Qin, Y.; Henneman, Z.J.; Nancollas, G.H. Influence of magnesium ions and amino acids on the nucleation and growth of hydroxyapatite. CrystEngComm 2011, 13, 1153–1158. [Google Scholar] [CrossRef]
- Shimaya, M.; Muneta, T.; Ichinose, S.; Tsuji, K.; Sekiya, I. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthr. Cartil. 2010, 18, 1300–1309. [Google Scholar] [CrossRef]
- Wu, L.; Luthringer, B.J.C.; Feyerabend, F.; Schilling, A.F.; Willumeit, R. Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta Biomater. 2014, 10, 2843–2854. [Google Scholar] [CrossRef]
- Brown, E.M.; Chen, C.J. Calcium, magnesium and the control of PTH secretion. Bone Miner. 1989, 5, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Sahota, O.; Mundey, M.K.; San, P.; Godber, I.M.; Hosking, D.J. Vitamin D insufficiency and the blunted PTH response in established osteoporosis: The role of magnesium deficiency. Osteoporos. Int. 2006, 17, 1013–1021. [Google Scholar] [CrossRef]
- Santos, G.G.; Nunes, V.L.C.; Marinho, S.M.O.C.; Santos, S.R.A.; Rossi, A.M.; Miguel, F.B. Biological behavior of magnesium-substituted hydroxyapatite during bone repair. Braz. J. Biol. 2021, 81, 53–61. [Google Scholar] [CrossRef]
- Havalda, R.; Pilli, S.C.; Putti, B.B. Effects of magnesium on mechanical properties of human bone. IOSR J. Pharm. Biol. Sci. 2013, 7, 8–14. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Castiglioni, S.; Locatelli, L.; Zocchi, M.; Mazur, A. Magnesium and inflammation: Advances and perspectives. Semin. Cell Dev. Biol. 2021, 115, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, N.T.; Lespagnol, J.; Birbilis, N.; Staiger, M.P. A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 2010, 52, 287–291. [Google Scholar] [CrossRef]
- Wan, Y.; Xiong, G.; Luo, H.; He, F.; Huang, Y.; Zhou, X. Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater. Eng. 2008, 29, 2034–2037. [Google Scholar] [CrossRef]
- Xu, Z.; Smith, C.; Chen, S.; Sankar, J. Development and microstructural characterizations of Mg–Zn–Ca alloys for biomedical applications. Mater. Sci. Eng. B Solid. State Mater. Adv. Technol. 2011, 176, 1660–1665. [Google Scholar] [CrossRef]
- Weng, W.; Biesiekierski, A.; Li, Y.; Dargusch, M.; Wen, C. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomater. 2021, 130, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Rola, P.; Włodarczak, S.; Doroszko, A.; Lesiak, M.; Włodarczak, A. The bioresorbable magnesium scaffold (Magmaris)-State of the art: From basic concept to clinical application. Catheter. Cardiovasc. Interv. 2022, 100, 1051–1058. [Google Scholar] [CrossRef]
- Zhang, A.-M.; Lenin, P.; Zeng, R.-C.; Kannan, M.B. Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys. J. Magnes. Alloy 2022, 10, 1154–1170. [Google Scholar] [CrossRef]
- Witte, F.; Feyerabend, F.; Maier, P.; Fischer, J.; Störmer, M.; Blawert, C.; Dietzel, W.; Hort, N. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 2007, 28, 2163–2174. [Google Scholar] [CrossRef]
- Amukarimi, S.; Mozafari, M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm 2021, 2, 123–144. [Google Scholar] [CrossRef]
- Gąsior, G.; Szczepański, J.; Radtke, A. Biodegradable iron-based materials-what was done and what more can be done? Materials 2021, 14, 3381. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Zhang, H.; Zhang, W.; Qi, H.; Zhang, G.; Qian, J.; Li, X.; Qin, L.; Li, H.; Wang, X.; et al. In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact. Mater. 2021, 6, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Putra, N.E.; Leeflang, M.A.; Taheri, P.; Fratila-Apachitei, L.E.; Mol, J.M.C.; Zhou, J.; Zhou, J.; Zadpoor, A.A. Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomater. 2021, 134, 774–790. [Google Scholar] [CrossRef]
- Hrubovčáková, M.; Džupon, M.; Kupková, M.; Oriňáková, R. Biodegradable iron-based foams for potential bone replacement material. Defect. Diffus. For. 2020, 405, 151–156. [Google Scholar] [CrossRef]
- Bondareva, J.V.; Dubinin, O.N.; Kuzminova, Y.O.; Shpichka, A.I.; Kosheleva, N.V.; Lychagin, A.V.; Shibalova, A.A.; Pozdnyalov, A.A.; Akhatov, I.S.; Timashev, P.S. Biodegradable iron-silicon implants produced by additive manufacturing. Biomed. Mater. 2022, 17, 035005. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ulloa, A.; Nauman, E.; Stanciu, L. Collagen coating effects on Fe-Mn bioresorbable alloys. J. Orthop. Res. 2020, 38, 523–535. [Google Scholar] [CrossRef]
- Ravanbakhsh, S.; Paternoster, C.; Barucca, G.; Mengucci, P.; Gambaro, S.; Lescot, T.; Chevallier, T.; Fortin, M.-A.; Mantovani, D. Improving the radiopacity of Fe-Mn biodegradable metals by magnetron-sputtered W-Fe-Mn-C coatings: Application for thinner stents. Bioact. Mater. 2022, 12, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Petráková, M.; Gorejová, R.; Shepa, J.; Macko, J.; Kupková, M.; Petruš, O.; Baláž, M.; Sopčák, T.; Mičušík, M.; Kožár, M.; et al. Effect of Gentamicin-Loaded Calcium Phosphate Coating and Polymeric Coating on the Degradation Properties of Biodegradable Iron-Based Biomaterials. ACS Omega 2024, 9, 48299–48314. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.-C.; Huang, Y.-M.; Liaw, C.-K.; Yang, K.-Y.; Ma, C.-H.; Huang, S.-I.; Huang, C.-C.; Tsia, P.-I.; Shen, H.-H.; Sun, J.-S.; et al. Biocompatibility and biological performance of additive-manufactured bioabsorbable iron-based porous interference screws in a rabbit model: A 1-year observational study. Int. J. Mol. Sci. 2022, 23, 14626. [Google Scholar] [CrossRef]
- Edwards, D.F., 3rd; Miller, C.J.; Quintana-Martinez, A.; Wright, C.S.; Prideaux, M.; Atkins, G.J.; Thompson, W.R.; Clinkenbeard, E.L. Differential iron requirements for osteoblast and adipocyte differentiation. JBMR Plus 2021, 5, e10529. [Google Scholar] [CrossRef]
- Yang, J.; Dong, D.; Luo, X.; Zhou, J.; Shang, P.; Zhang, H. Iron overload-induced osteocyte apoptosis stimulates osteoclast differentiation through increasing osteocytic RANKL production in vitro. Calcif. Tissue Int. 2020, 107, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, H.; Qi, G.; Jiang, C.; Chen, K.; Yan, Z. Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis: An in vitro and in vivo study. IUBMB Life 2022, 74, 1052–1069. [Google Scholar] [CrossRef] [PubMed]
- von Brackel, F.N.; Oheim, R. Iron and bones: Effects of iron overload, deficiency and anemia treatments on bone. JBMR Plus 2024, 8, ziae064. [Google Scholar] [CrossRef] [PubMed]
- Marques, O.; Weiss, G.; Muckenthaler, M.U. The role of iron in chronic inflammatory diseases: From mechanisms to treatment options in anemia of inflammation. Blood 2022, 140, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.; Schwarz, F.; Sadlon, A.; Abderhalden, L.A.; de Godoi Rezende Costa Molino, C.; Spahn, D.R.; Schaer, D.J.; Orav, E.J.; Egli, A.; Bischoff-Ferrai, H.A.; et al. Iron deficiency and biomarkers of inflammation: A 3-year prospective analysis of the DO-HEALTH trial. Aging Clin. Exp. Res. 2022, 34, 515–525. [Google Scholar] [CrossRef]
- Das, P.; Pathak, D.K.; Sharma, P.; Pandey, P.M. A review on the mechanical and biocorrosion behaviour of iron and zinc-based biodegradable materials fabricated using powder metallurgy routes. Corros. Rev. 2024. [Google Scholar] [CrossRef]
- Putra, N.E.; Moosabeiki, V.; Leeflang, M.A.; Zhou, J.; Zadpoor, A.A. Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron-manganese scaffolds. Acta Biomater. 2024, 178, 340–351. [Google Scholar] [CrossRef]
- Su, Y.; Fu, J.; Zhou, J.; Georgas, E.; Du, S.; Qin, Y.-X.; Wang, Y.; Zheng, Y.; Zhu, D. Blending with transition metals improves bioresorbable zinc as better medical implants. Bioact. Mater. 2023, 20, 243–258. [Google Scholar] [CrossRef]
- Lin, W.; Xu, L.; Li, G. Molecular insights into lysyl oxidases in cartilage regeneration and rejuvenation. Front. Bioeng. Biotechnol. 2020, 8, 359, Erratum in Front. Bioeng. Biotechnol. 2020, 8, 598323. [Google Scholar] [CrossRef]
- Kong, W.; Lyu, C.; Liao, H.; Du, Y. Collagen crosslinking: Effect on structure, mechanics and fibrosis progression. Biomed. Mater. 2021, 16, 062005. [Google Scholar] [CrossRef]
- Matthiesen, C.L.; Hu, L.; Torslev, A.S.; Poulsen, E.T.; Larsen, U.G.; Kjaer-Sorensen, K.; Thomsen, J.S.; Bruel, A.; Engild, J.J.; Oxvig, C.; et al. Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization. Free Radic. Biol. Med. 2021, 164, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.; Ferns, G.A.; Sahebkar, A.; Mirshekar, M.A.; Jalali, M. Zinc supplementation is associated with a reduction in serum markers of inflammation and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. Cytokine 2021, 138, 155396. [Google Scholar] [CrossRef]
- Su, Y.; Fu, J.; Lee, W.; Du, S.; Qin, Y.-X.; Zheng, Y.; Wang, Y.; Zhu, D. Improved mechanical, degradation, and biological performances of Zn-Fe alloys as bioresorbable implants. Bioact. Mater. 2022, 17, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Farabi, E.; Sharp, J.A.; Vahid, A.; Fabijanic, D.M.; Barnett, M.R.; Gallo, S.C. Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 122, 111897. [Google Scholar] [CrossRef]
- Parilla, F.W.; Youngman, T.R.; Layon, D.R.; Ince, D.C.; Pashos, G.E.; Maloney, W.J.; Clohisy, J.C. Excellent 20-year results of total hip arthroplasty with highly cross-linked polyethylene on cobalt-chromium femoral heads in patients ≤50 years. J. Arthroplasty 2024, 39, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Lanzutti, A.; Andreatta, F.; Vaglio, E.; Sortino, M.; Totis, G.; Fedrizzi, L. Effects of post-printing heat treatment on microstructure, corrosion and wet wear behavior of CoCrW alloy produced by L-PBF process. Prog. Addit. Manuf. 2023, 8, 1473–1487. [Google Scholar] [CrossRef]
- Mertz, K.C.; Yang, J.; Chung, B.C.; Chen, X.; Mayfield, C.K.; Heckmann, N.D. Ceramic femoral heads exhibit lower wear rates compared to cobalt chrome: A meta-analysis. J. Arthroplasty 2023, 38, 397–405. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, Y.; Bao, Y.-H.; Yang, Z.; Zha, G.-C.; Chen, X.-Y. Comparison of modular and nonmodular tapered fluted titanium stems in femoral revision hip arthroplasty: A minimum 6-year follow-up study. Sci. Rep. 2020, 10, 13692. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Khan, S.M.; Al-Khaled, K.; Ayadi, M.; Abbas, N.; Chammam, W. Performance analysis of biodegradable materials for orthopedic applications. Mater. Today Commun. 2022, 31, 103167. [Google Scholar] [CrossRef]
- Jorgensen, D.J.; Dunand, D.C. Structure and mechanical properties of Ti–6Al–4V with a replicated network of elongated pores. Acta Mater. 2011, 59, 640–650. [Google Scholar] [CrossRef]
- Bridgeport, D.A.; Brantley, W.A.; Herman, P.F. Cobalt-chromium and nickel-chromium alloys for removable prosthodontics, Part 1: Mechanical properties. J. Prosthodont. 1993, 2, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Xu, C.; Hu, X.; Gan, W.; Wu, K.; Wang, X. Improving the Young’s modulus of Mg via alloying and compositing—A short review. J. Magnes. Alloy 2022, 10, 2009–2024. [Google Scholar] [CrossRef]
- Grünewald, T.A.; Rennhofer, H.; Hesse, B.; Burghammer, M.; Stanzl-Tschegg, S.E.; Cotte, M.; Löffler, J.F.; Weinberg, A.-M.; Lichtenegger, H.C. Magnesium from bioresorbable implants: Distribution and impact on the nano-and mineral structure of bone. Biomaterials 2016, 76, 250–260. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Fujisawa, N.; Swain, M.V. Elastic modulus and stress-strain response of human enamel by nano-indentation. Biomaterials 2006, 27, 4388–4398. [Google Scholar] [CrossRef] [PubMed]
- Sumner, D.R. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech. 2015, 48, 797–800. [Google Scholar] [CrossRef]
- Savio, D.; Bagno, A. When the total hip replacement fails: A review on the stress-shielding effect. Processes 2022, 10, 612. [Google Scholar] [CrossRef]
- Marin, E.; Pressacco, M.; Fusi, S.; Lanzutti, A.; Turchet, S.; Fedrizzi, L. Characterization of grade 2 commercially pure Trabecular Titanium structures. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2648–2656. [Google Scholar] [CrossRef]
- Zhu, X.-K.; Joyce, J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech. 2012, 85, 1–46. [Google Scholar] [CrossRef]
- Fujii, T.; Nose, T. Evaluation of fracture toughness for ceramic materials. ISIJ Int. 1989, 29, 717–725. [Google Scholar] [CrossRef]
- Richards, N.L. Quantitative evaluation of fracture toughness-microstructural relationships in alpha-beta titanium alloys. J. Mater. Eng. Perform. 2004, 13, 218–225. [Google Scholar] [CrossRef]
- Hendricks, P. Effects of Heat Treatment and Microstructure on Tensile and Fracturetoughness Properties of Titanium 6Al-4V Alloy Plate. In Proceedings of the 15th Structural Dynamics and Materials Conference, Reston, VA, USA, 17–19 April 1974; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1974. [Google Scholar] [CrossRef]
- Shukla, K.S.P. Nitriding of Medical Grade CoCrMo Alloys Using HIPIMS Discharge. Ph.D Thesis, Sheffield Hallam University, Sheffield, UK, 2021. [Google Scholar] [CrossRef]
- Naghib, S.M.; Mojtaba Ansari, M.; Pedram, A.; Moztarzadeh, F.; Mozafari, M. Bioactivation of 304 stainless steel surface through 45S5 bioglass coating for biomedical applications. Int. J. Electrochem. Sci. 2012, 7, 2890–2903. [Google Scholar] [CrossRef]
- Podzorova, L.I.; Il’icheva, A.A.; Pen’kova, O.I.; Alad’ev, N.A.; Volchenkova, V.A.; Kutsev, S.V.; Shvorneva, L.I. Modified composites of Al2O3–(Ce-TZP) system as materials for medical use. Inorg. Mater. Appl. Res. 2016, 7, 724–729. [Google Scholar] [CrossRef]
- Palmero, P. Zirconia-Based Composites for Biomedical Applications. In Bioceramics and Biocomposites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 57–85. [Google Scholar]
- Ramesh, S.; Tolouei, R.; Tan, C.Y.; Amiriyan, M.; Yap, B.K.; Purbolaksono, J.; Hamdi, M. Influence of Magnesium Doping in Hydroxyapatite Bioceramics Sintered by Short Holding Time, Proceedings of the 5th Kuala Lumpur International Conference on Biomedical Engineering 2011 (BIOMED 2011), Kuala Lumpur, Malaysia, 20–23 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 80–83. [Google Scholar]
- Hasoon Al-Moameri, H.; Majid Nahi, Z.; Raheem Rzaij, D.; TAl-Sharify, N. A review on the biomedical applications of alumina. J. Eng. Sustain. Dev. 2022, 24, 28–36. [Google Scholar] [CrossRef]
- Wu, H.; Chen, X.; Kong, L.; Liu, P. Mechanical and biological properties of titanium and its alloys for oral implant with preparation techniques: A review. Materials 2023, 16, 6860. [Google Scholar] [CrossRef] [PubMed]
- Lanzutti, A.; Magnan, M.; Vaglio, E.; Totis, G.; Sortino, M.; Fedrizzi, L. Study of the effect of L-PBF technique temporal evolution on microstructure, surface texture, and fatigue performance of Ti gr. 23 alloy. Metals 2023, 13, 1247. [Google Scholar] [CrossRef]
- Lanzutti, A.; Andreatta, F.; Rossi, L.; Di Benedetto, P.; Causero, A.; Magnan, M.; Fedrizzi, L. Corrosion fatigue failure of a high carbon CoCrMo modular hip prosthesis: Failure analysis and electrochemical study. Eng. Fail. Anal. 2019, 105, 856–868. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Yeh, J.-J.; Jeng, S.-L.; Chen, C.-Y.; Kuo, R.-C. High-cycle fatigue behavior of type 316L stainless steel. Mater. Trans. 2006, 47, 409–417. [Google Scholar] [CrossRef]
- Guerchais, R.; Morel, F.; Saintier, N.; Robert, C. Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 1087–1104. [Google Scholar] [CrossRef]
- Schopf, T.; Weihe, S.; Daniel, T.; Smaga, M.; Beck, T. Fatigue behavior and lifetime assessment of an austenitic stainless steel in the VHCF regime at ambient and elevated temperatures. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1763–1774. [Google Scholar] [CrossRef]
- Rao, J.H.; Stanford, N. A survey of fatigue properties from wrought and additively manufactured Ti-6Al-4V. Mater. Lett. 2021, 283, 128800. [Google Scholar] [CrossRef]
- Bayrak, Ö.; Yetim, A.F.; Alsaran, A.; Çelik, A. Fatigue life determination of plasma nitrided medical grade CoCrMo alloy. Fatigue Fract. Eng. Mater. Struct. 2010, 33, 303–309. [Google Scholar] [CrossRef]
- Okazaki, Y. Comparison of fatigue properties and fatigue crack growth rates of various implantable metals. Materials 2012, 5, 2981–3005. [Google Scholar] [CrossRef]
- Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg alloys for orthopedic implants—A review. J. Magnes. Alloy 2021, 9, 1884–1905. [Google Scholar] [CrossRef]
- Liu, D.; Yang, D.; Li, X.; Hu, S. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review. J. Mater. Res. Technol. 2019, 8, 1538–1549. [Google Scholar] [CrossRef]
- Kiani, F.; Wen, C.; Li, Y. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review. Acta Biomater. 2020, 103, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Potzies, C.; Kainer, K.U. Fatigue of magnesium alloys. Adv. Eng. Mater. 2004, 6, 281–289. [Google Scholar] [CrossRef]
- Reza Kashyzadeh, K.; Amiri, N.; Maleki, E.; Unal, O. A critical review on improving the fatigue life and corrosion properties of magnesium alloys via the technique of adding different elements. J. Mar. Sci. Eng. 2023, 11, 527. [Google Scholar] [CrossRef]
- Cao, W.; Hench, L.L. Bioactive materials. Ceram. Int. 1996, 22, 493–507. [Google Scholar] [CrossRef]
- Zhao, X. Introduction to Bioactive Materials in Medicine. In Bioactive Materials in Medicine; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1–13. [Google Scholar]
- Posada, O.; Tate, R.; Meek, R.M.; Grant, M. In vitro analyses of the toxicity, immunological, and gene expression effects of cobalt-chromium alloy wear debris and co ions derived from metal-on-metal hip implants. Lubricants 2015, 3, 539–568. [Google Scholar] [CrossRef]
- Xia, Z.; Kwon, Y.-M.; Mehmood, S.; Downing, C.; Jurkschat, K.; Murray, D.W. Characterization of metal-wear nanoparticles in pseudotumor following metal-on-metal hip resurfacing. Nanomedicine 2011, 7, 674–681. [Google Scholar] [CrossRef]
- Ras Sørensen, S.-A.L.; Jørgensen, H.L.; Sporing, S.L.; Lauritzen, J.B. Revision rates for metal-on-metal hip resurfacing and metal-on-metal total hip arthroplasty—A systematic review. Hip Int. 2016, 26, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lee, G.; Li, S.; Hu, Z.; Zhao, K.; Rogers, J.A. Advances in bioresorbable materials and electronics. Chem. Rev. 2023, 123, 11722–11773. [Google Scholar] [CrossRef] [PubMed]
- Waelti, S.L.; Markart, S.; Willems, E.P.; Fischer, T.; Dietrich, T.J.; Ditchfield, M.; Mattissek, C.; Krebs, T. Radiographic features of magnesium-based bioabsorbable screw resorption in paediatric fractures. Pediatr. Radiol. 2022, 52, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.-H.; Lim, H.-K.; Kim, S.-M.; Lee, S.-M.; Kim, H.-E.; Lee, J.-H. The bioresorption and guided bone regeneration of absorbable hydroxyapatite-coated magnesium mesh. J. Craniofac. Surg. 2017, 28, 518–523. [Google Scholar] [CrossRef]
- Kuhlmann, J.; Bartsch, I.; Willbold, E.; Schuchardt, S.; Holz, O.; Hort, N.; Hoche, D.; Heineman, W.R.; Witte, F. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 2013, 9, 8714–8721. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Lee, K.-B.; Kim, S.-Y.; Bode, K.; Jang, Y.-S.; Kwon, T.-Y.; Jeon, M.H.; Lee, M.-H. Gas formation and biological effects of biodegradable magnesium in a preclinical and clinical observation. Sci. Technol. Adv. Mater. 2018, 19, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Jassim, S.S.; Patel, S.; Wardle, N.; Tahmassebi, J.; Middleton, R.; Shardlow, D.L.; Stephen, A.; Hutchinson, J.; Haddad, F.S. Five-year comparison of wear using oxidised zirconium and cobalt-chrome femoral heads in total hip arthroplasty: A multicentre randomised controlled trial. Bone Jt. J. 2015, 97-B, 883–889. [Google Scholar] [CrossRef]
- Jasty, M.; Bragdon, C.R.; Lee, K.; Hanson, A.; Harris, W.H. Surface damage to cobalt-chrome femoral head prostheses. J. Bone Jt. Surg. Br. 1994, 76-B, 73–77. [Google Scholar] [CrossRef]
- Viceconti, M.; Baleani, M.; Squarzoni, S.; Toni, A. Fretting wear in a modular neck hip prosthesis. J. Biomed. Mater. Res. 1997, 35, 207–216. [Google Scholar] [CrossRef]
- Elkins, J.M.; Callaghan, J.J.; Brown, T.D. Stability and trunnion wear potential in large-diameter metal-on-metal total hips: A finite element analysis. Clin. Orthop. Relat. Res. 2014, 472, 529–542. [Google Scholar] [CrossRef]
- Collier, J.P.; Mayor, M.B.; Jensen, R.E.; Surprenant, V.A.; Surprenant, H.P.; McNamar, J.L.; Belec, L. Mechanisms of failure of modular prostheses. Clin. Orthop. Relat. Res. 1992, 285, 129–139. [Google Scholar] [CrossRef]
- Konttinen, Y.T.; Pajarinen, J.; Takakubo, Y.; Gallo, J.; Nich, C.; Takagi, M.; Goodman, S.B. Macrophage polarization and activation in response to implant debris: Influence by “particle disease” and “ion disease”. J. Long. Term. Eff. Med. Implants 2014, 24, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Landgraeber, S.; Jäger, M.; Jacobs, J.J.; Hallab, N.J. The pathology of orthopedic implant failure is mediated by innate immune system cytokines. Mediators Inflamm. 2014, 2014, 185150. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.J.; Jacobs, J.J. Chemokines associated with pathologic responses to orthopedic implant debris. Front. Endocrinol. 2017, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef]
- Mariani, E.; Lisignoli, G.; Borzì, R.M.; Pulsatelli, L. Biomaterials: Foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 2019, 20, 636. [Google Scholar] [CrossRef]
- Anderson, J.M. Multinucleated giant cells. Curr. Opin. Hematol. 2000, 7, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Chrcanovic, B.R.; Gomes, C.C.; Gomez, R.S. Peripheral giant cell granuloma associated with dental implants: A systematic review. J. Stomatol. Oral. Maxillofac. Surg. 2019, 120, 456–461. [Google Scholar] [CrossRef]
- Molina-Ruiz, A.M.; Requena, L. Foreign body granulomas. Dermatol. Clin. 2015, 33, 497–523. [Google Scholar] [CrossRef]
- Zhang, X.; Morham, S.G.; Langenbach, R.; Young, D.A.; Xing, L.; Boyce, B.F.; Puzas, E.J.; Rosier, R.N.; O’Keefe, R.J.; Schwarz, E.M. Evidence for a direct role of cyclo-oxygenase 2 in implant wear debris-induced osteolysis. J. Bone Miner. Res. 2001, 16, 660–670. [Google Scholar] [CrossRef]
- de Souza, W.; Gemini-Piperni, S.; Ruivo, C.; Bastos, N.; Almeida, S.; Lopes, D.; Cordoso, P.; Oliveira, M.J.; Sumner, D.R.; Ross, R.d; et al. Osteoblasts-derived exosomes as potential novel communicators in particle-induced periprosthetic osteolysis. Mater. Today Bio 2024, 28, 101189. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, L.; Ruan, B.; Lv, Z.; Wang, H.; Wang, Y.; Jiang, Q.; Cao, W. NRF2 is a critical regulator and therapeutic target of metal implant particle-incurred bone damage. Biomaterials 2022, 288, 121742. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, J.; Wu, S.; Wang, J.; Tang, Q. Accumulation of blood chromium and cobalt in the participants with metal objects: Findings from the 2015 to 2018 National Health and Nutrition Examination Survey (NHANES). BMC Geriatr. 2023, 23, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Pan, X.; Chen, Y.; Lian, Q.; Gao, J.; Xu, Y.; Wang, J.; Shi, Z.; Cheng, H. Prosthetic metals: Release, metabolism and toxicity. Int. J. Nanomed. 2024, 19, 5245–5267. [Google Scholar] [CrossRef]
- Scharf, B.; Clement, C.C.; Zolla, V.; Perino, G.; Yan, B.; Elci, S.G.; Purdue, E.; Goldring, S.; Macaluso, F.; Cobelli, N.; et al. Molecular analysis of chromium and cobalt-related toxicity. Sci. Rep. 2014, 4, 5729. [Google Scholar] [CrossRef]
- Thyssen, J.P. Nickel and cobalt allergy before and after nickel regulation—Evaluation of a public health intervention. Contact Dermat. 2011, 65 (Suppl. S1), 1–68. [Google Scholar] [CrossRef]
- Pacheco, K.A. Allergy to surgical implants. Clin. Rev. Allergy Immunol. 2019, 56, 72–85. [Google Scholar] [CrossRef]
- Thomas, P.; Summer, B. Diagnosis and management of patients with allergy to metal implants. Expert. Rev. Clin. Immunol. 2015, 11, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Menné, T.; Lidén, C.; Julander, A.; Jensen, P.; Jakobsen, S.S.; Søballe, K.; Gotfredsen, K.; Jellesen, M.S.; Johansen, J.D. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis. Contact Dermat. 2012, 66, 113–122. [Google Scholar] [CrossRef]
- Balogh, E.; Paragh, G.; Jeney, V. Influence of iron on bone homeostasis. Pharmaceuticals 2018, 11, 107. [Google Scholar] [CrossRef]
- Meng, G.; Wu, X.; Yao, R.; He, J.; Yao, W.; Wu, F. Effect of zinc substitution in hydroxyapatite coating on osteoblast and osteoclast differentiation under osteoblast/osteoclast co-culture. Regen. Biomater. 2019, 6, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Feyerabend, F.; Schilling, A.F.; Willumeit-Römer, R.; Luthringer, B.J.C. Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomater. 2015, 27, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Hagiwara, H. Excess iron inhibits osteoblast metabolism. Toxicol. Lett. 2009, 191, 211–215. [Google Scholar] [CrossRef]
- Ying Kei, C.L. Iron-Substituted Hydroxyapatite. In Handbook of Ionic Substituted Hydroxyapatites; Elsevier: Amsterdam, The Netherlands, 2020; pp. 259–282. [Google Scholar]
- Ratnayake, J.T.B.; Mucalo, M.; Dias, G.J. Substituted hydroxyapatites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1285–1299. [Google Scholar] [CrossRef] [PubMed]
- Thian, E.S.; Konishi, T.; Kawanobe, Y.; Lim, P.N.; Choong, C.; Ho, B.; Aizawa, M. Zinc-substituted hydroxyapatite: A biomaterial with enhanced bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med. 2013, 24, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Vasto, S.; Mocchegiani, E.; Malavolta, M.; Cuppari, I.; Listì, F.; Nuzzo, D.; Ditta, V.; Candore, G.; Caruso, C. Zinc and inflammatory/immune response in aging. Ann. N. Y. Acad. Sci. 2007, 1100, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; Almeida, J.I.; Lima, I.S.; Kapitão, A.S.; Gozzelino, R. Iron metabolism and the inflammatory response. IUBMB Life 2017, 69, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Berndt, C.C.; Gross, K.A.; Kucuk, A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J. Biomed. Mater. Res. 2001, 58, 570–592. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Sebastiani, M.; Mangione, V.; Del Curto, B.; Pedeferri, M.P.; Bemporad, E.; Cigada, A.; Carassiti, F. Multi-step anodizing on Ti6Al4V components to improve tribomechanical performances. Surf. Coat. Technol. 2013, 227, 19–27. [Google Scholar] [CrossRef]
- Marin, E.; Offoiach, R.; Regis, M.; Fusi, S.; Lanzutti, A.; Fedrizzi, L. Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys. Mater. Des. 2016, 89, 314–322. [Google Scholar] [CrossRef]
- Lanzutti, A.; Raffaelli, A.; Magnan, M.; Fedrizzi, L.; Regis, M.; Marin, E. Microstructural and mechanical study of an induction nitrided Ti gr.5 hip prosthesis component. Surf. Coat. Technol. 2019, 377, 124895. [Google Scholar] [CrossRef]
- Mändl, S.; Rauschenbach, B. Improving the biocompatibility of medical implants with plasma immersion ion implantation. Surf. Coat. Technol. 2002, 156, 276–283. [Google Scholar] [CrossRef]
- Pelletier, J.; Anders, A. Plasma-based ion implantation and deposition: A review of physics, technology, and applications. IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 2005, 33, 1944–1959. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Nakamura, M.; Zanocco, M.; Zhu, W.; Pezzotti, G.; Andreatta, F. Corrosion and scratch resistance of DLC coatings applied on chromium molybdenum steel. Surf. Coat. Technol. 2019, 378, 124944. [Google Scholar] [CrossRef]
- Safin Kaosar Saad, K.; Saba, T.; Bin Rashid, A. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life. Heliyon 2024, 10, e35541. [Google Scholar] [CrossRef]
- Domínguez-Trujillo, C.; Peón, E.; Chicardi, E.; Pérez, H.; Rodríguez-Ortiz, J.A.; Pavón, J.J.; García-Couce, J.; Galván, J.C.; García-Moreno, F.; Torres, Y. Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surf. Coat. Technol. 2018, 333, 158–162. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I. Electrophoretic deposition of biomaterials. J. R. Soc. Interface 2010, 7 (Suppl. S5), S581–S613. [Google Scholar] [CrossRef]
- Makurat-Kasprolewicz, B.; Ossowska, A. Electrophoretically deposited titanium and its alloys in biomedical engineering: Recent progress and remaining challenges. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35342. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Zhao, B.; Zhang, W.; Wang, Q.; Niu, Y.; Wang, Y.; Yu, H.; Wang, Q.; Yang, K. Study on deposition of biomedical Ta coating on Ti6Al4V alloy substrate by CVD and its properties. Surf. Coat. Technol. 2025, 495, 131593. [Google Scholar] [CrossRef]
- Grant, D.M.; McColl, I.R.; Golozar, M.A.; Wood, J.V.; Braithwaite, N.S.J. Plasma assisted CVD for biomedical applications. Diam. Relat. Mater. 1992, 1, 727–730. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, G.; Li, J.; Xiao, D.; Shi, F.; Duan, K.; Guo, T.; Fan, X.; Weng, J. Hydrothermal growth of biomimetic calcium phosphate network structure on titanium surface for biomedical application. Ceram. Int. 2023, 49, 16652–16660. [Google Scholar] [CrossRef]
- Wen, S.; Liu, X.; Ding, J.; Liu, Y.; Lan, Z.; Zhang, Z.; Chen, G. Hydrothermal synthesis of hydroxyapatite coating on the surface of medical magnesium alloy and its corrosion resistance. Prog. Nat. Sci. 2021, 31, 324–333. [Google Scholar] [CrossRef]
- Asmawi, R.; Ibrahim, M.H.I.; Amin, A.M.; Mustafa, N.; Noranai, Z. Development of bioactive ceramic coating on titanium alloy substrate for biomedical application using dip coating method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012179. [Google Scholar] [CrossRef]
- Aksakal, B.; Hanyaloglu, C. Bioceramic dip-coating on Ti-6Al-4V and 316L SS implant materials. J. Mater. Sci. Mater. Med. 2008, 19, 2097–2104. [Google Scholar] [CrossRef]
- Zhang, X.; Pfeiffer, S.; Rutkowski, P.; Makowska, M.; Kata, D.; Yang, J.; Graule, T. Laser cladding of manganese oxide doped aluminum oxide granules on titanium alloy for biomedical applications. Appl. Surf. Sci. 2020, 520, 146304. [Google Scholar] [CrossRef]
- Weng, F.; Chen, C.; Yu, H. Research status of laser cladding on titanium and its alloys: A review. Mater. Eng. 2014, 58, 412–425. [Google Scholar] [CrossRef]
- Huang, W.; Zalnezhad, E.; Musharavati, F.; Jahanshahi, P. Investigation of the tribological and biomechanical properties of CrAlTiN and CrN/NbN coatings on SST 304. Ceram. Int. 2017, 43, 7992–8003. [Google Scholar] [CrossRef]
- Dolatabadi, A.; Mosatghimi, J.; Pershin, V. A New Design for Coating Thin Film Alumina on Stainless Steel for Biomedical Applications. In Proceedings of the International Conference on MEMS, NANO and Smart Systems, Banff, AB, Canada, 23 July 2003; IEEE: Piscataway, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Snyders, R.; Bousser, E.; Amireault, P.; Klemberg-Sapieha, J.E.; Park, E.; Taylor, K.; Taylor, K.; Casey, K.; Martinu, L. Tribo-mechanical properties of DLC coatings deposited on nitrided biomedical stainless steel. Plasma Process Polym. 2007, 4, S640–S646. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, X.; Xiao, G.-Y.; Lu, Y.-P. Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 47, 97–104. [Google Scholar] [CrossRef]
- Oliver, J.-A.N.; Su, Y.; Lu, X.; Kuo, P.-H.; Du, J.; Zhu, D. Bioactive glass coatings on metallic implants for biomedical applications. Bioact. Mater. 2019, 4, 261–270. [Google Scholar] [CrossRef]
- Muthulakshmi, L.; Anand Kumar, B.; Rajasekar, A.; Annaraj, J.; Pruncu, C.I. The benefits of k-Carrageenan-gelatin hybrid composite coating on the medical grade stainless steel (SS304) used as anticorrosive barrier. Mater. Chem. Phys. 2021, 258, 123909. [Google Scholar] [CrossRef]
- Trzaskowska, P.A.; Kuźmińska, A.; Butruk-Raszeja, B.; Rybak, E.; Ciach, T. Electropolymerized hydrophilic coating on stainless steel for biomedical applications. Colloids Surf. B Biointerfaces 2018, 167, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.; Atapour, M.; Ashrafizadeh, F.; Elmkhah, H.; di Confiengo, G.G.; Ferraris, S.; Perero, S.; Cardu, M.; Spriano, S. Nanostructured multilayer CAE-PVD coatings based on transition metal nitrides on Ti6Al4V alloy for biomedical applications. Ceram. Int. 2023, 49, 23367–23382. [Google Scholar] [CrossRef]
- Jiang, J.Y.; Xu, J.L.; Liu, Z.H.; Deng, L.; Sun, B.; Liu, S.D.; Wang, L.; Liu, H.Y. Preparation, corrosion resistance and hemocompatibility of the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys. Appl. Surf. Sci. 2015, 347, 591–595. [Google Scholar] [CrossRef]
- Hatem, A.; Lin, J.; Wei, R.; Torres, R.D.; Laurindo, C.; Soares, P. Tribocorrosion behavior of DLC-coated Ti-6Al-4V alloy deposited by PIID and PEMS + PIID techniques for biomedical applications. Surf. Coat. Technol. 2017, 332, 223–232. [Google Scholar] [CrossRef]
- Narayanan, R.; Seshadri, S.K.; Kwon, T.Y.; Kim, K.H. Calcium phosphate-based coatings on titanium and its alloys. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85, 279–299. [Google Scholar] [CrossRef]
- Li, S.J.; Niinomi, M.; Akahori, T.; Kasuga, T.; Yang, R.; Hao, Y.L. Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6 Zr for biomedical application. Biomaterials 2004, 25, 3369–3378. [Google Scholar] [CrossRef]
- Wang, L.; Shang, X.; Hao, Y.; Wan, G.; Dong, L.; Huang, D.; Yang, X.; Sun, J.; Wang, Q.; Zha, G.; et al. Bi-functional titanium-polydopamine-zinc coatings for infection inhibition and enhanced osseointegration. RSC Adv. 2019, 9, 2892–2905. [Google Scholar] [CrossRef]
- Szaraniec, B.; Pielichowska, K.; Pac, E.; Menaszek, E. Multifunctional polymer coatings for titanium implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 950–957. [Google Scholar] [CrossRef]
- Tsai, C.-E.; Hung, J.; Hu, Y.; Wang, D.-Y.; Pilliar, R.M.; Wang, R. Improving fretting corrosion resistance of CoCrMo alloy with TiSiN and ZrN coatings for orthopedic applications. J. Mech. Behav. Biomed. Mater. 2021, 114, 104233. [Google Scholar] [CrossRef] [PubMed]
- Falub, C.V.; Müller, U.; Thorwarth, G.; Parlinska-Wojtan, M.; Voisard, C.; Hauert, R. In vitro studies of the adhesion of diamond-like carbon thin films on CoCrMo biomedical implant alloy. Acta Mater. 2011, 59, 4678–4689. [Google Scholar] [CrossRef]
- Coşkun, M.I.; Karahan, İ.H.; Yücel, Y. Optimized Electrodeposition Concentrations for Hydroxyapatite Coatings on CoCrMo biomedical alloys by computational techniques. Electrochim. Acta 2014, 150, 46–54. [Google Scholar] [CrossRef]
- Qin, L.; Sun, H.; Hafezi, M.; Zhang, Y. Polydopamine-assisted immobilization of chitosan brushes on a textured CoCrMo alloy to improve its tribology and biocompatibility. Materials 2019, 12, 3014. [Google Scholar] [CrossRef]
- Garbuz, D.S.; Hu, Y.; Kim, W.Y.; Duan, K.; Masri, B.A.; Oxland, T.R.; Burt, H.; Wang, R.; Duncan, C.P. Enhanced gap filling and osteoconduction associated with alendronate-calcium phosphate-coated porous tantalum. J. Bone Jt. Surg. Am. 2008, 90, 1090–1100. [Google Scholar] [CrossRef]
- Cheng, S.; Ke, J.; Yao, M.; Shao, H.; Zhou, J.; Wang, M.; Ji, X.; Zhong, G.; Peng, F.; Ma, L.; et al. Improved osteointegration and angiogenesis of strontium-incorporated 3D-printed tantalum scaffold via bioinspired polydopamine coating. J. Mater. Sci. Technol. 2021, 69, 106–118. [Google Scholar] [CrossRef]
- Fontaine, A.B.; Koelling, K.; Passos, S.D.; Cearlock, J.; Hoffman, R.; Spigos, D.G. Polymeric surface modifications of tantalum stents. J. Endovasc. Ther. 1996, 3, 276–283. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Cai, Z.-B.; Ding, Y.; Cui, X.-J.; Yang, Z.-B.; Zhu, M.-H. Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation. Appl. Surf. Sci. 2020, 506, 144928. [Google Scholar] [CrossRef]
- Ionita, D.; Vardaki, M.; Stan, M.S.; Dinischiotu, A.; Demetrescu, I. Enhance stability and in vitro cell response to a bioinspired coating on zr alloy with increasing chitosan content. J. Bionic Eng. 2017, 14, 459–467. [Google Scholar] [CrossRef]
- Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Biomedical coatings on magnesium alloys—A review. Acta Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef]
- Shadanbaz, S.; Dias, G.J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomater. 2012, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.; Xi, T.F.; Zheng, Y.F. Surface Modification by Natural Biopolymer Coatings on Magnesium Alloys for Biomedical Applications. In Surface Modification of Magnesium and Its Alloys for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 301–333. [Google Scholar]
- Fu, J.; Zhu, Q.; Chen, Z.; Zhao, J.; Wu, S.; Zhao, M.; Xu, S.; Lai, D.; Fu, G.; Zhang, W. Polydopamine (PDA) coatings with endothelial vascular growth factor (VEGF) immobilization inhibiting neointimal formation post zinc (zn) wire implantation in rat aortas. Biomater. Res. 2023, 27, 84. [Google Scholar] [CrossRef]
- Velásquez-García, L.F.; Kornbluth, Y. Biomedical applications of metal 3D printing. Annu. Rev. Biomed. Eng. 2021, 23, 307–338. [Google Scholar] [CrossRef] [PubMed]
- Zadpoor, A.A. Additively manufactured porous metallic biomaterials. J. Mater. Chem. B Mater. Biol. Med. 2019, 7, 4088–4117. [Google Scholar] [CrossRef]
- Guoqing, Z.; Junxin, L.; Chengguang, Z.; Juanjuan, X.; Xiaoyu, Z.; Anmin, W. Design Optimization and Manufacturing of Bio-fixed tibial implants using 3D printing technology. J. Mech. Behav. Biomed. Mater. 2021, 117, 104415. [Google Scholar] [CrossRef] [PubMed]
- Sterk, S.; Silva, M.E.T.; Fernandes, A.A.; Huß, A.; Wittek, A. Development of new surgical mesh geometries with different mechanical properties using the design freedom of 3D printing. J. Appl. Polym. Sci. 2023, 140, e54687. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Zhu, X.; Zhang, K.; Fan, Y.; Zhang, X. Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 43, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Lee, P.D.; Dashwood, R.J.; Lindley, T.C. Titanium foams for biomedical applications: A review. Mater. Technol. 2010, 25, 127–136. [Google Scholar] [CrossRef]
- Papazoglou, D.P. Additively Manufactured Ti-6Al-4V Biomimetic Lattice Structures for Patient-Specific Orthopedic Implants: The Effect of Unit Cell Geometry, Pore Size, and Pulsed Electromagnetic Field Stimulation on the Osseointegration of Mg-63 Cells in Vitro, Mechanical Properties, and Surface Characterization. Master’s Thesis, University of Dayton, Dayton, OH, USA, 2023. [Google Scholar]
- Dong, Z.; Zhao, X. Application of TPMS structure in bone regeneration. Eng. Regen. 2021, 2, 154–162. [Google Scholar] [CrossRef]
- Pugliese, R.; Graziosi, S. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications. SLAS Technol. 2023, 28, 165–182. [Google Scholar] [CrossRef]
- Li, S.; Lee, W.-T.; Yeom, J.-T.; Kim, J.G.; Oh, J.S.; Lee, T.; Liu, Y.; Nam, T.-H. Towards bone-like elastic modulus in Ti Nb Sn alloys with large recovery strain for biomedical applications. J. Alloys Compd. 2022, 925, 166724. [Google Scholar] [CrossRef]
- Wang, R.; Wang, R.; Chen, D.; Qin, G.; Zhang, E. Novel CoCrWNi alloys with Cu addition: Microstructure, mechanical properties, corrosion properties and biocompatibility. J. Alloys Compd. 2020, 824, 153924. [Google Scholar] [CrossRef]
- Jiang, F.; Zhu, W.; Zhao, C.; Li, Y.; Wei, P.; Wan, T.; Ye, H.; Pan, S.; Ren, F. A strong, wear- and corrosion-resistant, and antibacterial Co–30 at.% Cr–5 at.% Ag ternary alloy for medical implants. Mater. Des. 2019, 184, 108190. [Google Scholar] [CrossRef]
- Brar, H.S.; Berglund, I.S.; Allen, J.B.; Manuel, M.V. The role of surface oxidation on the degradation behavior of biodegradable Mg-RE (Gd, Y, Sc) alloys for resorbable implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 40, 407–417. [Google Scholar] [CrossRef]
- Szyba, D.; Bajorek, A.; Babilas, D.; Temleitner, L.; Łukowiec, D.; Babilas, R. New resorbafble Ca-Mg-Zn-Yb-B-Au alloys: Structural and corrosion resistance characterization. Mater. Des. 2022, 213, 110327. [Google Scholar] [CrossRef]
Material | Time Period (Biomedical Use) | Main Methods | Key Challenges | Main Results/Achievements |
---|---|---|---|---|
Stainless Steel | 1900s–present | Casting, forging, machining | Corrosion resistance, biocompatibility | Early use in orthopedic implants due to strength and corrosion resistance |
Stainless Steel | 2000s–present | 3D printing | Process complexity, mechanical properties, costs | Stainless steel increasingly used in 3D printing for customized implants and surgical tools |
Titanium | 1970s–present | Forging, machining | Biocompatibility, mechanical properties | Adoption for orthopedic implants, excellent biocompatibility, high strength-to-weight ratio |
Titanium | 1990s–present | Powder metallurgy | Process complexity, biocompatibility, costs | Titanium alloys developed through powder metallurgy for improved customization and precision |
Titanium | 2000s–present | 3D printing | Process complexity, mechanical properties, costs | Emerging use of titanium in 3D printing for complex orthopedic implants |
Tantalum | 1980s–present | Powder metallurgy, casting | Limited mechanical strength | Used in orthopedic implants for its excellent corrosion resistance and biocompatibility |
Tantalum | 2000s–present | CVD (Chemical Vapor Deposition) | Limited mechanical strength, costs | Increasing use in tantalum coatings for orthopedic implants, offering excellent corrosion resistance and biocompatibility |
Zirconium | 2000s–present | Casting, powder metallurgy | Biocompatibility, costs | Use in orthopedic implants, especially for wear resistance and corrosion resistance |
Zirconium | 2010s–present | 3D printing | Process complexity, mechanical properties, costs | Recent use of zirconium in 3D printing for customized orthopedic implants |
Cobalt Chromium | 1940s–present | Casting, forging | Biocompatibility, wear resistance | Widespread use in joint replacement surgeries due to its wear resistance and mechanical properties |
Cobalt–Chromium | 2000s–present | 3D printing | Process complexity, mechanical properties, wear resistance, costs | Increasing use in 3D printing for orthopedic implants and prosthetics, offering high strength and wear resistance |
Niobium Alloys | 1990s–present | Powder metallurgy, casting | Mechanical properties, biocompatibility, costs | Investigated for use in orthopedic applications; offers good corrosion resistance and biocompatibility |
Magnesium Alloys | 2000s–present | Casting, extrusion, powder metallurgy | Corrosion, degradation control | Promising bioresorbable alloy for bone fixation due to biodegradability and mechanical properties |
Magnesium Alloys | 2010s–present | 3D printing | Corrosion, degradation control, costs | Recent use of magnesium alloys in 3D printing for bioresorbable orthopedic implants |
Iron Alloys | 2000s–present | Powder metallurgy, casting | Biodegradability, degradation control | Development of iron-based alloys for use in bioresorbable orthopedic implants |
Iron Alloys | 2010s–present | 3D printing | Mechanical properties, degradation control, costs | Use of 3D printing to fabricate bioresorbable iron alloy implants for orthopedic applications |
Zinc Alloys | 2000s–present | Casting, extrusion | Mechanical properties, degradation control | Emerging use in bioresorbable alloys, with promising results in mechanical properties and biocompatibility |
Composition | Simulated Biological Solution | Corrosion Rate | References |
---|---|---|---|
Pure Mg | Hank’s solution | 0.9 mm/year | [173,174,175,176] |
SBF solution | 0.04–2.4 mm/year | ||
NaCl solution | 2.8 mm/year | ||
In vivo | 1.0 mm/year | ||
Mg Alloys | Hank’s solution | 2–10 mm/year | [173,175,176] |
SBF solution | 0.44–32.2 mm/year | ||
NaCl solution | 0.39–7.9 mm/year | ||
In vivo | 0.7–12.5 mm/year | ||
Pure Fe | Hank’s solution | 0.1–0.85 mm/year | [177,178,179,180] |
SBF solution | 0.13–2.25 mm/year | ||
In vivo | 0.04 mm/year | ||
Fe Alloys | Hank’s solution | 0.2–1.1 mm/year | [181,182,183] |
SBF solution | 0.13–0.23 mm/year | ||
In vivo | 0.06–0.33 mm/year | ||
Pure Zn | Hank’s solution | 0.03 mm/year | [184,185] |
SBF solution | 0.06–0.08 mm/year | ||
In vivo | 0.02–0.05 mm/year | ||
Zn Alloys | Hank’s solution | 0.01–2.6 mm/min | [184,186,187,188] |
SBF solution | 0.04–0.12 mm/year | ||
In vivo | 0.05–0.1 mm/year |
Material | Coating Category | Main Coating Strategies | Key Applications | Challenges |
---|---|---|---|---|
Stainless Steel | Hard | Nitrides [337], oxides [338], DLC [339] | Reduce wear rate, reduce friction | Durability, biocompatibility |
Stainless Steel | Bioactive | Phosphates [340], bioglass [341], biomolecules [342], polymers [343] | Enhancing bone integration | Coating adhesion, long-term stability |
Titanium Alloys | Hard | Nitrides [344], oxides [345], DLC [346] | Reduce wear rate, reduce friction | Coating adhesion, durability |
Titanium Alloys | Bioactive | Phosphates [347], bioactive glass [348], biomolecules [349], polymers [350] | Enhancing bone integration | Coating adhesion, biocompatibility |
CoCrMo Alloys | Hard | Nitrides [351], DLC [352] | Reduce wear rate, reduce friction | Durability, biocompatibility |
CoCrMo Alloys | Bioactive | Phosphates [353], biomolecules [354] | Enhancing bone integration | Coating adhesion, long-term stability |
Tantalum | Bioactive | Phosphates [355], biomolecules [356], polymers [357] | Enhancing bone integration | Coating adhesion, stability |
Zirconium | Hard | Oxides [358] | Reduce wear rate, reduce friction | Coating adhesion, stability |
Zirconium | Bioactive | Biomolecules [359] | Enhancing bone integration | Coating adhesion, biocompatibility |
Magnesium Alloys | Bioactive | Oxides/hydroxides [360], phosphates [361], polymers [362] | Bioresorbable implants | Biodegradation control, strength |
Iron Alloys | Bioactive | Biomolecules [219] | Bioresorbable implants | Biodegradation control |
Zinc Alloys | Bioactive | Biomolecules [363] | Bioresorbable implants | Biodegradation control, strength |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, E.; Lanzutti, A. History of Metallic Orthopedic Materials. Metals 2025, 15, 378. https://doi.org/10.3390/met15040378
Marin E, Lanzutti A. History of Metallic Orthopedic Materials. Metals. 2025; 15(4):378. https://doi.org/10.3390/met15040378
Chicago/Turabian StyleMarin, Elia, and Alex Lanzutti. 2025. "History of Metallic Orthopedic Materials" Metals 15, no. 4: 378. https://doi.org/10.3390/met15040378
APA StyleMarin, E., & Lanzutti, A. (2025). History of Metallic Orthopedic Materials. Metals, 15(4), 378. https://doi.org/10.3390/met15040378