The Effect of Elastic Strain and Small Plastic Deformation on Tensile Strength of a Lean Al–Mg–Si Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Treatment and Tensile Specimens
2.2. Elastic Strain and Plastic Deformation
2.3. TEM
3. Results
3.1. Tensile Tests
3.2. TEM Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Artificial ageing |
ES | Elastic strain |
GP | Guinier–Preston |
NA | Natural ageing |
ND | Number density |
PD | Plastic deformation |
(P)EELS | Parallel electron energy loss spectroscopy |
PFZ | Precipitation free zone |
RT | Room temperature |
SHT | Solution heat treatment |
TEM | Transmission electron microscopy |
W | Water quench |
References
- Marioara, C.; Andersen, S.; Jansen, J.; Zandbergen, H. The influence of temperature and storage time at RT on nucleation of the β′′ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 2003, 51, 789–796. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Zandbergen, H.; Holmestad, R. The influence of alloy composition on precipitates of the Al–Mg–Si system. Metall. Mater. Trans. A 2005, 36, 691–702. [Google Scholar] [CrossRef]
- Misumi, K.; Kaneko, K.; Nishiyama, T.; Maeda, T.; Yamada, K.; Ikeda, K.I.; Kikuchi, M.; Takata, K.; Saga, M.; Ushioda, K. Three-dimensional characterization of interaction between beta” precipitate and dislocation in Al–Mg–Si alloy. J. Alloys Compd. 2014, 600, 29–33. [Google Scholar] [CrossRef]
- Poole, W.J.; Wang, X.; Lloyd, D.J.; Embury, J.D. The shearable–non-shearable transition in Al–Mg–Si–Cu precipitation hardening alloys: Implications on the distribution of slip, work hardening and fracture. Philos. Mag. 2005, 85, 3113–3135. [Google Scholar] [CrossRef]
- Serizawa, A.; Hirosawa, S.; Sato, T. Three-Dimensional Atom Probe Characterization of Nanoclusters Responsible for Multistep Aging Behavior of an Al-Mg-Si Alloy. Met. Mater. Trans. A 2008, 39, 243–251. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The composition of fine-scale precipitates in Al–Mg–Si alloys. Mater. Sci. Forum 1996, 217–222, 713–718. [Google Scholar] [CrossRef]
- Murayama, M.; Hono, K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Mater. 1999, 47, 1537–1548. [Google Scholar] [CrossRef]
- Torsæter, M.; Hasting, H.S.; Lefebvre, W.; Marioara, C.D.; Walmsley, J.C.; Andersen, S.J.; Holmestad, R. The influence of composition and natural aging on clustering during preaging in Al–Mg–Si alloys. J. Appl. Phys. 2010, 108, 073527. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Jansen, J.; Zandbergen, H.W. Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Mater. 2001, 49, 321–328. [Google Scholar] [CrossRef]
- Zandbergen, H.W.; Andersen, S.J.; Jansen, J. Structure Determination of Mg5Si6 Particles in Al by Dynamic Electron Diffraction Studies. Science 1997, 277, 1221–1225. [Google Scholar] [CrossRef]
- Hasting, H.S.; Frøseth, A.G.; Andersen, S.J.; Vissers, R.; Walmsley, J.C.; Marioara, C.D.; Danoix, F.; Lefebvre, W.; Holmestad, R. Composition of β′′ precipitates in Al–Mg–Si alloys by atom probe tomography and first principles calculations. J. Appl. Phys. 2009, 106, 123527. [Google Scholar] [CrossRef]
- Cayron, C.; Buffat, P.A. Transmission electron microscopy study of the β′ phase (Al–Mg–Si alloys) and QC phase (Al–Cu–Mg–Si alloys): ordering mechanism and crystallographic structure. Acta Mater. 2000, 48, 2639–2653. [Google Scholar] [CrossRef]
- Vissers, R.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W.; Marioara, C.D.; Andersen, S.J. The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Mater. 2007, 55, 3815–3823. [Google Scholar] [CrossRef]
- Andersen, S.; Marioara, C.; Vissers, R.; Frøseth, A.; Zandbergen, H. The structural relation between precipitates in Al-Mg-Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1–MgAl2Si2. Mater. Sci. Eng. A 2007, 444, 157–169. [Google Scholar] [CrossRef]
- Andersen, S.J.; Marioara, C.D.; Frøseth, A.; Vissers, R.; Zandbergen, H.W. Crystal structure of the orthorhombic U2–Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β′′ phases. Mater. Sci. Eng. A 2005, 390, 127–138. [Google Scholar] [CrossRef]
- Vissers, R.; Marioara, C.D.; Andersen, S.J.; Holmestad, R. Crystal structure determination of the B’ phase in Al-Mg-Si alloys by combining quantitative electron difraction and Ab initio calculations. In Proceedings of the ICAA11, Aachen, Germany, 22–26 September 2008; Volume 2, pp. 1263–1269, ISBN 9978-3-527-32367-8. [Google Scholar]
- Bul’enkov, N.A.; Yakovenko, A.G.; Ul’yanikhina, O.M. X-ray diffraction study of the Mg2Si-Mg2Ge system. J. Struct. Chem. 1971, 11, 1059–1061. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Birkeland, A.; Holmestad, R. Orientation of silicon particles in a binary Al-Si alloy. J. Mater. Sci. 2008, 43, 4962–4971. [Google Scholar] [CrossRef]
- Saito, T.; Mørtsell, E.A.; Wenner, S.; Marioara, C.D.; Andersen, S.J.; Friis, J.; Matsuda, K.; Holmestad, R. Atomic Structures of Precipitates in Al–Mg–Si Alloys with Small Additions of Other Elements. Adv. Eng. Mater. 2018, 20, 1800125. [Google Scholar] [CrossRef]
- Andersen, S.J.; Marioara, C.D.; Friis, J.; Wenner, S.; Holmestad, R. Precipitates in aluminium alloys. Adv. Phys. X 2018, 3, 1479984. [Google Scholar] [CrossRef]
- Marioara, C.; Nordmark, H.; Andersen, S.; Holmestad, R. Post-β′′ phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. J. Mater. Sci. 2006, 41, 471–478. [Google Scholar] [CrossRef]
- Matsuda, K.; Sakaguchi, Y.; Miyata, Y.; Uetani, Y.; Sato, T.; Kamio, A.; Ikeno, S. Precipitation sequence of various kinds of metastable phases in Al–1.0mass% Mg2Si–0.4mass% Si alloy. J. Mater. Sci. 2000, 35, 179–189. [Google Scholar] [CrossRef]
- Røyset, J.; Stene, T.; Sæter, J.A.; Reiso, O. The effect of intermediate storage temperature and time on the age hardening response of Al-Mg-Si alloys. Mater. Sci. Forum 2006, 519–521, 239–244. [Google Scholar] [CrossRef]
- Chang, C.; Wieler, I.; Wanderka, N.; Banhart, J. Positive effect of natural pre-ageing on precipitation hardening in Al–0.44 at % Mg 0.38 at % Si alloy. Ultramicroscopy 2009, 109, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, K.; Marioara, C.D.; Andersen, S.J.; Marthinsen, K. The Effect of Preaging Deformation on the Precipitation Behavior of an Al-Mg-Si Alloy. Metall. Mater. Trans. A 2012, 43, 4006–4014. [Google Scholar] [CrossRef]
- Teichmann, K.; Marioara, C.D.; Pedersen, K.O.; Marthinsen, K. The effect of simultaneous deformation and annealing on the precipitation behaviour and mechanical properties of an Al–Mg–Si alloy. Mater. Sci. Eng. A 2013, 565, 228–235. [Google Scholar] [CrossRef]
- Kolar, M.; Pedersen, K.O.; Gulbrandsen-Dahl, S.; Teichmann, K.; Marthinsen, K. Effect of Pre-Deformation on Mechanical Response of an Artificially Aged Al-Mg-Si Alloy. Mater. Trans. 2011, 52, 1356–1362. [Google Scholar] [CrossRef]
- Maaß, R.; Derlet, P. Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Mater. 2018, 143, 338–363. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, J.; Fan, H.; Zaiser, M. Microplasticity and yielding in crystals with heterogeneous dislocation distribution. Model. Simul. Mater. Sci. Eng. 2019, 27, 074003. [Google Scholar] [CrossRef]
- ISO, EN. Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature; Standard, International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- Malladi, S.K.; Xu, Q.; van Huis, M.A.; Tichelaar, F.D.; Batenburg, K.J.; Yücelen, E.; Dubiel, B.; Czyrska-Filemonowicz, A.; Zandbergen, H.W. Real-Time Atomic Scale Imaging of Nanostructural Evolution in Aluminum Alloys. Nano Lett. 2014, 14, 384–389. [Google Scholar] [CrossRef]
- Yermolaeva, N.S.; Petinov, S.V.; Letova, T.I. FEM Modeling of the Aluminium Alloy Microplasticity. In Advanced Light Alloys and Composites; Springer: Dordrecht, The Netherlands, 1998; pp. 427–432. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.; Marceau, R.; Wang, L.; Zhang, Q.; Gao, X.; Hutchinson, C. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972–975. [Google Scholar] [CrossRef]
- Morgeneyer, T.; Taillandier-Thomas, T.; Helfen, L.; Baumbach, T.; Sinclair, I.; Roux, S.; Hild, F. In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet. Acta Mater. 2014, 69, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Morgeneyer, T.; Starink, M.; Wang, S.; Sinclair, I. Quench sensitivity of toughness in an Al alloy: Direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater. 2008, 56, 2872–2884. [Google Scholar] [CrossRef] [Green Version]
- Noell, P.; Carroll, J.; Hattar, K.; Clark, B.; Boyce, B. Do voids nucleate at grain boundaries during ductile rupture? Acta Mater. 2017, 137, 103–114. [Google Scholar] [CrossRef]
Mg | Si | Fe | Mn | Al |
---|---|---|---|---|
0.37 | 0.41 | 0.04 | 0.05 | Bal. |
Condition | Number Density (#/um3) | Length (nm) | Cross Section (nm2) | Volume Fraction (%) |
---|---|---|---|---|
Figure 2a | 19,600 ± 1600 | 34.1 ± 1.6 | 9.0 ± 0.3 | (0.56, 0.67) |
Figure 2b | 24,500 ± 2700 | 29.9 ± 2.6 | 8.2 ± 0.2 | (0.54, 0.66) |
Figure 2c | 17,900 ± 1900 | 31.0 ± 1.2 | 8.4 ± 0.3 | (0.44, 0.52) |
Figure 2d | 16,700 ± 1700 | 35.3 ± 0.3 | 9.2 ± 0.3 | (0.52, 0.60) |
Figure 2e | 16,600 ± 1900 | 39.3 ± 2.8 | 8.6 ± 0.3 | (0.51, 0.62) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mørtsell, E.A.; Westermann, I.; Marioara, C.D.; Pedersen, K.O.; Andersen, S.J.; Røyset, J.; Holmedal, B.; Holmestad, R. The Effect of Elastic Strain and Small Plastic Deformation on Tensile Strength of a Lean Al–Mg–Si Alloy. Metals 2019, 9, 1276. https://doi.org/10.3390/met9121276
Mørtsell EA, Westermann I, Marioara CD, Pedersen KO, Andersen SJ, Røyset J, Holmedal B, Holmestad R. The Effect of Elastic Strain and Small Plastic Deformation on Tensile Strength of a Lean Al–Mg–Si Alloy. Metals. 2019; 9(12):1276. https://doi.org/10.3390/met9121276
Chicago/Turabian StyleMørtsell, Eva Anne, Ida Westermann, Calin Daniel Marioara, Ketill Olav Pedersen, Sigmund Jarle Andersen, Jostein Røyset, Bjørn Holmedal, and Randi Holmestad. 2019. "The Effect of Elastic Strain and Small Plastic Deformation on Tensile Strength of a Lean Al–Mg–Si Alloy" Metals 9, no. 12: 1276. https://doi.org/10.3390/met9121276
APA StyleMørtsell, E. A., Westermann, I., Marioara, C. D., Pedersen, K. O., Andersen, S. J., Røyset, J., Holmedal, B., & Holmestad, R. (2019). The Effect of Elastic Strain and Small Plastic Deformation on Tensile Strength of a Lean Al–Mg–Si Alloy. Metals, 9(12), 1276. https://doi.org/10.3390/met9121276