Residual Stress Field Effect on Fatigue Crack Growth Direction
Abstract
1. Introduction
2. Material and Methods
2.1. Specimens
2.2. Cold-Hole Expansion
2.3. Digital Image Correlation for Crack Growth Tracking
2.4. Experimental Procedure
2.5. Numerical Calculation
3. Results and Discussion
3.1. Reference Specimens
3.2. Type A Specimens
3.3. Type B and C Specimens
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LEFM | linear elastic fracture mechanics |
FEM | finite element analysis |
DCA | direct cyclic analysis |
CC | cohesive contact |
DIC | digital image correlation |
HE | hole expansion |
S22 | stress in the direction of the cylindrical r, , z coordinate system |
References
- James, M. Relaxation of residual stresses an overview. Pergamon Press. Adv. Surf. Treat. Technol. Appl. Eff. 1987, 4, 349–365. [Google Scholar]
- Chen, F.; Liu, X.; Zhang, H.; Luo, Y.; Lu, N.; Liu, Y.; Xiao, X. Assessment of fatigue crack propagation and lifetime of double-sided U-rib welds considering welding residual stress relaxation. Ocean. Eng. 2025, 332, 121400. [Google Scholar] [CrossRef]
- Zobec, P.; Klemenc, J. Application of a nonlinear kinematic-isotropic material model for the prediction of residual stress relaxation under a cyclic load. Int. J. Fatigue 2021, 150, 106290. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Y.; Ye, C. Recent developments and novel applications of laser shock peening: A review. Adv. Eng. Mater. 2021, 23, 2001216. [Google Scholar] [CrossRef]
- Malaki, M.; Ding, H. A review of ultrasonic peening treatment. Mater. Des. 2015, 87, 1072–1086. [Google Scholar] [CrossRef]
- Gupta, R.K.; Pant, B.; Kain, V.; Kaul, R.; Bindra, K. Laser shock peening and its applications: A review. Lasers Manuf. Mater. Process. 2019, 6, 424–463. [Google Scholar] [CrossRef]
- Bikdeloo, R.; Farrahi, G.H.; Mehmanparast, A.; Mahdavi, S.M. Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel. Theor. Appl. Fract. Mech. 2020, 105, 102429. [Google Scholar] [CrossRef]
- Ermakova, A.; Razavi, N.; Cabeza, S.; Gadalinska, E.; Reid, M.; Paradowska, A.; Ganguly, S.; Berto, F.; Mehmanparast, A. The effect of surface treatment and orientation on fatigue crack growth rate and residual stress distribution of wire arc additively manufactured low carbon steel components. J. Mater. Res. Technol. 2023, 24, 2988–3004. [Google Scholar] [CrossRef]
- Reid, L. Beneficial residual stresses at bolt holes by cold expansion. In Rail Quality and Maintenance for Modern Railway Operation; Springer: Berlin/Heidelberg, Germany, 1993; pp. 337–347. [Google Scholar] [CrossRef]
- Houghton, S.; Campbell, S. Identifying the residual stress field developed by hole cold expansion using finite element analysis. Fatigue Fract. Eng. Mater. Struct. 2012, 35, 74–83. [Google Scholar] [CrossRef]
- Matvienko, Y.G.; Pisarev, V.; Eleonsky, S. The effect of low-cycle fatigue on evolution of fracture mechanics parameters in residual stress field caused by cold hole expansion. Str 2019, 13, 303–320. [Google Scholar] [CrossRef]
- Faghih, S.; Behravesh, S.B.; Shaha, S.K.; Jahed, H. Effect of split sleeve cold expansion on fatigue and fracture of rolled AZ31B magnesium alloy. Theor. Appl. Fract. Mech. 2023, 123, 103715. [Google Scholar] [CrossRef]
- Yasniy, P.; Okipnyi, I.; Dyvdyk, O.; Rudawska, A.; Senchyshyn, V. Residual lifetime of the plates with preexisting crack near cold expanded hole. Procedia Struct. Integr. 2022, 36, 197–202. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Z.; Nyhus, B. Effect of residual stresses on ductile crack growth resistance. Eng. Fract. Mech. 2010, 77, 1325–1337. [Google Scholar] [CrossRef]
- Almer, J.; Cohen, J.; Moran, B. The effects of residual macrostresses and microstresses on fatigue crack initiation. Mater. Sci. Eng. A 2000, 284, 268–279. [Google Scholar] [CrossRef]
- Deschênes, P.A.; Lanteigne, J.; Verreman, Y.; Paquet, D.; Lévesque, J.B.; Brochu, M. A new experimental method to study the influence of welding residual stresses on fatigue crack propagation. Int. J. Fatigue 2017, 100, 444–452. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Truman, C.; Smith, D. Using local out-of-plane compression (LOPC) to study the effects of residual stress on apparent fracture toughness. Eng. Fract. Mech. 2008, 75, 1516–1534. [Google Scholar] [CrossRef]
- Zobec, P.; Klemenc, J. Yet another approach to fatigue crack growth simulation. Metals 2022, 12, 539. [Google Scholar] [CrossRef]
- DIN EN 10025-2; Hot Rolled Products of Structural Steels-Part, 2. DIN Standards Committee Iron and Steel (FES): Düsseldorf, Germany, 2011.
- ISO683-1:2016; Heat-Treatable Steels, Alloy Steels and Free-Cutting Steels—Part 1: Non-Alloy Steels for Quenching and Tempering. International Organization for Standardization: Geneva, Switzerland, 2016.
- Zheng, G.; Cao, Z.; Zuo, Y. A dynamic cold expansion method to improve fatigue performance of holed structures based on electromagnetic load. Int. J. Fatigue 2021, 148, 106253. [Google Scholar] [CrossRef]
- Pucillo, G.P.; Carrabs, A.; Cuomo, S.; Elliott, A.; Meo, M. Cold expansion of rail-end-bolt holes: Finite element predictions and experimental validation by DIC and strain gauges. Int. J. Fatigue 2021, 149, 106275. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A new emerging lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-source 2D digital image correlation matlab software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Litrop, A.; Zobec, P.; Šeruga, D.; Nagode, M.; Klemenc, J. Experimental analysis of crack initiation and propagation in dynamically shear-loaded aluminium specimens using the digital image correlation method. Eng. Fail. Anal. 2022, 139, 106495. [Google Scholar] [CrossRef]
- Fageehi, Y.A. Two-and three-dimensional numerical investigation of the influence of holes on the fatigue crack growth path. Appl. Sci. 2021, 11, 7480. [Google Scholar] [CrossRef]
- Bashiri, A.H. 2D and 3D numerical simulation of fatigue crack growth path and life predictions of a linear elastic. Mater. Sci. Pol. 2021, 39, 285–297. [Google Scholar] [CrossRef]
- Alshoaibi, A.M.; Fageehi, Y.A. Numerical analysis of fatigue crack growth path and life predictions for linear elastic material. Materials 2020, 13, 3380. [Google Scholar] [CrossRef]
Specimen | R0 | R1 | R2 | R3 | A 1–3 | B 1–2 | B 3–6 | B 7–10 | C 1–4 | C 5–8 |
---|---|---|---|---|---|---|---|---|---|---|
[kN] | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 10 | 8 | 6 |
HE [%] | 0 | 1 | 2 | 3 | 3 | 0 | 3 | 3 | 3 | 3 |
Freq [Hz] | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zobec, P.; Klemenc, J. Residual Stress Field Effect on Fatigue Crack Growth Direction. Metals 2025, 15, 921. https://doi.org/10.3390/met15080921
Zobec P, Klemenc J. Residual Stress Field Effect on Fatigue Crack Growth Direction. Metals. 2025; 15(8):921. https://doi.org/10.3390/met15080921
Chicago/Turabian StyleZobec, Peter, and Jernej Klemenc. 2025. "Residual Stress Field Effect on Fatigue Crack Growth Direction" Metals 15, no. 8: 921. https://doi.org/10.3390/met15080921
APA StyleZobec, P., & Klemenc, J. (2025). Residual Stress Field Effect on Fatigue Crack Growth Direction. Metals, 15(8), 921. https://doi.org/10.3390/met15080921