Effects of Fine Cu Particle Size on Sinter-Bondability in Die Bonding Using Cu Paste Possessing Effective Reducing Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Cu Particles
2.2. Preparation of Cu Pastes
2.3. Sinter Bonding
2.4. Characterization
3. Results and Discussion
3.1. Characteristics of Synthesized Cu Particles
3.2. Properties of Prepared Cu Pastes
3.3. Sinter Bonding Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robles, E.; Matallana, A.; Aretxabalets, I.; Andreu, J.; Fernández, M.; Martin, J.L. The role of power device technology in the electric vehicle powertrain. Int. J. Energy Res. 2021, 46, 22222–22265. [Google Scholar]
- Kumar, A.; Moradpour, M.; Losito, M.; Franke, W.-T.; Ramasamy, S.; Baccoli, R.; Gatto, G. Wide band gap devices and their application in power electronics. Energies 2022, 15, 9172. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Kotapati, A.; Kandipati, R.; Koritala, C.S. A review on energy efficient technologies for electric vehicle applications. J. Energy Storage 2022, 50, 104214. [Google Scholar]
- Chaudhary, O.S.; Denaï, M.; Refaat, S.S.; Pissanidis, G. Technology and applications of wide bandgap semiconductor materials: Current state and future trends. Energies 2023, 16, 6689. [Google Scholar] [CrossRef]
- Via, F.L.; Alquiwe, D.; Giannazzo, F.; Kimoto, T.; Neudeck, P.; Ou, H.; Roncaglia, A.; Saddow, S.H.; Tudisco, S. Emerging SiC applications beyond power electronic devices. Micromachines 2023, 14, 1200. [Google Scholar] [CrossRef] [PubMed]
- Seal, S.; Mantooth, H.A. High performance silicon carbidepower packaging–past trends, present practices, and future directions. Energy 2017, 10, 341. [Google Scholar]
- Sakairi, H.; Yanagi, T.; Otake, H.; Kuroda, N.; Tanigawa, H. Measurement methodology for accurate modeling of SiC MOSFET switching behavior over wide voltage and current ranges. IEEE Trans. Power Electron. 2018, 33, 7314–7325. [Google Scholar]
- Zhang, L.; Yuan, X.; Wu, X.; Shi, C.; Zhang, J.; Zhang, Y. Performance evaluation of high power SiC MOSFET modules in comparison to Si IGBT modules. IEEE J. Emerg. Slected Topics Power Electron. 2024. Early Acess. [Google Scholar]
- Sahuri, A.; Billaud, Y.; Signor, L.; Saury, D.; Milhet, X. Experimental investigation of thermal conductivity during aging of nonporous sintered silver. Acta Mater. 2023, 257, 119109. [Google Scholar]
- Wakamoto, K.; Namazu, T. Mechanical characterization of sintered silver materials for power device packaging: A review. Energies 2024, 17, 4105. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, X.; Ma, H.; Wang, D.; Mei, Y.-H. Development of silver paste with high sintering driving force for reliable packaging of power electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 14, 10–17. [Google Scholar] [CrossRef]
- Du, C.; Zou, G.; Huo, J.; Feng, B.; Liu, L. Generative AI-enabled microstructure design of porous thermal interface materials with desired effective thermal conductivity. J. Mater. Sci. 2023, 58, 16160–16171. [Google Scholar]
- Zhang, H.O.; Bai, H.L.; Jia, Q.; Guo, W.; Liu, L.; Zou, G.S. High electrical and thermal conductivity of nano-Ag paste for power electronic applications. Acta Mater. Sin. 2020, 33, 1543–1555. [Google Scholar]
- Suganuma, K.; Kim, S.-J.; Kim, K.-S. High-temperature lead-free solders: Properties and possibilities. JOM 2009, 66, 64–71. [Google Scholar]
- Jianfeng, Y.; Guisheng, Z.; Anming, H.; Zhou, Y.N. Preparation of PVP coated Cu NPs and the application for low-temperature bonding. J. Mater. Chem. 2011, 21, 15981–15986. [Google Scholar]
- Li, J.; Yu, X.; Shi, T.; Cheng, C.; Fan, J.; Cheng, S.; Liao, G.; Tang, Z. Low-temperature and low-pressure Cu–Cu bonding by highly sinterable Cu nanoparticle paste. Nanoscale Res. Lett. 2017, 12, 255. [Google Scholar]
- Yoon, J.W.; Back, J.H. Effect of sintering conditions on the mechanical strength of Cu-sintered joints for high-power applications. Materials 2018, 11, 2105. [Google Scholar] [CrossRef]
- Li, J.; Liang, Q.; Shi, T.; Fan, J.; Gong, B.; Feng, C.; Tang, Z. Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding. J. Alloys Compd. 2019, 772, 793–800. [Google Scholar]
- Peng, Y.; Mou, Y.; Liu, J.; Chen, M. Fabrication of high-strength Cu–Cu joint by low-temperature sintering micron–nano Cu composite paste. J. Mater. Sci. Mater. Electron. 2020, 31, 8456–8463. [Google Scholar]
- Chen, T.F.; Siow, K.S. Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints. J. Alloys Compd. 2021, 866, 158783. [Google Scholar]
- Choi, E.B.; Lee, J.-H. Tens-of-seconds solid-state sinter-bonding technique in air using in situ reduction of surface oxide layers on easily bendable dendritic Cu particles. Appl. Surf. Sci. 2022, 580, 152347. [Google Scholar]
- Kim, M.-S.; Kim, D.; Roh, M.-H.; Nishikawa, H. Highly reliable micro-scale Cu sintered joint by oxidation-reduction bonding process under thermal cycling. Microelectron. Reliab. 2023, 150, 115123. [Google Scholar]
- Xin, J.; Gao, Y.; Zhang, C.; Yang, L.; Liu, S.; Li, K.; Zhou, M.; Liu, Y.; Zhang, J.; Cai, W. High performance Cu sintering joint for power devices enabled by in-situ generation of Cu particles with multi-level hierarchical structures. J. Mater. Process. Technol. 2024, 329, 118435. [Google Scholar]
- Jung, S.H.; Lee, J.-H. Ultrafine dendritic Cu particles for extremely fast pressure-assisted sintering under air and pore-free bond lines. J. Mater. Res. Technol. 2025, 35, 3045–3057. [Google Scholar]
- Son, J.; Yu, D.-Y.; Kim, Y.-C.; Kim, S.-I.; Byun, D.; Bang, J. Thermal reliability of Cu sintering joints for high-temperature die attach. Microelectron. Reliab. 2023, 147, 115002. [Google Scholar]
- Liu, J.; Chen, H.; Ji, H.; Li, M. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 33289–33298. [Google Scholar]
- Mou, Y.; Cheng, H.; Peng, Y.; Chen, M. Fabrication of reliable Cu-Cu joints by low temperature bonding isopropanol stabilized Cu nanoparticles in air. Mater. Lett. 2018, 229, 353–356. [Google Scholar]
- Cui, Z.; Jia, Q.; Wang, Y.; Li, D.; Wang, C.-P.; Zhang, H.; Lu, Z.; Ma, L.; Zou, G.; Guo, F. Enhanced shear strength and microstructure of Cu–Cu interconnection by low-temperature sintering of Cu nanoparticles. J. Mater. Sci. Mater. Electron. 2024, 35, 743. [Google Scholar]
- Zuo, Y.; Carter-Searjeant, S.; Green, M.; Mills, L.; Mannan, S.H. High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticles. Mater. Lett. 2020, 276, 128260. [Google Scholar]
- Zuo, Y.; Shen, J.; Xu, H.; Gao, R. Effect of different sizes of Cu nanoparticles on the shear strength of Cu-Cu joints. Mater. Lett. 2017, 199, 13–16. [Google Scholar]
- Liu, W.; Wang, H.; Huang, K.-S.; Wang, C.-M.; Albert, T.W. Low temperature and pressureless Cu-to-Cu direct bonding by green synthesized Cu nanoparticles. J. Taiwan Inst. Chem. Eng. 2021, 125, 394–401. [Google Scholar] [CrossRef]
- Xia, J.; Xu, Y.; Hu, B.; Lin, J. A rapid approach to urushiol–copper(I) coordination polymer under UV irradiation. Prog. Org. Coat. 2021, 65, 510–513. [Google Scholar] [CrossRef]
- Pauly, N.; Tougaard, S.; Yubero, F. Determination of the Cu 2p primary excitation spectra for Cu, Cu2O and CuO. Sur. Sci. 2014, 29, 17–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zang, D.; Feng, L. Structural and opto-electrical properties of Cu–Al–O thin films prepared by magnetron sputtering method. Vacuum 2014, 99, 160–165. [Google Scholar] [CrossRef]
- Awad, N.K.; Ashour, E.A.; Allam, N.K. Unravelling the composition of the surface layers formed on Cu, Cu-Ni, Cu-Zn and Cu-Ni-Zn in clean and polluted environments. Appl. Sirf. Sci. 2015, 346, 158–164. [Google Scholar] [CrossRef]
- Mackenzie, J.K.; Shuttleworth, R. A phenomenological theory of sintering. Proc. Phys. Soc. B 1949, 62, 833–852. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lee, J.-H. Effects of Fine Cu Particle Size on Sinter-Bondability in Die Bonding Using Cu Paste Possessing Effective Reducing Formulation. Metals 2025, 15, 379. https://doi.org/10.3390/met15040379
Kim H, Lee J-H. Effects of Fine Cu Particle Size on Sinter-Bondability in Die Bonding Using Cu Paste Possessing Effective Reducing Formulation. Metals. 2025; 15(4):379. https://doi.org/10.3390/met15040379
Chicago/Turabian StyleKim, Horyun, and Jong-Hyun Lee. 2025. "Effects of Fine Cu Particle Size on Sinter-Bondability in Die Bonding Using Cu Paste Possessing Effective Reducing Formulation" Metals 15, no. 4: 379. https://doi.org/10.3390/met15040379
APA StyleKim, H., & Lee, J.-H. (2025). Effects of Fine Cu Particle Size on Sinter-Bondability in Die Bonding Using Cu Paste Possessing Effective Reducing Formulation. Metals, 15(4), 379. https://doi.org/10.3390/met15040379