Modelling the Sintering Neck Growth Process of Metal Fibers under the Surface Diffusion Mechanism Using the Lattice Boltzmann Method
Abstract
:1. Introduction
2. Surface Diffusion Model for Sintering Metal Fibers
3. Lattice Boltzmann Method for Surface Diffusion Model
4. Simulation Results and Discussion
4.1. Simulation Results and Verifications
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, H.; Ko, K.; Kim, S.J.; Basch, R.H.; Fash, J.W. The effect of metal fibers on the friction performance of automotive brake friction materials. Wear 2004, 256, 406–414. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, Y.; Wan, Z.P.; Lu, L.S.; Chi, Y.; Pan, M.Q. Preparation of oriented linear copper fiber sintered felt and its performance. Trans. Nonferr. Metal. Soc. 2007, 17, 1028–1033. [Google Scholar] [CrossRef]
- Clyne, T.W.; Markaki, A.E.; Tan, J.C. Mechanical and magnetic properties of metal fibre networks, with and without a polymeric matrix. Compos. Sci. Technol. 2005, 65, 2492–2499. [Google Scholar] [CrossRef]
- Kang, S.J.L.; Jung, Y.I. Sintering kinetics at final stage sintering: model calculation and map construction. Acta Mater. 2004, 52, 4573–4578. [Google Scholar] [CrossRef]
- Wakai, F.; Brakke, K.A. Mechanics of sintering for coupled grain boundary and surface diffusion. Acta Mater. 2011, 59, 5379–5387. [Google Scholar] [CrossRef]
- Pranatis, A.L.; Seigle, L. Proceedings of International Conference on Powder Metallurgy; Interscience: New York, NY, USA, 1961; pp. 53–73. [Google Scholar]
- Kostornov, A.G. Capillary transport of low-viscosity liquids in porous metallic materials under the action of gravitational force. Powder Metall. Met. Ceram. 2003, 42, 447–459. [Google Scholar] [CrossRef]
- Kostornov, A.G.; Kirichenko, O.V.; Brodikovskii, N.P.; Klimenko, V.N. High-porous materials of carbon steel fibers and their mechanical properties. Powder Metall. Met. Ceram. 2008, 47, 171–175. [Google Scholar] [CrossRef]
- Feng, P.; Liu, Y.; Wang, Y.; Li, K.; Zhao, X.Y.; Tang, H.P. Sintering behaviors of porous 316L stainless steel fiber felt. J. Cent. South Univ. 2015, 22, 793–799. [Google Scholar] [CrossRef]
- Li, A.J.; Ma, J.; Wang, J.Z.; Xu, Z.G.; Li, C.L.; Tang, H.P. Sintering diagram for 316L stainless steel fibers. Powder Technol. 2016, 288, 109–116. [Google Scholar] [CrossRef]
- Ma, Q. A model for the breakup of rod morphologies. Scripta Mater. 1997, 36, 77–82. [Google Scholar]
- Ma, Q. Non-linear capillary shape evolution of rod morphologies via interfacial diffusion. Acta Mater. 1998, 46, 1669–1681. [Google Scholar]
- Chen, D.D.; Zheng, Z.S.; Wang, J.Z.; Tang, H.P. Modeling sintering behavior of metal fibers with different fiber angles. Rare Met. 2018, 37, 886–893. [Google Scholar] [CrossRef]
- Chen, D.D.; Zheng, Z.S.; Wang, J.Z.; Tang, H.P. 2D Model and 3D Reconstitution of Sintered Metal Fibers by Surface Diffusion. Rare Met. Mater. Eng. 2017, 46, 1474–1479. [Google Scholar]
- Chen, D.D.; Zheng, Z.S.; Wang, J.Z.; Tang, H.P.; Qu, X.H. Three-dimensional simulation of sintering crunodes of metal powders or fibers by level set method. J. Cent. South Univ. 2015, 22, 2446–2455. [Google Scholar] [CrossRef]
- Chen, D.D.; Zheng, Z.S.; Tang, H.P.; Wang, J.Z. Three-dimensional Simulation of the Sintering Metal Fibers by Surface Diffusion. Rare Met. Mater. Eng. 2016, 45, 2912–2917. [Google Scholar]
- Song, M.; Zheng, Z.S.; Chen, D.D.; Cao, W.; Fu, T.B.; Tang, H.P. Numerical simulation of metal fiber sintering by surface diffusion. J. Cent. South Univ. 2017, 11, 2851–2858. [Google Scholar]
- Chen, S.Y.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Li, Q.; Luo, K.H.; Kang, Q.J.; He, Y.L.; Chen, Q.; Liu, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy. Combust. 2016, 52, 62–105. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. J. Mol. Liq. 2017, 231, 555–565. [Google Scholar] [CrossRef]
- Li, D.; Ren, Q.; Tong, Z.X.; He, Y.L. Lattice Boltzmann models for axisymmetric solid–liquid phase change. Int. J. Heat Mass Tran. 2017, 112, 795–804. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Chen, C.; Ye, H.F.; Zhang, H.W. Lattice Boltzmann models for the grain growth in polycrystalline systems. AIP Adv. 2016, 6, 085315. [Google Scholar] [CrossRef] [Green Version]
- Varnik, F.; Rios, A.; Gross, M.; Steinbach, I. Simulation of viscous sintering using the lattice Boltzmann method. Model. Simul. Mater. Sc. 2013, 21, 025003. [Google Scholar] [CrossRef]
- Ma, J.; Li, A.J.; Tang, H.P. Study on sintering mechanism of stainless steel fiber felts by X-ray computed tomography. Metals 2016, 6, 18. [Google Scholar] [CrossRef]
- Ruffino, F.; Grimaldi, M.G.; Giannazzo, F.; Roccaforte, F.; Raineri, V.; Bongiorno, C.; Spinella, C. Kinetic mechanisms of the in situ electron beam-induced self-organization of gold nanoclusters in SiO2. J. Phys. D Appl. Phys. 2009, 42, 075304. [Google Scholar] [CrossRef]
- Ruffino, F.; Torrisi, V.; Grimaldi, M.G. Experimental study on the coalescence process of SiO2 supported colloidal Au nanoparticles. Physica E 2015, 74, 388–399. [Google Scholar] [CrossRef]
- Giuntini, D.; Wei, X.; Maximenko, A.L.; Wei, L.; Ilyina, A.M.; Olevsky, E.A. Initial stage of free pressureless spark-plasma sintering of vanadium carbide: Determination of surface diffusion parameters. Int. J. Refract. Met. Hard Mater. 2013, 41, 501–506. [Google Scholar] [CrossRef]
- Rao, W.R.; Cutler, I.B. Initial sintering and surface diffusion in Al2O3. J. Am. Ceram. Soc. 1972, 55, 170–171. [Google Scholar] [CrossRef]
- Cologna, M.; Raj, R. Surface diffusion-controlled neck growth kinetics in early stage sintering of zirconia, with and without applied DC electrical field. J. Am. Ceram. Soc. 2011, 94, 391–395. [Google Scholar] [CrossRef]
- Mullins, W.W. Theory of thermal grooving. J. Appl. Phys. 1957, 28, 333–339. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Chen, D.; Zheng, Z. Modelling the Sintering Neck Growth Process of Metal Fibers under the Surface Diffusion Mechanism Using the Lattice Boltzmann Method. Metals 2019, 9, 614. https://doi.org/10.3390/met9050614
Dai H, Chen D, Zheng Z. Modelling the Sintering Neck Growth Process of Metal Fibers under the Surface Diffusion Mechanism Using the Lattice Boltzmann Method. Metals. 2019; 9(5):614. https://doi.org/10.3390/met9050614
Chicago/Turabian StyleDai, Houping, Dongdong Chen, and Zhoushun Zheng. 2019. "Modelling the Sintering Neck Growth Process of Metal Fibers under the Surface Diffusion Mechanism Using the Lattice Boltzmann Method" Metals 9, no. 5: 614. https://doi.org/10.3390/met9050614
APA StyleDai, H., Chen, D., & Zheng, Z. (2019). Modelling the Sintering Neck Growth Process of Metal Fibers under the Surface Diffusion Mechanism Using the Lattice Boltzmann Method. Metals, 9(5), 614. https://doi.org/10.3390/met9050614