Phase Diagram of Al-Ca-Mg-Si System and Its Application for the Design of Aluminum Alloys with High Magnesium Content
Abstract
:1. Introduction
- To study the phase diagram of the Al-Ca-Mg-Si system using thermodynamic calculations and experimental methods. It should be noted that the analysis of phase equilibria will be conducted with respect to conventional branded aluminum alloys technology of a liquid solidification, with a cooling rate range of 1–10 K/s.
- To experimentally investigate the combined effect of Ca and Si additions on the structure, phase composition, and specific properties of Al-Mg alloys.
- To identify and justify promising compositions for the development of new corrosion-resistant alloys with reduced density.
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Al-Ca-Mg-Si Phase Diagram
3.2. Analysis of the Microstructure and Physical and Mechanical Properties
4. Conclusions
- (1)
- Using the calculation in the Thermo-Calc program, phase transformations in the Al-Ca-Mg-Si system in the region of aluminum-magnesium alloys have been studied. The structure of this quaternary system has been represented in the form of a polythermal projection (see Figure 1). The following phases can be in equilibrium with the aluminum solid solution: Al4Ca, Mg2Si, Al3Mg2, and Al2CaSi2.
- (2)
- In this quaternary system, three five-phase nonvariant reactions can occur: two eutectic, and one peritectic (see Table 3).
- (3)
- We show that the addition of calcium and silicon to the Al-10% Mg alloy can lead to the formation of primary crystals of the following phases: Al2CaSi2, Al4Ca, and Mg2Si. The formation of the ternary compound is most probable in this case.
- (4)
- In all the alloys considered, the solidification ends with the nonvariant eutectic reaction L → (Al) + Al4Ca + Mg2Si + Al3Mg20, the temperature and liquid phase composition of which are close to those of the reaction for the Al-Mg binary system.
- (5)
- It is established that the addition of Ca and Si in the Al-based alloy of 10% Mg increases hardness, reduces the density, and has no negative influence on the corrosion resistance.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaufman, J.G.; Rooy, E.L. Aluminum Alloy Castings: Properties, Processes, and Applications; ASM International: Materials Park, OH, USA, 2004; p. 340. ISBN 0-87170-803-5. [Google Scholar]
- Hatch, J.E. (Ed.) Aluminum: Properties and Physical Metallurgy; ASM International: Materials Park, OH, USA, 1984; p. 396, ISBN-13:978-0871701763. [Google Scholar]
- Zolotorevskiy, V.S.; Belov, N.A.; Glazoff, M.V. Casting Aluminum Alloys; Elsevier: Amsterdam, The Netherlands, 2007; p. 530, ISBN-10 0080453708. [Google Scholar]
- Mondolfo, L.F. Aluminium Alloys: Structure and Properties; Butterworths: London, UK; Boston, MA, USA, 1976; p. 971. ISBN 0-408-70680-5 16.10. [Google Scholar]
- Nagaumi, H.; Suvanchai, P.; Okane, T.; Umeda, T. Mechanical properties of high strength Al-Mg-Si alloy during solidification. Mater. Trans. 2006, 47, 2918–2924. [Google Scholar] [CrossRef]
- Ji, S.; Watson, D.; Fan, Z.; White, M. Development of a super ductile die cast Al-Mg-Si alloy. Mater. Sci. Eng. 2012, 556, 824–833. [Google Scholar] [CrossRef]
- Ji, S.; Yang, W.; Gao, F.; Watson, D.; Fan, Z. Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si die cast alloys. Mater. Sci. Eng. 2013, 564, 130–139. [Google Scholar] [CrossRef]
- Fatemi-Jahromi, F.; Emamy, M. An investigation into high temperature tensile behavior of hot-extruded Al-15 wt % Mg2Si, composite with Cu-P addition. Manuf. Sci. Technol. 2015, 3, 160–169. [Google Scholar]
- Wang, E.; Liu, F.; Chen, L.; Zha, M.; Liu, G.; Jiang, Q. The effect of Sb addition on microstructures and tensile properties of extruded Al-20Mg2Si-4Cu alloy. Mater. Sci. Eng. A 2016, 657, 331–338. [Google Scholar] [CrossRef]
- Emamy, M.; Emami, A.R.; Tavighi, K. The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al-15% Mg2Si-0.15% Li composite. Mater. Sci. Eng. A 2013, 576, 36–44. [Google Scholar] [CrossRef]
- Nordin, N.A.; Farahany, S.; Ourdjini, A.; Abu Bakar, T.; Hamzah, E. Refinement of Mg2Si reinforcement in a commercial Al-20% Mg2Si in-situ composite with bismuth, antimony and strontium. Mater. Charact. 2013, 86, 97–107. [Google Scholar] [CrossRef]
- Ren, B.; Liu, Z.-X.; Zhao, R.-F.; Zhang, T.-Q.; Liu, Z.-Y.; Wang, M.-X.; Weng, Y.-G. Effect of Sb on microstructure and mechanical properties of Mg2Si/Al-Si composites. Trans. Nonferr. Met. Soc. China 2010, 20, 1367–1373. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Z.; Wang, Y.Q.; Zhou, B.L. Microstructural development of Al-15 wt % Mg2Si in-situ composite with michmetal addition. Mater. Sci. Eng. A 2000, 281, 104–112. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, Y.G. High-strength Mg-Al-Ca alloy with ultrafine grain size sensitive to strain rate. Mater. Sci. Eng. 2011, 528, 2062–2066. [Google Scholar] [CrossRef]
- Aljarrah, M.; Medraj, M.; Wang, X.; Essadiqi, E.; Muntasar, A.; Dénès, G. Experimental investigation of the Mg-Al-Ca system. J. Alloys Compd. 2007, 436, 131–141. [Google Scholar] [CrossRef]
- Janz, A.; Gröbner, J.; Cao, H.; Zhu, J.; Chang, Y.A.; Schmid-Fetzer, R. Thermodynamic modeling of the Mg-Al-Ca system. Acta Mater. 2009, 57, 682–694. [Google Scholar] [CrossRef]
- Xu, S.W.; Oh-ishi, K.; Kamado, S.; Uchida, F.; Homma, T.; Hono, K. High-strength extruded Mg-Al-Ca-Mn alloy. Scr. Mater. 2011, 65, 269–272. [Google Scholar] [CrossRef]
- Pekguleryuz, M. Creep Resistance in Mg-Al-Ca Casting Alloys; The Minerals Metals & Materials Society (TMS): Pittsburgh, PA, USA, 2000; pp. 12–17. [Google Scholar]
- Gröbner, J.; Kevorkov, D.; Chumak, I.; Schmid-Fetzer, R. Experimental and thermodynamic calculation of ternary Mg-Al-Ca phase equilibria. Z. Metallkd. 2003, 94, 976–982. [Google Scholar] [CrossRef]
- Chino, Y.; Kobata, M.; Iwasaki, H.; Mabuchi, M. Tensile properties from room temperature to 673 K of Mg-0.9 mass % Ca alloy containing lamella Mg2Ca. Mater. Trans. 2002, 43, 2643–2646. [Google Scholar] [CrossRef]
- Liang, S.M.; Chen, R.S.; Blandin, J.J.; Suery, M. Thermal analysis and solidification pathways of Mg-Al-Ca system alloys. Mater. Sci. Eng. 2008, 480, 365–372. [Google Scholar] [CrossRef]
- Ninomiya, R.; Ojiro, T.; Kubota, K. Improved heat resistance of Mg-Al alloys by the Ca addition. Acta Metall. Mater. 1995, 43, 669–674. [Google Scholar] [CrossRef]
- Li, P.; Tang, B.; Kandalova, E.G. Microstructure and properties of AZ91D alloy with Ca additions. Mater. Lett. 2005, 59, 671–675. [Google Scholar] [CrossRef]
- Wasiur-Rahman, S.; Medraj, M. Critical assessment and thermodynamic modeling of the binary Mg-Zn, Ca-Zn and ternary Mg-Ca-Zn systems. Intermetallics 2009, 17, 847–864. [Google Scholar] [CrossRef]
- Mondal, D.P.; Jha, N.; Badkul, A.; Das, S.; Yadav, M.S.; Jain, P. Effect of calcium addition on the microstructure and compressive deformation behaviour of 7178 aluminium alloy. Mater. Des. 2011, 32, 2803–2812. [Google Scholar] [CrossRef]
- Ludwig, T.H.; Schonhovd Dashlen, E.; Schaffer, P.L.; Arnberg, L. The effect of Ca and P interaction on the Al-Si eutectic in a hypoeutectic Al-Si alloy. J. Alloys Compd. 2014, 586, 180–190. [Google Scholar] [CrossRef]
- Perez-Prado, M.T.; Cristina, M.C.; Ruano, O.A.; Gonza, G. Microstructural evolution of annealed Al-5% Ca-5% Zn sheet alloy. J. Mater. Sci. 1997, 32, 1313–1318. [Google Scholar] [CrossRef]
- Kevorkov, D.; Schmid-Fetzer, R. The Al-Ca System, Part 1: Experimental investigation of phase equilibria and crystal structures. Z. Metallkd. 2001, 92, 946–952. [Google Scholar]
- Ozturk, K.; Chen, L.Q.; Liu, Z.K. Thermodynamic assessment of the Al-Ca binary system using random solution and associate models. J. Alloys Compd. 2002, 340, 199–206. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Alabin, A.N.; Matveeva, I.A. Effect of scandium on structure and hardening of Al-Ca eutectic alloys. J. Alloys Compd. 2015, 646, 741–747. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Bazlova, T.A.; Alekseeva, E.V. Structure, phase composition, and strengthening of cast Al-Ca-Mg-Sc alloys. Phys. Met. Metallogr. 2016, 117, 199–205. [Google Scholar] [CrossRef]
- Petzow, G.; Effenberg, G. Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams; Verlagsgesellschaft: Weinheim, Germany, 1990; Volume 3, p. 614. [Google Scholar]
- Reference Data for Thermodynamic Calculations. Available online: http://www.thermocalc.com (accessed on 5 July 2017).
- Belov, N.; Naumova, E.; Akopyan, T. Effect of 0.3 wt % Sc on structure, phase composition and hardening of Al-Ca-Si eutectic alloys. Trans. Nonferr. Met. Soc. China 2017, 27, 741–746. [Google Scholar] [CrossRef]
- Belov, N.A.; Eskin, D.G.; Aksenov, A.A. Multicomponent Phase Diagrams: Applications for Commercial Aluminium Alloys; Elsevier: Amsterdam, The Netherlands, 2005; p. 424. ISBN 9780080445373. [Google Scholar]
- Ghidelli, M.; Gravier, S.; Blandin, J.-J.; Pardoen, T.; Raskin, J.-P.; Mompiou, F. Compositional-induced structural change in ZrxNi100-x thin film metallic glasses. J. Alloys Compd. 2014, 615, S348–S351. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Inoue, A. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy. J. Alloys Compd. 2005, 399, 78–85. [Google Scholar] [CrossRef]
- Yi, J.J.; Xiong, X.Z.; Inoue, A.; Konga, L.T.; Lia, J.F. Glass forming ability of Al-Ni-La alloys with Si addition. J. Alloys Compd. 2015, 650, 578–583. [Google Scholar] [CrossRef]
- Backerud, L.; Krol, E.; Tamminen, J. Solidification Characteristics of Aluminium Alloys; Tangen Trykk A/S: Oslo, Norway, 1982; p. 152. [Google Scholar]
- Prasad, S.D.; Krishna, R.A. Production and mechanical properties of A356.2/RHA composites. Int. J. Adv. Manuf. Technol. Sci. 2011, 33, 51–58. [Google Scholar]
- Mizuuchi, K.; Takeuchi, T.; Fukusumi, M.; Sugioka, M.; Nagai, H. Effect of processing condition on the properties of Al/Al 3 Ti composites produced by LCCS process. J. Jpn. Inst. Met. 1998, 62, 893–898. [Google Scholar] [CrossRef]
- Tham, L.M.; Gupta, M.; Cheng, L. Effect of limited matrix-reinforcement interfacial reactions on enhancing the mechanical properties of aluminum-silicon carbide composites. Acta Mater. 2001, 49, 3243–3253. [Google Scholar] [CrossRef]
Alloy | T (°C) | Phases | |||||||
---|---|---|---|---|---|---|---|---|---|
(Al) | Al4Ca | Mg2Si | Al3Mg2 | ||||||
QM 1 | QV 2 | QM 1 | QV 2 | QM 1 | QV 2 | QM 1 | QV 2 | ||
Al10Mg10Ca2Si | 200 | 43.46 | 39.20 | 36.93 | 38.27 | 5.46 | 7.07 | 14.15 | 15.45 |
440 | 57.71 | 53.50 | 36.83 | 39.23 | 5.46 | 7.27 | 0 | 0 | |
Al10Mg4Ca2Si | 200 | 67.95 | 63.36 | 14.77 | 15.85 | 5.46 | 7.32 | 11.92 | 13.48 |
440 | 79.96 | 76.48 | 14.58 | 16.02 | 5.46 | 7.50 | 0 | 0 | |
Al10Mg3Ca1Si | 200 | 69.64 | 65.48 | 11.08 | 11.97 | 2.73 | 3.69 | 16.56 | 18.86 |
440 | 86.37 | 84.01 | 10.90 | 12.18 | 2.73 | 3.81 | 0 | 0 |
Formula | Composition | Crystal Lattice | Density, g/cm3 | Hardness, HV | |
---|---|---|---|---|---|
wt % | at % | ||||
Al4Ca | 27Ca | 20Ca | Tetr. I4/mmm, 10 atoms/cell, a = 4.36; Åc = 11.09 Å | 2.35 | 200–260 |
Mg2Si | 63.2Mg 36.8Si | 66.7Mg 33.3Si | Cub. Fm3m, 12 atoms/cell a = 6.35–6.40 Å | 1.88 | 450 |
Al3Mg2 | 37.3Mg | 40Mg | Hex. Pm3m, 108 atoms/cell | 2.23 | 200–340 |
Al2CaSi2 | 26.7Ca 37.3Si | 20Ca 40Si | Hex. P3m1, 5 atoms/cell A = 4.13; Åc = 7.15 Å | 2.36 3 | ? |
(Si) | 100Si | 100Si | Cub. Fd3m a = 5.43 Å | 2.6 | 870 |
Reaction | Point in Figure 1 | T, °C | Concentration, wt % | ||||
---|---|---|---|---|---|---|---|
Phase | Al | Ca | Mg | Si | |||
L → (Al) + Al4Ca + Mg2Si + Al3Mg2 | E1 | 448 | L | 65.86 | 0.67 | 33.38 | 0.08 |
(Al) | 84.09 | 0.04 | 15.87 | <0.01 | |||
L → (Al) + Al2CaSi2 + Mg2Si + (Si) | E2 | 558 | L | 81.74 | <0.01 | 4.67 | 13.59 |
(Al) | 98.00 | <0.01 | 0.64 | 1.35 | |||
L + Al2CaSi2 → (Al) + Al4Ca + Mg2Si | P | 563 | L | 83.25 | 3.93 | 12.00 | 0.83 |
(Al) | 95.34 | 0.33 | 4.29 | 0.64 | |||
L → (Al) + Al2CaSi2 + Mg2Si 4 | E3 | 594 | L | 86.11 | 0.26 | 8.92 | 4.71 |
(Al) | 97.55 | 0.02 | 2.11 | 0.32 |
Alloy | TL, °C | TS, °C | ΔT, °C | TNS, °C | ΔTNS, °C |
---|---|---|---|---|---|
Al12Mg4Ca | 566 | 463 | 103 | 448 | 118 |
Al12.5Mg6Ca | 610 | 581 | 19 | 448 | 162 |
Al10Mg10Ca2Si | 729 | 486 | 243 | 447 | 282 |
Al10Mg4Ca2Si | 644 | 521 | 123 | 447 | 197 |
Al10Mg3Ca1Si | 583 | 505 | 78 | 447 | 136 |
Al10Mg | 609 | 513 | 96 | 450 | 159 |
Alloy | Concentration, wt % (at %) | Phase Identification | |||
---|---|---|---|---|---|
Mg | Al | Si | Ca | ||
10Mg4Ca2Si | 0.9 (1.1) | 35.8 (39.7) | 36.9 (39.4) | 26.4 (19.8) | Al2CaSi2 |
10Mg10Ca2Si | 2.9 (3.5) | 64.5 (71.0) | 4.1 (4.3) | 28.6 (21.2) | Al4Ca (+Al2CaSi2) |
Alloy | Density, g/cm3 | Δm, % | HB 6 | TL, °C | TS, °C | TNS, °C |
---|---|---|---|---|---|---|
Al12Mg4Ca | 2.53 | 0.075 | 131 | - | - | - |
Al2.5Mg6Ca | 2.48 | 0.022 | 79 | - | - | - |
Al10Mg10Ca2Si | 2.24 | - | 150 | 785 | 499 | 450 |
Al10Mg4Ca2Si | 2.33 | - | 117 | 647 | 508 | 451 |
Al10Mg3Ca1Si | 2.52 | <0.001 | 119 | 573 | 500 | 451 |
Al10Mg | 2.54 | 0.062 | 97 | 607 | 511 | 451 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belov, N.A.; Naumova, E.A.; Akopyan, T.K.; Doroshenko, V.V. Phase Diagram of Al-Ca-Mg-Si System and Its Application for the Design of Aluminum Alloys with High Magnesium Content. Metals 2017, 7, 429. https://doi.org/10.3390/met7100429
Belov NA, Naumova EA, Akopyan TK, Doroshenko VV. Phase Diagram of Al-Ca-Mg-Si System and Its Application for the Design of Aluminum Alloys with High Magnesium Content. Metals. 2017; 7(10):429. https://doi.org/10.3390/met7100429
Chicago/Turabian StyleBelov, Nikolay A., Evgenia A. Naumova, Torgom K. Akopyan, and Vitaliy V. Doroshenko. 2017. "Phase Diagram of Al-Ca-Mg-Si System and Its Application for the Design of Aluminum Alloys with High Magnesium Content" Metals 7, no. 10: 429. https://doi.org/10.3390/met7100429
APA StyleBelov, N. A., Naumova, E. A., Akopyan, T. K., & Doroshenko, V. V. (2017). Phase Diagram of Al-Ca-Mg-Si System and Its Application for the Design of Aluminum Alloys with High Magnesium Content. Metals, 7(10), 429. https://doi.org/10.3390/met7100429