Modulus of Elasticity and Compressive Strength of Tuff Masonry: Results of a Wide Set of Flat-Jack Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elastic Modulus of Tuff Masonry
2.2. Compressive Strength of Tuff Masonry
3. Remarks on Double Flat-Jack Tests
4. Results and Discussion
4.1. Modulus of Elasticity
4.2. Compressive Strength
4.3. Modulus of Elasticity vs. Compressive Strength
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monaco, M.; Bergamasco, I.; Betti, M. A no-tension analysis for a brick masonry vault with lunette. J. Mech. Mat. Struct. 2018, 13, 703–714. [Google Scholar] [CrossRef]
- Faella, G.; Giordano, A.; Guadagnuolo, M. Unsymmetric-plan masonry buildings: Pushover vs nonlinear dynamic analysis. In Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering, Toronto, ON, Canada, 25–29 July 2010. [Google Scholar]
- Corradi, M.; Borri, A.; Vignoli, A. Experimental study on determination of strength of Masonry Walls. Constr. Build. Mater. 2003, 17, 325–337. [Google Scholar] [CrossRef]
- Fonti, R.; Barthel, R.; Formisano, A.; Borri, A.; Candela, M. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy). In Proceedings of the 11th International Conference of Computational Methods in Sciences and Engineering, ICCMSE, Athens, Greece, 20–23 March 2015; Volume 1702, p. 160003. [Google Scholar]
- Marghella, G.; Marzo, A.; Carpani, B.; Indirli, M.; Formisano, A. Comparison between in situ experimental data and Italian code standard values. In Brick and Block Masonry: Trends, Innovations and Challenges, Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26–30 June 2016; IBMAC: Padova, Italy, 2016; pp. 707–1714. [Google Scholar]
- Simões, A.; Gago, A.; Lopes, M.; Bento, R. Characterization of old masonry walls: Flat jack method. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Faella, G.; Frunzio, G.; Guadagnuolo, M.; Donadio, A.; Ferri, L. The church of the nativity in Bethlehem: Non-destructive tests for the structural knowledge. J. Cult. Herit. 2012, 1296–2074. [Google Scholar] [CrossRef]
- Fiengo, G.; Guerriero, L. Atlante Delle Tecniche Costruttive Tradizionali Napoli terra di lavoro (XVI-XIX); Arte Tipografica: Napoli, Italy, 2008; ISBN 8887375402. [Google Scholar]
- Guadagnuolo, M.; Nuzzo, M.; Faella, G. The corpus domini bell tower: Conservation and safety. In Proceedings of the XIV International Conference on Building Pathology and Constructions Repair—CINPAR 2018, Florence, Italy, 20–22 June 2018. [Google Scholar] [CrossRef]
- Colella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D’Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; de Gennaro, M.; Langella, A. The neapolitan yellow tuff: An outstanding example of heterogeneity. Constr. Build. Mater. 2017, 136, 361–373. [Google Scholar] [CrossRef]
- De Vivo, B. Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites; Elsevier: Amsterdam, The Netherlands, 2006; Volume 9. [Google Scholar]
- Kržan, M.; Gostic, S.; Cattari, S.; Bosiljkov, V. Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bull. Earthq. Eng. 2015, 13, 203–236. [Google Scholar] [CrossRef]
- Jackson, M.; Marra, F. Roman stone masonry: Volcanic foundation of the ancient city. J. Arch. Inst. Am. 2006, 110, 403–436. [Google Scholar] [CrossRef]
- Guadagnuolo, M.; Monaco, M.; Frunzio, G.; Tafuro, A. Pozzolanic mortars for restoration of sacred tuff masonry structures. In Proceedings of the Utopian and Sacred Architecture, Aversa, Italy, 11–13 June 2019. [Google Scholar]
- Guadagnuolo, M.; Donadio, A.; Faella, G. Out-of-plane failure mechanism of masonry buildings corners. In Proceedings of the 8th International Conference on Structural Analysis of Historical Constructions (SAHC), Wroclaw, Poland, 15–17 October 2012; ISSN 0860-2395. ISBN 9788371252167. [Google Scholar]
- Monaco, M.; Guadagnuolo, M. Out of plane behaviour of unreinforced masonry walls. In Proceedings of the Prohitech-Protection of Historical Buildings—First International Conference, Rome, Italy, 21–24 June 2009; ISBN 9780415558037. [Google Scholar]
- Guadagnuolo, M.; Faella, G. Simplified design of masonry ring-beams reinforced by flax fibers for existing buildings retrofitting. Buildings 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Guadagnuolo, M.; Aurilio, M.; Tafuro, A.; Faella, G. Analysis of local mechanisms through floor spectra for the preservation of historical masonries. A case study. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, 24–26 June 2019. [Google Scholar]
- M.I.T. Aggiornamento delle Norme Tecniche per le Costruzioni; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2018. Available online: https://www.gazzettaufficiale.it/eli/gu/2018/02/20/42/so/8/sg/pdf (accessed on 1 April 2020).
- FEMA, Federal Emergency Management Agency, FEMA 306. Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Basic Procedures Manual; Applied Technology Council: Redwood City, CA, USA, 1999; ATC-43. [Google Scholar]
- Borri, A.; Castori, G.; Corradi, M.; Speranzini, E. Shear behaviour of unreinforced and reinforced masonry panels subjected to insitu diagonal compression tests. Constr. Build. Mater. 2011, 25, 4403–4414. [Google Scholar] [CrossRef]
- Brignola, A.; Frumento, S.; Lagomarsino, S.; Podestà, S. Identification of shear parameters of masonry panels through the in situ diagonal compression test. Int. J. Archit. Herit. 2009, 3, 52–73. [Google Scholar] [CrossRef]
- Chiostrini, S.; Galano, L.; Vignoli, A. In Situ Shear and Compression Tests in Ancient Stone Masonry Walls of Tuscany, Italy. J. Test. Eval. 2003, 31, 289–303. [Google Scholar]
- Calderini, C.; Cattari, S.; Lagomarsino, S. The use of the diagonal compression test to identify the shear mechanical parameters of masonry. Constr. Build. Mater. 2010, 24, 677–685. [Google Scholar] [CrossRef]
- Buonocore, G.; Gesualdo, A.; Monaco, M.; Savino, M.T. Improvement of seismic performance of unreinforced masonry buildings using steel frames. In Civil-Comp Proceedings: 106, 2014; Topping, B.H.V., Iványi, P., Eds.; Civil Comp Press: Kippen, Stirlingshire, UK; ISBN 978-1-905088-61-4. [CrossRef]
- Guadagnuolo, M.; Faella, G.; Donadio, A.; Ferri, L. Integrated evaluation of the Church of S.Nicola di Mira: Conservation versus safety. NDT & E Int. 2014. [Google Scholar] [CrossRef]
- Frunzio, G.; Di Gennaro, L.; Guadagnuolo, M. Palazzo Ducale in Parete: Remarks on code provisions. Int. J. Mas. Resear. Inn. 2019, 4, 159–173. [Google Scholar] [CrossRef]
- Binda, L.; Saisi, A. Application of NDTs to the diagnosis of historic structures. In Proceedings of the Non-Destructive Testing in Civil Engineering, Nantes, France, 30 June–3 July 2009. [Google Scholar]
- Binda, L.; Saisi, A.; Tiraboschi, C. Application of sonic tests to the diagnosis of damage and repaired structures. NDT & E Int. 2001, 34, 123–138. [Google Scholar] [CrossRef]
- Binda, L.; Saisi, A.; Zanzi, L. Sonic tomography and flat jack tests as complementary investigation procedures for the stone pillars of the temple of S.Nicolo’ l’Arena (Italy). NDT & E Int. 2003, 36, 215–227. [Google Scholar] [CrossRef]
- Lindqvist, J.E.; Maurenbrecher, P. Testing of hardened mortars, a process of questioning and interpreting. A publication from RILEM TC 203-RHM Repair mortars for historic masonry. Mat. Struct. 2009, 47, 853–865. [Google Scholar]
- CEN European Committee for Standardization. Non-destructive testing—Ultrasonic examination—Part 1: General Principles, Part 2: Sensitivity and Range Setting, Part 3: Transmission Technique, Part 4: Examination for Discontinuities Perpendicular to the Surface, Part 5: Characterization and Sizing of Discontinuities; CEN: Belgium, Brussels, 2000. [Google Scholar]
- ASTM. Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation; ASTM International: West Conshohocken, PA, USA, 2011; Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D6432-11.htm (accessed on 1 April 2020).
- BS EN 13187:1999, Thermal Performance of Buildings - Qualitative Detection of Thermal Properties in Building Envelopes - Infrared Method; Infrared Thermography Handbook; Volume 1: Principles and practice, Norman Walker; Volume 2: Applications, A.N. Nowicki; BSI: London, UK, 2005.
- Miranda, L.; Guedes, J.; Rio, J.; Costa, A. Stone masonry characterization through sonic tests. In Proceedings of the VI Congreso International Sobre Patologia y Recuperacion de Estructuras, Cordoba, Argentina, 2–4 June 2010. [Google Scholar]
- ASTM C1196-09. Standard Test Method for In-Situ Compressive Stress Within Solid Unit Masonry Estimated Using Flat-Jack Measurements; ASTM International: West Conshohocken, PA, USA, 2009; Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/C1196-09.htm (accessed on 1 April 2020).
- CEN, European Committee for Standardization. Eurocode 6, EN 1996-1-1: Design of Masonry Structures—Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures; CEN: Belgium, Brussels, 2005. [Google Scholar]
- M.I.T. Istruzioni per l’applicazione dell’aggiornamento delle Norme Tecniche per le Costruzioni di, Gazzetta Ufficiale: Rome, Italy. 2019. Available online: https://www.gazzettaufficiale.it/eli/gu/2019/02/11/35/so/5/sg/pdf (accessed on 1 April 2020).
- Bernardini, A.; Mattone, R.; Modena, C.; Pasero, G.; Pavano, M.M.; Pistone, G.; Roccati, R.; Zaupa, F. Determinazione delle capacità portanti per carichi verticali e laterali di pannelli murari in tufo. Atti II Congr. Naz, 1984, pp. 345–360. Available online: http://www.reluis.it/mada/foto/026.pdf (accessed on 1 April 2020).
- Faella, G.; Manfredi, G.; Realfonzo, R. Experimental evaluation of mechanical properties of old tuff masonry panels subjected to axial loadings. In Proceedings of the 9th International Brick/Block Masonry Conference, Berlin, Germany, 13–16 October 1991. [Google Scholar]
- Prota, A.; Marcari, G.; Fabbrocino, G.; Manfredi, G.; Aldea, C. Experimental in-plane behaviour of tuff masonry strengthened with cementitious matrix—Grid composites. ASCE J. Comp. Constr. 2006, 10, 223–233. [Google Scholar] [CrossRef]
- Augenti, N.; Romano, A. Preliminary experimental results for advanced modelling of tuff masonry structures. In Proceedings of the Structural Analysis of Historical Constructions, SAHC08, Bath, UK, 2–4 July 2008. [Google Scholar]
- Augenti, N.; Parisi, F. Mechanical characterization of tuff masonry. In Proceedings of the 1st International Conference on Protection of Historical Buildings, Rome, Italy, 21 June 2009; pp. 1579–1584. [Google Scholar]
- Calderoni, B.; Cordasco, E.A.; Guerriero, L.; Lenza, P.; Manfredi, G. Mechanical behaviour of postmedieval tuff masonry in the Naples area. Mason. Int. 2009, 21, 85–96. [Google Scholar]
- Grande, E.; Romano, A. Experimental investigation and numerical analysis of tuff-brick listed masonry panels. Mat. Struct. 2012, 46, 63–75. [Google Scholar] [CrossRef]
- Miccoli, L.; Garofano, A.; Fontana, P.; Müller, U. Experimental testing and finite element modelling of earth block masonry. Eng. Struct. 2015, 104, 80–94. [Google Scholar] [CrossRef]
- Marcari, G.; Basili, M.; Vestroni, F. Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar. Compos. Part B Eng. 2017, 108, 131–142. [Google Scholar] [CrossRef]
- Alecci, V.; Stipo, G.; La Brusco, A.; De Stefano, M.; Rovero, L. Estimating elastic modulus of tuff and brick masonry: A comparison between on-site and laboratory tests. Constr. Build. Mater. 2019, 204, 828–838. [Google Scholar] [CrossRef]
- Sandoli, A.; Ferracuti, B.; Calderoni, B. FRP-confined tuff masonry columns: Regular and irregular stone arrangement. Compos. Part B Eng. 2019, 162, 621–630. [Google Scholar] [CrossRef]
- Gesualdo, A.; Calderoni, B.; Sandoli, A.; Monaco, M. Minimum energy approach for the in-plane shear resistance of masonry panels. Ing. Sismica 2019, 36, 42–53. [Google Scholar]
- Gesualdo, A.; Calderoni, B.; Iannuzzo, A.; Fortunato, A.; Monaco, M. Minimum energy strategies for the in-plane behaviour of masonry. Frat. Ed Int. Strut. 2020, 14, 376–385. [Google Scholar] [CrossRef]
- Ceroni, F.; Pecce, M.; Manfredi, G.; Marcari, G.; Voto, S. Analisi e caratterizzazione meccanica di murature di tufo. In Proceedings of the 15th CTE Congress, Bari, Italy, 4–6 November 2004. [Google Scholar]
- Binda, L.; Papayianni, I.; Toumbakari, E.; Van Hees, R. Mechanical tests on mortars and assemblages. In Characterisation of Old Mortars with Respect to their Repair - Final Report of RILEM TC 167-COM; RILEM Publications SARL: Bagneux, France, 2004; Volume 28, pp. 57–76. [Google Scholar] [CrossRef]
- Degryse, P.; Elsen, J.; Waelkens, M. Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem. Concr. Res. 2002, 32, 1457–1463. [Google Scholar] [CrossRef]
- Lanas, J.; Pérez Bernal, J.L.; Bello, M.; Alvarez-Galindo, J.I. Mechanical properties of natural hydraulic lime-based mortars. Cem. Concr. Res. 2004, 34, 2191–2201. [Google Scholar] [CrossRef] [Green Version]
- Drdácký, M.; Masin, D.; Mekonone, M.D.; Slizkova, Z. Compression tests on non-standard historic mortar specimens. In Proceedings of the 1st Historical Mortar Conference, Lisbon, Portugal, 24–26 September 2008; pp. 24–26. [Google Scholar]
- Drougkas, A.; Roca, P.; Molins, C. Compressive strength and elasticity of pure lime mortar masonry. Mat. Struct. 2015, 49, 983–999. [Google Scholar] [CrossRef] [Green Version]
- Brook, J.J.; Abu Baker, B.H. The modulus of elasticity of masonry. Mason. Int. 1998, 12, 58–63. [Google Scholar]
- Tassios, T.P. Meccanica Delle Murature; EPC: Napoli, Italy, 1988; Available online: https://www.epc.it/contenuti/bufarini_mecc_murature_sito.pdf (accessed on 1 April 2020).
- Wolde-Tinsae, A.M.; Atkinson, R.H.; Hamid, A.A. State-of-the-art: Modulus of elasticity. In Proceedings of the 6th North American Masonry Conference, Philadelphia, PA, USA, 1 June 1993; The Masonry Society: Boulder, CO, USA; pp. 1209–1220. [Google Scholar]
- Drysdale, R.G.; Hamid, A.A.; Baker, L.R. Masonry Structures: Behaviour and Design; Prentice-Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Brooks, J. Concrete and Masonry Movements; Butterworth-Heinemann Elsevier: Oxford, UK, 2015. [Google Scholar]
- ICC, International Code Consortium. International Building Code; IBC: Falls Church, VA, USA, 2003. [Google Scholar]
- Masonry Standards Joint Committee (MSJC). Building Code Requirements for Masonry Structures; ACI 530-02/ASCE 5-02/TMS 402-02; American Concrete Institute, Structural Engineering Institute of the American Society of Civil Engineers, The Masonry Society: Detroit, MI, USA, 2002. [Google Scholar]
- Canadian Standards Association (CSA). Design of Masonry Structures, S304.1; CSA: Mississauga, ON, Canada, 2004. [Google Scholar]
- Zavalis, R.; Jonaitis, B.; Lourenco, P.B. Analysis of bed joint influence on masonry modulus of elasticity. In Proceedings of the 9th International Masonry Conference, Guimarães, Portugal, 7–9 July 2014. [Google Scholar] [CrossRef]
- De Matteis, G.; Corlito, V.; Guadagnuolo, M.; Tafuro, A. Seismic vulnerability assessment and retrofitting strategies of Italian masonry churches of the Alife-Caiazzo Diocese in Caserta. Int. J. Archit. Herit. 2019. [Google Scholar] [CrossRef]
- Guadagnuolo, M.; Aurilio, M.; Faella, G. Retrofit assessment of masonry buildings through simplified structural analysis. Frat. E Int. Strut. 2020, 14, 398–409. [Google Scholar] [CrossRef]
- Costigan, A.; Pavía, S.; Kinnane, O. An experimental evaluation of prediction models for the mechanical behaviour of unreinforced, lime-mortar masonry under compression. J. Build. Eng. 2015, 4, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, H.B.; Rai, D.C.; Jain, S.K. Stress-strain characteristics of clay brick masonry under uniaxial compression. ASCE J. Mat. Civil. Eng. 2007, 19, 728–739. [Google Scholar] [CrossRef]
- Marotta, A.; Liberatore, D.; Sorrentino, L. Estimation of unreinforced tuff masonry compressive strength based on mortar and unit mechanical parameters. In Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26–30 June 2016. [Google Scholar]
- CEN, European Committee for Standardization. EN 1015-11:1999, Methods of Test for Mortar for Masonry: Determination of Flexural and Compressive Strength; CEN: Brussels, Belgium, 2006. [Google Scholar]
- CEN, European Committee for Standardization. EN 772-1:2011, Methods of Tests for Masonry Units: Determination of Compressive Strength; CEN: Belgium, Brussels, 2011. [Google Scholar]
- Nicotera, P.; Lucini, P. La costituzione geologica del sottosuolo di Napoli nei riguardi dei problemi. In Proceedings of the VIII Convegno di Geotecnica, Cagliari, Italy, 1967. [Google Scholar]
- Faella, C.; Martinelli, E.; Nigro, E.; Paciello, S. Tuff masonry walls strengthened with a new kind of cfrp sheet: Experimental tests and analysis. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Domède, N.; Pons, G.; Sellier, A.; Fritih, Y. Mechanical behaviour of ancient masonry. Mat. Struct. 2008, 42, 123–133. [Google Scholar] [CrossRef]
- Page, A.W. The biaxial compressive strength of masonry. Proc. Inst. Civ. Eng. 1981, 71, 893–906. [Google Scholar] [CrossRef]
- Vermeltfoort, A.T.; Martens, D.R.W.; Van Zijl, G.P.A.G. Brick–mortar interface effects on masonry under compression. Can. J. Civ. Eng. 2007, 34, 1475–1485. [Google Scholar] [CrossRef]
- Chagneau, F.; Levasseur, M. Contrôle des matériaux de construction par dynamostratigraphie. Mat. Struct. 1989, 22, 231–236. [Google Scholar] [CrossRef]
- Gucci, N.; Barsotti, R. A non-destructive technique for the determination of mortar load capacity in situ. Mat. Struct. 1995, 28, 276–283. [Google Scholar] [CrossRef]
- RILEM TC 177–MDT. Test method recommendations of RILEM TC 177–MDT Masonry durability and on-site testing–D.1: Indirect determination of the surface strength of unweathered hydraulic cement mortar by the drill energy method. Mater. Struct. 2004, 37, 485–487. Available online: https://www.rilem.net/images/publis/1617.pdf (accessed on 1 April 2020).
- RILEM TC 177–MDT. Test method recommendations of RILEM TC 177–MDT Masonry durability and on-site testing–D.4: In–situ stress tests based on the flat jack. Mater. Struct. 2004, 37, 491–496. Available online: https://www.rilem.net/images/publis/1619.pdf (accessed on 1 April 2020).
- RILEM TC 177–MDT. Test method recommendations of RILEM TC 177–MDT Masonry durability and on-site testing–D.5: In-situ stress-strain behaviour tests based on the flat jack. Mater. Struct. 2004, 37, 497–501. Available online: https://www.rilem.net/images/publis/1620.pdf (accessed on 1 April 2020).
- Pelà, L.; Roca, P.; Benedetti, A. Mechanical characterization of historical masonry by core drilling and testing of cylindrical samples. Int. J. Archit. Herit. 2016, 10, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Cescatti, E.; Dalla Benetta, M.; Modena, C.; Casarin, F. Analysis and evaluations of flat jack test on a wide existing masonry buildings sample. In Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26–30 June 2016. [Google Scholar]
- British Standards Institution. BS 5628-1: Code of Practice for the Use of Masonry. Structural Use of Unreinforced Masonry; British Standards Institution: London, UK, 2005. [Google Scholar]
- Valluzzi, M.R.; Munari, M.; Modena, C.; Binda, L.; Cardani, G.; Saisi, A. Multilevel approach to the vulnerability analysis of historic buildings in seismic areas Part 2: Analytical interpretation of mechanisms for the vulnerability analysis and the structural improvement. Restor. Build. Monum. 2007, 13, 427–441. [Google Scholar] [CrossRef]
- ASTM C1197-14A. Standard Test Method for In-Situ Measurement of Masonry Deformability Properties Using the Flat-Jack Method; ASTM International: West Conshohocken, PA, USA, 2014; Available online: https://www.astm.org/Standards/C1197.htm (accessed on 1 April 2020).
- Kingsley, G.R.; Noland, J.L. A note on obtaining in-situ load-deformation properties of unreinforced brick masonry in the united states using flatjacks, evaluation and retrofit of masonry structures. In Proceedings of the Second Joint USA-Italy Workshop on Evaluation and Retrofit of Masonry Structures, Boulder, CO, USA, August 1987; pp. 215–223. [Google Scholar]
- Andreini, M.; De Falco, A.; Giresini, L.; Sassu, M. Mechanical characterization of masonry walls with chaotic texture: Procedures and results of in-situ tests. Int. J. Archit. Herit. 2014, 8, 376–407. [Google Scholar] [CrossRef]
- Almeida, C.; Guedes, J.; Arêde, A.; Costa, C.Q.; Costa, A. Physical characterization and compression tests of one leaf stone masonry walls. Constr. Build. Mater. 2012, 30, 188–197. [Google Scholar] [CrossRef]
- Binda, L.; Tiraboschi, C. Flat-jack test as a slightly destructive technique for the diagnosis of brick and stone masonry structures. Restor. Build. Monum. 1999, 5, 449–472. [Google Scholar] [CrossRef]
- Manning, E.C.; Ramos, L.F.; Fernandes, F. Tube-jack testing: Regular masonry wall testing. In Proceedings of the SAHC2014—9th International Conference on Structural Analysis of Historical Constructions, Mexico, Mexico, 14–17 October 2014. [Google Scholar]
- Porco, F.; Uva, G. Alcune considerazioni sull’applicazione della tecnica dei martinetti piatti su murature caotiche. In Proceedings of the Atti della XII Conferenza Nazionale sulle Prove non Distruttive, Monitoraggio, Diagnostica Milano, 11–13 October 2007. [Google Scholar]
- Ramos, L.F.; Manning, E.C.; Fernandes, F.; Fangueiro, R.; Azenha, M.; Cruz, J.; Sousa, C. Tube-jack testing for irregular masonry walls: Prototype development and testing. NDT & E Int. 2013, 58, 24–35. [Google Scholar]
- Simões, A.; Bento, R.; Gago, A.; Lopes, M. Mechanical characterization of masonry walls with flat-jack tests. Exp. Tech. 2015, 40, 1163–1178. [Google Scholar]
- Uranjek, M.; Bosiljkov, V.; Žarni´c, R.; Bokan-Bosiljkov, V. In situ tests and seismic assessment of a stone-masonry building. Mat. Struct. 2012, 45, 861–879. [Google Scholar] [CrossRef]
- Alecci, M.; De Stefano, M.; Luciano, R.; Marra, A.; Stipo, G. Numerical investigation on the use of flat-jack test for detecting masonry deformability. J. Test. Eval. 2020. [Google Scholar] [CrossRef]
- Binda, L.; Cardani, G.; Saisi, A.; Valluzzi, M.R.; Munari, M.; Modena, C. Multilevel approach to the vul-nerability analysis of historical buildings in seismic areas, Part 1: Detection of parameters for vulnerability analysis through on site and laboratory investigation. Restor. Build. Monum. 2007, 13, 413–426. [Google Scholar] [CrossRef]
- Parivallal, S.; Kesavan, K.; Ravisankar, K.; Sundram, B.A.; Ahmed, A.K.F. Evaluation of in situ stress in masonry structures by flatjack technique. In Proceedings of the National Seminar & Exhibition on Non-destructive Evaluation, Chennai, India, 8–10 December 2011. [Google Scholar]
- Gregorczyk, P.; Lourenço, P.B. A review on flat-jack testing. Eng. Civil. 2000, 9, 39–50. [Google Scholar]
- Valluzzi, M.R. Consolidamento E Recupero Delle Murature; Gruppo Editoriale: Faenza, Italy, 2003. [Google Scholar]
- Noland, J.L.; Atkinson, R.H.; Schaller, M.P. A review of the flat-jack method for Nondestructive evaluation. In Proceedings of the Nondestructive evaluation of civil structures and Materials, Boulder, CO, USA, 15–17 October 1990. [Google Scholar]
- Ronca, P.; Tiraboschi, C.; Binda, L. In-situ flat-jack tests matching new mechanical interpretations. In Proceedings of the 11th International Brick/Block Masonry Conference, Shanghai, China, 4–16 October 1997. [Google Scholar]
- Saisi, A.; Gentile, C.; Cantini, L. Post-earthquake assessment of a masonry tower by on-site inspection and operational modal testing. In Proceedings of the ECCOMAS Thematic Conference- COMPDYN 2013: 4th International Conference on Computat, Kos Island, Greece, 12–14 June 2013. [Google Scholar]
- Hendry, A.W. Structural Brickwork; The Macmillan Press: London, UK, 1981. [Google Scholar]
- Witzany, J.; Čejka, T.; Zigler, R. The analysis of nonstress effects on historical stone bridge structures (monitoring, theoretical analysis, maintenance). In Proceedings of the the 10th East Asia Pacific Conference on Structural Engineering and Construction (EASEC-10), Bangkok, Thailand, 3–5 August 2006; Volume 6, pp. 21–26. [Google Scholar]
- Witzany, J.; Čejka, T.; Zigler, R. Failure resistance of the historic stone bridge structure of Charles Bridge. I: Susceptibility to nonstress effects. J. Perf. Constr. Facil. 2008, 22, 71–82. [Google Scholar] [CrossRef]
- Proske, D.; van Gelder, P. Safety of Historical Stone Arch Bridges; Springer: Berlin, Germany, 2009. [Google Scholar]
- Vasconcelos, G.; Lourenço, P.B. Experimental characterization of stone masonry in shear and compression. Constr. Build. Mater. 2009, 23, 3337–3345. [Google Scholar] [CrossRef]
Reference | Tuff Strength | Mortar Strength | Masonry | ||||
---|---|---|---|---|---|---|---|
Specimen Size | Modulus of Elasticity | Compressive Strength | |||||
L | H | t | |||||
(MPa) | (MPa) | (cm) | (cm) | (cm) | (MPa) | (MPa) | |
Bernardini et al. 1984 [39] | 4.98–6.46 | 1.73–5.78 | 82–104 | 83–104 | 12–25 | 1650–2100 | 3.05–4.26 |
Faella et al. 1991 [40] | 3.50 | 2.0–3.0 | 130 | 125 | 50 | 991–1110 | 1.23–1.53 |
Prota et al. 2006 [41] | 2.00 | 5.00 | 103 | 103 | 25 | 680 | 2.30 |
Augenti, Romano 2007 [42] | 4.13 | 7.14 | 62 | 62 | 15 | 1980 | 4.31 |
Augenti, Parisi 2009 [43] | – | – | 61 | 65 | 15 | 2222 | 3.96 |
Calderoni et al. 2009 [44] | 3.49–4.30 | 1.56–3.76 | 100–133 | 82–95 | 42–67 | 743–1252 | 2.55–4.34 |
Grande, Romano 2012 [45] | 4.13 | 7.14 | 61 | 60 | 15 | 781 | 1.97 |
Miccoli et al. 2015 [46] | 5.21 | 3.32 | 50 | 50 | 11.5 | 587–1071 | 2.71–3.77 |
Marcari et al. 2017 [47] | 8.00 | 6.60 | 100 | 100 | 25 | 1495–1869 | 2.67–2.70 |
Alecci et al. 2019 [48] | 4.22 | 0.99 | 57 | 61 | 19 | 818 | 0.92–1.20 |
Sandoli et al. 2019 [49] | 4.60 | 1.93 | 13.5–22 | 30–40 | 16.5–22 | 385–393 | 2.36–2.39 |
Elastic Modulus | Compressive Strength | |||
---|---|---|---|---|
Blocks | Squared | Roughly Squared | Squared | Roughly Squared |
Mean value (MPa) | 1209 | 1197 | 2.01 | 1.71 |
Standard deviation (MPa) | 489 | 672 | 0.42 | 0.36 |
Coefficient of variation (%) | 40.45 | 56.16 | 20.92 | 21.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guadagnuolo, M.; Aurilio, M.; Basile, A.; Faella, G. Modulus of Elasticity and Compressive Strength of Tuff Masonry: Results of a Wide Set of Flat-Jack Tests. Buildings 2020, 10, 84. https://doi.org/10.3390/buildings10050084
Guadagnuolo M, Aurilio M, Basile A, Faella G. Modulus of Elasticity and Compressive Strength of Tuff Masonry: Results of a Wide Set of Flat-Jack Tests. Buildings. 2020; 10(5):84. https://doi.org/10.3390/buildings10050084
Chicago/Turabian StyleGuadagnuolo, Mariateresa, Marianna Aurilio, Andrea Basile, and Giuseppe Faella. 2020. "Modulus of Elasticity and Compressive Strength of Tuff Masonry: Results of a Wide Set of Flat-Jack Tests" Buildings 10, no. 5: 84. https://doi.org/10.3390/buildings10050084
APA StyleGuadagnuolo, M., Aurilio, M., Basile, A., & Faella, G. (2020). Modulus of Elasticity and Compressive Strength of Tuff Masonry: Results of a Wide Set of Flat-Jack Tests. Buildings, 10(5), 84. https://doi.org/10.3390/buildings10050084