Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Ab Initio Interface Design
3.2. Experimental Validation
- α-Al2O3 || Cu/Fe0.58Mn0.42 [or ] and
- α-Al2O3 || Cu/Fe0.58Mn0.42 [or ]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frommeyer, G.; Brux, U.; Neumann, P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003, 43, 438–446. [Google Scholar] [CrossRef]
- Peng, C.T.; Callaghan, M.D.; Li, H.J.; Yan, K.; Liss, K.D.; Ngo, T.D.; Mendis, P.A.; Choi, C.H. On the compression behavior of an austenitic Fe-18Mn-0.6C-1.5Al twinning-induced plasticity steel. Steel Res. Int. 2013, 84, 1281–1287. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt. % Mn-0.6 wt. % C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 2011, 59, 6449–6462. [Google Scholar] [CrossRef]
- Gebhardt, T.; Music, D.; Hallstedt, B.; Ekholm, M.; Abrikosov, I.A.; Vitos, L.; Schneider, J.M. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys. J. Phys. Condes. Matter 2010, 22, 295402. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, T.; Music, D.; Takahashi, T.; Schneider, J.M. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design. Thin Solid Films 2012, 520, 5491–5499. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scr. Mater. 2013, 68, 343–347. [Google Scholar] [CrossRef]
- Timmerscheidt, T.; Dey, P.; Bogdanovski, D.; von Appen, J.; Hickel, T.; Neugebauer, J.; Dronskowski, R. The role of κ-carbides as hydrogen traps in high-Mn steels. Metals 2017, 7, 264. [Google Scholar] [CrossRef]
- Kuch, W.; Chelaru, L.I.; Offi, F.; Wang, J.; Kotsugi, M.; Kirschner, J. Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness. Nat. Mater. 2006, 5, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Lenssen, K.M.H.; van Kesteren, H.W.; Rijks, T.; Kools, J.C.S.; de Nooijer, M.C.; Coehoorn, R.; Folkerts, W. Giant magnetoresistance and its application in recording heads. Sens. Actuator A Phys. 1997, 60, 90–97. [Google Scholar] [CrossRef]
- Savin, P.; Guzman, J.; Lepalovskij, V.; Svalov, A.; Kurlyandskaya, G.; Asenjo, A.; Vas’kovskiy, V.; Vazquez, M. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments. J. Magn. Magn. Mater. 2016, 402, 49–54. [Google Scholar] [CrossRef]
- Svalov, A.; Savin, P.; Lepalovskij, V.; Larranaga, A.; Vas’kovskiy, V.; Garcia-Arribas, A.; Kurlyandskaya, G. Tailoring the exchange bias in FeNi/FeMn bilayers by heat treatment and FeMn surface oxidation. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Stocks, G.M.; Shelton, W.A.; Schulthess, T.C.; Ujfalussy, B.; Butler, W.H.; Canning, A. On the magnetic structure of gamma-FeMn alloys. J. Appl. Phys. 2002, 91, 7355–7357. [Google Scholar] [CrossRef]
- Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830. [Google Scholar] [CrossRef]
- Sawada, H.; Taniguchi, S.; Kawakami, K.; Ozaki, T. Transition of the interface between iron and carbide precipitate from coherent to semi-coherent. Metals 2017, 7, 277. [Google Scholar] [CrossRef]
- Schmidt, M.; Grafe, J.; Audehm, P.; Phillipp, F.; Schutz, G.; Goering, E. Preparation and characterisation of epitaxial Pt/Cu/FeMn/Co thin films on (100)-oriented MgO single crystals. Phys. Status Solidi A 2015, 212, 2114–2123. [Google Scholar] [CrossRef]
- Reeh, S.; Music, D.; Gebhardt, T.; Kasprzak, M.; Japel, T.; Zaefferer, S.; Raabe, D.; Richter, S.; Schwedt, A.; Mayer, J.; et al. Elastic properties of face-centred cubic Fe-Mn-C studied by nanoindentation and ab initio calculations. Acta Mater. 2012, 60, 6025–6032. [Google Scholar] [CrossRef]
- Reeh, S.; Kasprzak, M.; Klusmann, C.D.; Stalf, F.; Music, D.; Ekholm, M.; Abrikosov, I.A.; Schneider, J.M. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations. J. Phys. Condens. Matter 2013, 25, 245401. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, T.; Music, D.; Ekholm, M.; Abrikosov, I.A.; von Appen, J.; Dronskowski, R.; Wagner, D.; Mayer, J.; Schneider, J.M. Influence of chemical composition and magnetic effects on the elastic properties of fcc Fe-Mn alloys. Acta Mater. 2011, 59, 1493–1501. [Google Scholar] [CrossRef]
- Gebhardt, T.; Music, D.; Kossmann, D.; Ekholm, M.; Abrikosov, I.A.; Vitos, L.; Schneider, J.M. Elastic properties of fcc Fe-Mn-X (X = Al, Si) alloys studied by theory and experiment. Acta Mater. 2011, 59, 3145–3155. [Google Scholar] [CrossRef]
- Offi, F.; Kuch, W.; Kirschner, J. Structural and magnetic properties of FexMn1−x thin films on Cu(001) and on Co/Cu(001). Phys. Rev. B 2002, 66, 064419. [Google Scholar] [CrossRef]
- Kuch, W.; Chelaru, L.I.; Kirschner, J. Surface morphology of antiferromagnetic Fe50Mn50 layers on Cu(001). Surf. Sci. 2004, 566–568, 221–225. [Google Scholar] [CrossRef]
- Wuttig, M.; Feldmann, B.; Flores, T. The correlation between structure and magnetism for ultrathin metal films and surface alloys. Surf. Sci. 1995, 331–333, 659–672. [Google Scholar] [CrossRef]
- Allegranza, O.; Chen, M.M. Effect of substrate and antiferromagnetic films thickness on exchange-bias field (invited). J. Appl. Phys. 1993, 73, 6218–6222. [Google Scholar] [CrossRef]
- Sankaranarayanan, V.K.; Yoon, S.M.; Kim, D.Y.; Kim, C.O.; Kim, C.G. Exchange bias in NiFe/FeMn/NiFe trilayers. J. Appl. Phys. 2004, 96, 7428–7434. [Google Scholar] [CrossRef]
- Ekholm, M.; Abrikosov, I.A. Structural and magnetic ground-state properties of gamma-FeMn alloys from ab initio calculations. Phys. Rev. B 2011, 84, 104423. [Google Scholar] [CrossRef]
- Cu Crystal Structure; Datasheet from “Pauling File Multinaries Edition—2012” in Springermaterials; Springer: Berlin/Heidelberg, Germany; Material Phases Data System (MPDS): Vitznau, Switzerland; National Institute for Materials Science (NIMS): Tsukuba, Japan; Available online: http://materials.Springer.Com/isp/crystallographic/docs/sd_0250160 (accessed on 28 November.2017).
- Predel, B. Fe-Mn (iron-manganese): Datasheet from landolt-börnstein—Group iv physical chemistry volume 5e: “Dy-Er—Fr-Mo”. In SpringerMaterials; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- MgO Crystal Structure; Datasheet from “Pauling File Multinaries Edition—2012” in Springermaterials; Springer: Berlin/Heidelberg, Germany; Material Phases Data System (MPDS): Vitznau, Switzerland; National Institute for Materials Science (NIMS): Tsukuba, Japan; Available online: http://materials.Springer.Com/isp/crystallographic/docs/sd_0305005 (accessed on 28 November 2017).
- α-Al2O3 (Al2O3 Cor) Crystal Structure; Datasheet from “Pauling File Multinaries Edition—2012” in Springermaterials; Springer: Berlin/Heidelberg, Germany; Material Phases Data System (MPDS): Vitznau, Switzerland; National Institute for Materials Science (NIMS): Tsukuba, Japan; Available online: http://materials.Springer.Com/isp/crystallographic/docs/sd_0453386 (accessed on 28 November 2017).
- He, J.-W.; Møller, P.J. Epitaxial and electronic structures of ultra-thin copper films on MgO crystal surfaces. Surf. Sci. 1986, 178, 934–942. [Google Scholar] [CrossRef]
- Oh, S.H.; Scheu, C.; Wagner, T.; Tchernychova, E.; Ruhle, M. Epitaxy and bonding of Cu films on oxygen-terminated alpha-Al2O3(0001) surfaces. Acta Mater. 2006, 54, 2685–2696. [Google Scholar] [CrossRef]
- Sigumonrong, D.P.; Zhang, J.; Zhou, Y.; Music, D.; Emmerlich, J.; Mayer, J.; Schneider, J.M. Interfacial structure of V2AlC thin films deposited on (11-20)-sapphire. Scr. Mater. 2011, 64, 347–350. [Google Scholar] [CrossRef]
- Schönjahn, C.; Donohue, L.A.; Lewis, D.B.; Münz, W.-D.; Twesten, R.D.; Petrov, I. Enhanced adhesion through local epitaxy of transition-metal nitride coatings on ferritic steel promoted by metal ion etching in a combined cathodic arc/unbalanced magnetron deposition system. J. Vac. Sci. Technol. A 2000, 18, 1718–1723. [Google Scholar] [CrossRef]
- Petrov, I.; Losbichler, P.; Bergstrom, D.; Greene, J.E.; Münz, W.D.; Hurkmans, T.; Trinh, T. Ion-assisted growth of Ti1−xAlxN/Ti1−yNbyN multilayers by combined cathodic-arc/magnetron-sputter deposition. Thin Solid Films 1997, 302, 179–192. [Google Scholar] [CrossRef]
- Gao, Y.; Leiste, H.; Ulrich, S.; Stueber, M. Synthesis of local epitaxial α-(Cr1−xAlx)2O3 thin films (0.08 ≤ x ≤ 0.16) on α-Al2O3 substrates by r.f. Magnetron sputtering. Thin Solid Films 2017, 644, 129–137. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Zunger, A.; Wei, S.-H.; Ferreira, L.G.; Bernard, J.E. Special quasirandom structures. Phys. Rev. Lett. 1990, 65, 353. [Google Scholar] [CrossRef] [PubMed]
- Abrikosov, I.A.; Niklasson, A.M.N.; Simak, S.I.; Johansson, B.; Ruban, A.V.; Skriver, H.L. Order-N green’s function technique for local environment effects in alloys. Phys. Rev. Lett. 1996, 76, 4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrikosov, I.A.; Simak, S.I.; Johansson, B.; Ruban, A.V.; Skriver, H.L. Locally self-consistent green’s function approach to the electronic structure problem. Phys. Rev. B 1997, 56, 9319. [Google Scholar] [CrossRef] [Green Version]
- Cowley, J.M. X-ray measurement of order in single crystals of Cu3Au. J. Appl. Phys. 1950, 21, 24–30. [Google Scholar] [CrossRef]
- Lin, Z.; Bristowe, P.D. Microscopic characteristics of the Ag(111)/ZnO(0001) interface present in optical coatings. Phys. Rev. B 2007, 75, 205423. [Google Scholar] [CrossRef]
- Matsunaka, D.; Shibutani, Y. Electronic states and adhesion properties at metal/MgO incoherent interfaces: First-principles calculations. Phys. Rev. B 2008, 77, 165435. [Google Scholar] [CrossRef]
- Hashibon, A.; Elsässer, C.; Rühle, M. Structure at abrupt copper–alumina interfaces: An ab initio study. Acta Mater. 2005, 53, 5323–5332. [Google Scholar] [CrossRef]
- Lazar, P.; Otyepka, M. Accurate surface energies from first principles. Phys. Rev. B 2015, 91, 115402. [Google Scholar] [CrossRef]
- Sigumonrong, D.P.; Music, D.; Schneider, J.M. Efficient supercell design for surface and interface calculations of hexagonal phases: α -Al2O3 case study. Comput. Mater. Sci. 2011, 50, 1197–1201. [Google Scholar] [CrossRef]
- Music, D.; Lange, D.; Raumann, L.; Baben, M.t.; von Fragstein, F.; Schneider, J.M. Polypropylene–MALN (M = Ti, Cr) interface interactions. Surf. Sci. 2012, 606, 986–989. [Google Scholar] [CrossRef]
- Music, D.; Schmidt, P.; Saksena, A. Experimental and theoretical exploration of mechanical stability of Pt/NbO2 interfaces for thermoelectric applications. J. Phys. D Appl. Phys. 2017, 50, 455502. [Google Scholar] [CrossRef]
- Batirev, I.G.; Alavi, A.; Finnis, M.W.; Deutsch, T. First-principles calculations of the ideal cleavage energy of bulk niobium(111)/α-alumina(0001) interfaces. Phys. Rev. Lett. 1999, 82, 1510–1513. [Google Scholar] [CrossRef]
- Popov, M.N.; Spitaler, J.; Mühlbacher, M.; Walter, C.; Keckes, J.; Mitterer, C.; Draxl, C. TiO2(100)/Al2O3(0001) interface: A first-principles study supported by experiment. Phys. Rev. B 2012, 86, 205309. [Google Scholar] [CrossRef]
- Qi, Y.; Hector, L.G. Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces. Phys. Rev. B 2003, 68, 201403. [Google Scholar] [CrossRef]
- Gong, H.R.; Liu, Y.; Tang, H.P.; Xiang, C.S. Bond strength and electronic structures of coherent Ir/Ir3Zr interfaces. Appl. Phys. Lett. 2008, 92, 211914. [Google Scholar] [CrossRef]
- Eyert, V.; Schwingenschlögl, U.; Eckern, U. Covalent bonding and hybridization effects in the corundum-type transition-metal oxides V2O3 and Ti2O3. EPL (Europhys. Lett.) 2005, 70, 782. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrig, F.; Music, D.; Völker, B.; Hans, M.; Pöllmann, P.J.; Ravensburg, A.L.; Schneider, J.M. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films. Metals 2018, 8, 384. https://doi.org/10.3390/met8060384
Herrig F, Music D, Völker B, Hans M, Pöllmann PJ, Ravensburg AL, Schneider JM. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films. Metals. 2018; 8(6):384. https://doi.org/10.3390/met8060384
Chicago/Turabian StyleHerrig, Friederike, Denis Music, Bernhard Völker, Marcus Hans, Peter J. Pöllmann, Anna L. Ravensburg, and Jochen M. Schneider. 2018. "Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films" Metals 8, no. 6: 384. https://doi.org/10.3390/met8060384
APA StyleHerrig, F., Music, D., Völker, B., Hans, M., Pöllmann, P. J., Ravensburg, A. L., & Schneider, J. M. (2018). Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films. Metals, 8(6), 384. https://doi.org/10.3390/met8060384