Critical Factors Affecting Team Work Efficiency in BIM-Based Collaborative Design: An Empirical Study in China
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Theoretical Framework
2.2. Hypotheses Development
2.2.1. Characteristics of Team Members
2.2.2. Characteristic and Arrangement of Design Task
2.2.3. Practicality of Information System
2.2.4. Team Management Level
2.2.5. Comfort of Working Environment
2.2.6. Human Interaction
2.2.7. Human-Information System Interaction
3. Research Methods and Process
3.1. Qualitative Sampling
3.2. Quantitative Sampling
3.3. Data Analysis
4. Results
4.1. Descriptive Statistics
4.2. Exploratory Factor Analysis
4.2.1. Reliability Analysis
4.2.2. Validity Analysis
4.2.3. Factor Analysis
4.3. Confirmatory Factor Analysis
4.3.1. Reliability Analysis
4.3.2. Validity Analysis
4.4. Multiple Regression Analysis
4.5. Result of Hypothesis Testing
4.6. Analysis of Main Paths
4.7. Analysis of Key Factors
5. Discussion
5.1. Impact of Collaborators’ Learning Ability
5.2. Impact of Characteristic and Arrangement of Design Task
5.3. Impact of BIM Software Function
5.4. Impact of Team Cooperation Atmosphere
5.5. Impact of Comfort of Working Environment
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogenstätter, U. Prediction and optimization of life-cycle costs in early design. Build. Res. Inf. 2000, 28, 376–386. [Google Scholar] [CrossRef]
- Tauriainen, M.; Marttinen, P.; Dave, B.; Koskela, L. The effects of BIM and lean construction on design management practices. Procedia Eng. 2016, 164, 567–574. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, H.; Sun, C. Collaborative design: Improving efficiency by concurrent execution of Boolean tasks. Expert Syst. Appl. 2011, 38, 1089–1098. [Google Scholar] [CrossRef]
- Oh, M.; Lee, J.; Hong, S.W.; Jeong, Y. Integrated system for BIM-based collaborative design. Autom. Constr. 2015, 58, 196–206. [Google Scholar] [CrossRef]
- Panteli, C.; Kylili, A.; Fokaides, P.A. Building information modelling applications in smart buildings: From design to commissioning and beyond A critical review. J. Clean. Prod. 2020, 265, 121766. [Google Scholar] [CrossRef]
- NIBS. United States National Building Information Modeling Standard Version 1—Part 1: Overview, Principles, and Methodologies; NIBS: Washington, DC, USA, 2007. [Google Scholar]
- Lewis, A.M.; Valdes-Vasquez, R.; Clevenger, C. Understanding the perceived value of using BIM for energy simulation. J. Green Build. 2019, 14, 79–92. [Google Scholar] [CrossRef]
- Charef, R.; Alaka, H.; Emmitt, S. Beyond the third dimension of BIM: A systematic review of literature and assessment of professional views. J. Build. Eng. 2018, 19, 242–257. [Google Scholar] [CrossRef]
- Khoshdelnezamiha, G.; Liew, S.C.; Bong, V.N.S.; Ong, D.E.L. Evaluation of BIM application for water efficiency assessment. J. Green Build. 2020, 15, 91–116. [Google Scholar] [CrossRef]
- Bui, N.; Merschbrock, C.; Munkvold, B.E. A review of Building Information Modelling for construction in developing countries. Procedia Eng. 2016, 164, 487–494. [Google Scholar] [CrossRef]
- Fei, X.; Xu, J.; Shen, H. Shanghai Building Information Modeling Technology Application and Development Report; Shanghai Municipal Commission of Housing Urban-Rural Development and Management: Shanghai, China, 2017. [Google Scholar]
- Grilo, A.; Jardim-Goncalves, R. Value proposition on interoperability of BIM and collaborative working environments. Autom. Constr. 2010, 19, 522–530. [Google Scholar] [CrossRef]
- Liu, Y.; van Nederveen, S.; Hertogh, M. Understanding effects of BIM on collaborative design and construction: An empirical study in China. Int. J. Proj. Manag. 2017, 35, 686–698. [Google Scholar] [CrossRef]
- Puck, J.; Pregernig, U. The effect of task conflict and cooperation on performance of teams: Are the results similar for different task types? Eur. Manag. J. 2014, 32, 870–878. [Google Scholar] [CrossRef]
- Mathieu, J.; Maynard, M.T.; Rapp, T.; Gilson, L. Team effectiveness 1997-2007: A review of recent advancements and a glimpse into the future. J. Manag. 2008, 34, 410–476. [Google Scholar] [CrossRef] [Green Version]
- Arman, G.; Adair, C.K. Cross-cultural differences in perception of time: Implications for multinational teams. Eur. J. Work Organ. Psychol. 2012, 21, 657–680. [Google Scholar] [CrossRef]
- Urbini, F.; Callea, A.; Chirumbolo, A.; Talamo, A.; Ingusci, E.; Ciavolino, E. Team performance in the Italian NHS: The role of reflexivity. J. Health Organ. Manag. 2018, 32, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Roe, R.A. Introducing an intrateam longitudinal approach to the study of team process dynamics. Eur. J. Work Organ. Psychol. 2012, 21, 718–748. [Google Scholar] [CrossRef]
- Nezlek, J.B.; Smith, C.V. Social identity in daily social interaction. Self Identity 2005, 4, 243–261. [Google Scholar] [CrossRef]
- Liang, T.-P.; Liu, C.-C.; Lin, T.-M.; Lin, B. Effect of team diversity on software project performance. Ind. Manag. Data Syst. 2007, 107, 636–653. [Google Scholar] [CrossRef]
- Gill, C.; Metz, I.; Tekleab, A.G.; Williamson, I.O. The combined role of conscientiousness, social networks, and gender diversity in explaining individual performance in self-managed teams. J. Bus. Res. 2020, 106, 250–260. [Google Scholar] [CrossRef]
- Landis, B. Personality and social networks in organizations: A review and future directions. J. Organ. Behav. 2016, 37, S107–S121. [Google Scholar] [CrossRef]
- Sparrowe, R.T.; Liden, R.C.; Wayne, S.J.; Kraimer, M.L. Social networks and the performance of individuals and groups. Acad. Manag. J. 2001, 44, 316–325. [Google Scholar] [CrossRef]
- LePine, J.A.; Buckman, B.R.; Crawford, E.R.; Methot, J.R. A review of research on personality in teams: Accounting for pathways spanning levels of theory and analysis. Hum. Resour. Manag. Rev. 2011, 21, 311–330. [Google Scholar] [CrossRef]
- Yan, T.; Dooley, K.J. Communication intensity, goal congruence, and uncertainty in buyer–supplier new product development. J. Oper. Manag. 2013, 31, 523–542. [Google Scholar] [CrossRef]
- Jimmieson, N.L.; Tucker, M.K.; Campbell, J.L. Task conflict leads to relationship conflict when employees are low in trait self-control: Implications for employee strain. Pers. Individ. Dif. 2017, 113, 209–218. [Google Scholar] [CrossRef]
- Curseu, P.L.; Schruijer, S.G.L. Does conflict shatter trust or does trust obliterate conflict? Revisiting the relationships between team diversity, conflict, and trust. Group Dyn. Theory Res. Pract. 2010, 14, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Choi, O.-K.; Cho, E. The mechanism of trust affecting collaboration in virtual teams and the moderating roles of the culture of autonomy and task complexity. Comput. Hum. Behav. 2019, 91, 305–315. [Google Scholar] [CrossRef]
- O’Brien, H.L.; Arguello, J.; Capra, R. An empirical study of interest, task complexity, and search behaviour on user engagement. Inf. Process. Manag. 2020, 57, 102226. [Google Scholar] [CrossRef]
- Rosnah, I.; Umi Kalsom, Y.; Tan Shiang, Y. A framework for classifying misfits between enterprise resourse planning (ERP) systems and business strategies. Asian Acad. Manag. J. 2011, 16, 53–75. [Google Scholar]
- Sudhakar, G.P.; Farooq, A.; Patnaik, S. Soft factors affecting the performance of software development teams. Team Perform. Manag. Int. J. 2011, 17, 187–205. [Google Scholar] [CrossRef]
- Neckermann, S.; Frey, B.S. And the winner is…? The motivating power of employee awards. J. Socio-Econ. 2013, 46, 66–77. [Google Scholar] [CrossRef]
- Meneghel, I.; Salanova, M.; Martinez, I.M. Feeling good makes us stronger: How team resilience mediates the effect of positive emotions on team performance. J. Happiness Stud. 2016, 17, 239–255. [Google Scholar] [CrossRef]
- Caniëls, M.C.J.; Chiocchio, F.; van Loon, N.P.A.A. Collaboration in project teams: The role of mastery and performance climates. Int. J. Proj. Manag. 2019, 37, 1–13. [Google Scholar] [CrossRef]
- Hann, M.; Bower, P.; Campbell, S.; Marshall, M.; Reeves, D. The association between culture, climate and quality of care in primary health care teams. Fam. Pract. 2007, 24, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Kruchten, P. Analyzing Intercultural Factors Affecting Global Software Development—A Position Paper. In Proceedings of the 26th International Conference on Software Engineering “Third International Workshop on Global Software Development (GSD 2004)” W12S Workshop, Edinburgh, UK, 24 May 2004; pp. 59–62. [Google Scholar] [CrossRef] [Green Version]
- Hoch, J.E. Shared leadership, diversity, and information sharing in teams. J. Manag. Psychol. 2014, 29, 541–564. [Google Scholar] [CrossRef]
- Frontczak, M.; Schiavon, S.; Goins, J.; Arens, E.; Zhang, H.; Wargocki, P. Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air 2012, 22, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Aigbavboa, C.; Thwala, W.D. Performance of a green building’s indoor environmental quality on building occupants in South Africa. J. Green Build. 2019, 14, 131–147. [Google Scholar] [CrossRef]
- Clements-Croome, D. Creative and productive workplaces: A review. Intell. Build. Int. 2015, 7, 164–183. [Google Scholar] [CrossRef]
- Reijula, J.; Gröhn, M.; Müller, K.; Reijula, K. Human well-being and flowing work in an intelligent work environment. Intell. Build. Int. 2011, 3, 223–237. [Google Scholar] [CrossRef]
- Johns, G. Reflections on the 2016 decade award: Incorporating context in organizational research. Acad. Manag. Rev. 2017, 42, 577–595. [Google Scholar] [CrossRef]
- Carlisle, J.; Bhanugopan, R.; D’Netto, B. Enhancing task performance through effective training: The mediating role of work environment and moderating effect of non-mandatory training. J. Bus. Res. 2019, 104, 340–349. [Google Scholar] [CrossRef]
- Genaidy, A.; Salem, S.; Karwowski, W.; Paez, O.; Tuncel, S. The work compatibility improvement framework: An integrated perspective of the human-at-work system. Ergonomics 2007, 50, 3–25. [Google Scholar] [CrossRef]
- Crick, J. Effective team communication. In Pract. 2014, 36, 96–98. [Google Scholar] [CrossRef]
- Cooke, N.J.; Gorman, J.C.; Myers, C.W.; Duran, J.L. Interactive team cognition. Cogn. Sci. 2013, 37, 255–285. [Google Scholar] [CrossRef]
- Schaffer, R.H.; Stearn, J.M. The rapid results package: Better performance/stronger managers. Bus. Horiz. 2015, 58, 687–695. [Google Scholar] [CrossRef]
- Li, K.; Tiwari, A.; Alcock, J.; Bermell-Garcia, P. Categorisation of visualisation methods to support the design of Human-Computer Interaction Systems. Appl. Ergon. 2016, 55, 85–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Huang, T.; Kong, C.W.; Guo, H.L.; Baldwin, A.; Chan, N.; Wong, J. Integrating design and construction through virtual prototyping. Autom. Constr. 2008, 17, 915–922. [Google Scholar] [CrossRef]
- Azhar, S. Building Information Modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, Y.; Akinci, B. Building Information Modeling (BIM) application framework: The process of expanding from 3D to computable nD. Autom. Constr. 2014, 46, 82–93. [Google Scholar] [CrossRef]
- Choi, Y.G.; Kwon, J.; Kim, W. Effects of attitudes vs experience of workplace fun on employee behaviors. Int. J. Contemp. Hosp. Manag. 2013, 25, 410–427. [Google Scholar] [CrossRef]
- Halkos, G.; Bousinakis, D. The effect of stress and dissatisfaction on employees during crisis. Econ. Anal. Policy 2017, 55, 25–34. [Google Scholar] [CrossRef]
- Bakker, A.B. An evidence-based model of work engagement. Curr. Dir. Psychol. Sci. 2011, 20, 265–269. [Google Scholar] [CrossRef]
- Cai, W.; Song, W.; Zhao, S. An empirical study on the effects of creative personality and job autonomy on individual innovation performance of knowledge workers. Int. Bus. Manag. 2013, 6, 24–30. [Google Scholar] [CrossRef]
- Lu, C.-Q.; Wang, H.-J.; Lu, J.-J.; Du, D.-Y.; Bakker, A.B. Does work engagement increase person–job fit? The role of job crafting and job insecurity. J. Vocat. Behav. 2014, 84, 142–152. [Google Scholar] [CrossRef]
- Bosch-Sijtsema, P.M.; Ruohomäki, V.; Vartiainen, M. Knowledge work productivity in distributed teams. J. Knowl. Manag. 2009, 13, 533–546. [Google Scholar] [CrossRef]
- Chang, J.W.; Sy, T.; Choi, J.N. Team emotional intelligence and performance: Interactive dynamics between leaders and members. Small Group Res. 2012, 43, 75–104. [Google Scholar] [CrossRef]
- Kleingeld, A.; van Mierlo, H.; Arends, L. The effect of goal setting on group performance: A meta-analysis. J. Appl. Psychol. 2011, 96, 1289. [Google Scholar] [CrossRef] [PubMed]
- Hertel, G.; Geister, S.; Konradt, U. Managing virtual teams: A review of current empirical research. Hum. Resour. Manag. Rev. 2005, 15, 69–95. [Google Scholar] [CrossRef]
- Garbers, Y.; Konradt, U. The effect of financial incentives on performance: A quantitative review of individual and team-based financial incentives. J. Occup. Organ. Psychol. 2014, 87, 102–137. [Google Scholar] [CrossRef]
- O’Leary, M.B.; Mortensen, M.; Woolley, A.W. Multiple team membership: A theoretical model of its effects on productivity and learning for individuals and teams. Acad. Manag. Rev. 2011, 36, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Berger, B.K. The impact of organizational culture and leadership performance on PR professionals’ job satisfaction: Testing the joint mediating effects of engagement and trust. Public Relat. Rev. 2019, 45, 64–75. [Google Scholar] [CrossRef]
- Haemers, M.; Derammelaere, S.; Rosich, A.; Ionescu, C.M.; Stockman, K. Towards a generic optimal co-design of hardware architecture and control configuration for interacting subsystems. Mechatronics 2019, 63, 102275. [Google Scholar] [CrossRef]
- Chen, L.; Luo, H. A BIM-based construction quality management model and its applications. Autom. Constr. 2014, 46, 64–73. [Google Scholar] [CrossRef]
- Yang, J.-B.; Chou, H.-Y. Mixed approach to government BIM implementation policy: An empirical study of Taiwan. J. Build. Eng. 2018, 20, 337–343. [Google Scholar] [CrossRef]
- Hong, Y.; Hammad, A.W.A.; Sepasgozar, S.; Akbarnezhad, A. BIM adoption model for small and medium construction organisations in Australia. Eng. Constr. Archit. Manag. 2019, 26, 154–183. [Google Scholar] [CrossRef]
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.E.; Edwards, D.J.; Li, H.; Wang, C. BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Autom. Constr. 2020, 112, 103086. [Google Scholar] [CrossRef]
- Tohidi, H. Teamwork productivity & effectiveness in an organization base on rewards, leadership, training, goals, wage, size, motivation, measurement and information technology. Procedia Comput. Sci. 2011, 3, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Dohmen, T.; Falk, A. Performance pay and multidimensional sorting: Productivity, preferences, and gender. Am. Econ. Rev. 2011, 101, 556–590. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, B.; Tam, V.W.; Li, J.; Xu, X. Critical factors affecting willingness of design units towards construction waste minimization: An empirical study in Shenzhen, China. J. Clean. Prod. 2019, 221, 526–535. [Google Scholar] [CrossRef]
- MacCallum, R.C.; Widaman, K.F.; Zhang, S.; Hong, S. Sample size in factor analysis. Psychol. Methods 1999, 4, 84. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Liu, J.; Yi, Y.; Wang, X. Exploring factors influencing construction waste reduction: A structural equation modeling approach. J. Clean. Prod. 2020, 276, 123185. [Google Scholar] [CrossRef]
- Wu, G.; Liu, C.; Zhao, X.; Zuo, J. Investigating the relationship between communication-conflict interaction and project success among construction project teams. Int. J. Proj. Manag. 2017, 35, 1466–1482. [Google Scholar] [CrossRef]
- Xiong, B.; Skitmore, M.; Xia, B. A critical review of structural equation modeling applications in construction research. Autom. Constr. 2015, 49, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Lai, W.-T.; Chen, C.-F. Behavioral intentions of public transit passengers—The roles of service quality, perceived value, satisfaction and involvement. Transp. Policy 2011, 18, 318–325. [Google Scholar] [CrossRef]
- Fornell, C.; Tellis, G.J.; Zinkhan, G.M. Validity assessment: A structural equations approach using partial least squares. In Proceedings of the American Marketing Association Educators’ Conference, Chicago, IL, 1–4 August 1982; pp. 1–5. [Google Scholar]
- Aigbavboa, C.; Thwala, W. Confirmatory factor analysis of neighbourhood features amongst South African low-income housing occupants. In Proceedings of the International Conference on Construction and Real Estate Management ICCREM 2013: Construction and Operation in the Context of Sustainability, Karlsruhe, Germany, 10–11 October 2013; pp. 1107–1122. [Google Scholar]
- Schreiber, J.B.; Nora, A.; Stage, F.K.; Barlow, E.A.; King, J. Reporting Structural Equation Modeling and Confirmatory Factor Analysis results: A review. J. Educ. Res. 2006, 99, 323–338. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Post, M.W.; de Witte, L.P.; van Asbeck, F.W.; van Dijk, A.J.; Schrijvers, A.J. Predictors of health status and life satisfaction in spinal cord injury. Arch. Phys. Med. Rehabil. 1998, 79, 395–401. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Testing factorial invariance across groups: A reconceptualization and proposed new method. J. Manag. 1999, 25, 1–27. [Google Scholar] [CrossRef]
- Mafimisebi, I.B.; Jones, K.; Sennaroglu, B.; Nwaubani, S. A validated low carbon office building intervention model based on structural equation modelling. J. Clean. Prod. 2018, 200, 478–489. [Google Scholar] [CrossRef]
- Ellis, B.B. Differential item functioning: Implications for test translations. J. Appl. Psychol. 1989, 74, 912. [Google Scholar] [CrossRef]
- Wu, G.; Zhao, X.; Zuo, J.; Zillante, G. Effects of team diversity on project performance in construction projects. Eng. Constr. Archit. Manag. 2019, 26, 408–423. [Google Scholar] [CrossRef]
- Hartog, J.; van Praag, M.; van der Sluis, J. If You Are So Smart, Why aren’t you an entrepreneur? Returns to cognitive and social ability: Entrepreneurs versus employees. J. Econ. Manag. Strategy 2010, 19, 947–989. [Google Scholar] [CrossRef]
- Huber, L.R.; Sloof, R.; Van Praag, M.; Parker, S.C. Diverse cognitive skills and team performance: A field experiment based on an entrepreneurship education program. J. Econ. Behav. Organ. 2020, 177, 569–588. [Google Scholar] [CrossRef]
- Papadonikolaki, E.; van Oel, C.; Kagioglou, M. Organising and Managing boundaries: A structurational view of collaboration with Building Information Modelling (BIM). Int. J. Proj. Manag. 2019, 37, 378–394. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Lee, C.-Y.; Wang, X. A mixed review of the adoption of Building Information Modelling (BIM) for sustainability. J. Clean. Prod. 2017, 142, 4114–4126. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Cormican, K.; Sampaio, S.C.B.; Wu, Q. Shared leadership and team performance: An analysis of moderating factors. Procedia Comput. Sci. 2018, 138, 671–679. [Google Scholar] [CrossRef]
- Ceri-Booms, M.; Curşeu, P.L.; Oerlemans, L.A.G. Task and person-focused leadership behaviors and team performance: A meta-analysis. Hum. Resour. Manag. Rev. 2017, 27, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Wargocki, P. Productivity and health effects of high indoor air quality. In Encyclopedia of Environmental Health; Elsevier: Burlington, UK, 2011; pp. 688–693. [Google Scholar] [CrossRef]
Latent Factors | Code | Items for Construct | Sources |
---|---|---|---|
Characteristic of team member (CTM) | CTM01 | Physical condition | Interview |
CTM02 | Work attitude | Choi et al. [52] | |
CTM03 | Work experience | Halkos and Bousinakis [53] | |
CTM04 | Job recognition | Bakker [54] | |
CTM05 | Understanding | Interview | |
CTM06 | Innovation capacity | Cai et al. [55]; Lu et al. [56] | |
CTM07 | Learning ability | Lu et al. [56] | |
CTM08 | Professional matching | Bosch-Sijtsema et al. [57] | |
Characteristic and arrangement of design task (CADT) | CADT01 | Task importance | Interview |
CADT02 | Task feedbacks are delayed | Chang et al. [58] | |
CADT03 | Task difficulty | Kleingeld et al. [59] | |
CADT04 | Task requirements are unclear | Hertel et al. [60] | |
CADT05 | Task discontinuity | Interview | |
CADT06 | Task instability | Interview | |
Team management level (TML) | TML01 | Salary incentive mechanism | Garbers and Konradt [61] |
TML02 | Promotion assessment mechanism | Garbers and Konradt [61] | |
TML03 | Consultation | Interview | |
TML04 | Interpersonal relationship | O’Leary et al. [62] | |
TML05 | Cooperative attitude | Bakker [54] | |
TML06 | Willingness to share experience | Interview | |
TML07 | Leadership expertise | Meng and Berger [63] | |
TML08 | Leadership management ability | Meng and Berger [63] | |
Practicality of information system (PIS) | PIS01 | Hardware configuration | Haemers et al. [64] |
PIS02 | Software system stability | Haemers et al. [64] | |
PIS03 | Improve design quality | Chen and Luo [65] | |
PIS04 | Reduce errors and omissions | Yang and Chou [66] | |
PIS05 | Increase design speed | Interview | |
PIS06 | Reduce the number of withdrawals | Interview | |
PIS07 | Information sharing function | Charef et al. [8] | |
PIS08 | Visualization | Hong et al. [67] | |
PIS09 | Reduce communication times | Interview | |
PIS10 | Convenience of communication | Azhar et al. [68] | |
PIS11 | BIM software compatibility | Shirowzhan et al. [69] | |
Comfort of working environment (CWE) | CWE01 | Air quality | Hong et al. [67] |
CWE02 | Illumination | Frontczak et al. [38] | |
CWE03 | Noise | Frontczak et al. [38] | |
CWE04 | Personal work area | Interview | |
CWE05 | Temperature | Frontczak et al. [38] | |
Human interaction (HI) | HI01 | Collaborative behavior | Tohidi [70] |
HI02 | Degree of effort | Dohmen and Falk [71] | |
HI03 | Reduce quarrel in the same profession | Interview | |
HI04 | Interpersonal interaction | Bosch-Sijtsema et al. [57] | |
HI05 | Task interaction | Bosch-Sijtsema et al. [57] | |
HI06 | Reduce quarrel between different professions | Interview | |
Human-information system interaction (HISI) | HISI01 | Ability to perform tasks | Li et al. [49] |
HISI02 | Bear the pressure of tasks | Interview | |
HISI03 | Software meets needs of tasks | Interview | |
HISI04 | Software meets needs of design project | Li et al. [49] | |
HISI05 | Ease of use of software | Li et al. [49] | |
HISI06 | Degree to which software meets design habits | Li et al. [49] | |
HISI07 | Personal ability to learn software | Li et al. [49] | |
Teamwork efficiency (TWE) | TWE01 | Speed of completion of individual tasks | Bosch-Sijtsema et al. [57] |
TWE02 | Speed of completion of teamwork | Interview | |
TWE03 | Quality of results | Interview | |
TWE04 | Personal satisfaction | Bosch-Sijtsema et al. [57] | |
TWE05 | Owner satisfaction | Bosch-Sijtsema et al. [57] | |
TWE06 | Project leader satisfaction | Bosch-Sijtsema et al. [57] |
Variable | Category | Number | Percentage (%) | Cumulative Percentage (%) |
---|---|---|---|---|
Age | Under 30 years old | 233 | 62.3 | 62.3 |
31–40 years old | 103 | 27.6 | 90.0 | |
Over 40 years old | 38 | 10.1 | 100.0 | |
Educational level | Junior college or below | 43 | 11.4 | 11.4 |
Undergraduate | 236 | 63.2 | 74.6 | |
Postgraduate or above | 95 | 25.4 | 100.0 | |
Major | Architectural design | 110 | 29.4 | 29.4 |
Structural design | 87 | 23.2 | 52.6 | |
HVAC design | 57 | 15.4 | 68.0 | |
EE Design | 43 | 11.4 | 79.4 | |
Water supply and drainage design | 39 | 10.5 | 89.9 | |
Other | 38 | 10.1 | 100.0 | |
Staff levels | Junior engineer | 148 | 39.5 | 39.5 |
Mid-level engineer | 127 | 34.2 | 73.7 | |
Senior engineer | 51 | 13.6 | 87.3 | |
Other | 48 | 12.7 | 100.0 | |
Working experience related to BIM design | 1–2 years | 161 | 43.0 | 43.0 |
3–4 years | 110 | 29.4 | 72.4 | |
Over 5 years | 103 | 27.7 | 100.0 |
Goodness-of-Fit Measure | Level of Acceptance Fit | Fit Statistics | |
---|---|---|---|
Absolute fit | X2/df | <3.00 | 1.610 |
GFI | >0.80 | 0.828 | |
AGFI | >0.80 | 0.797 | |
RMSEA | <0.08 | 0.052 | |
Incremental fit | TLI | >0.90 | 0.918 |
IFI | >0.90 | 0.927 | |
CFI | >0.90 | 0.926 | |
Parsimonious fit | PNFI | >0.50 | 0.744 |
PCFI | >0.50 | 0.832 | |
PGFI | >0.50 | 0.711 |
Construct | Item | FL | Combination Reliability | AVE |
---|---|---|---|---|
Collaborators’ learning ability (CLA) | CTM02 | 0.825 | 0.90 | 0.61 |
CTM03 | 0.770 | |||
CTM04 | 0.644 | |||
CTM05 | 0.800 | |||
CTM06 | 0.817 | |||
CTM07 | 0.833 | |||
Characteristic and arrangement of design task (CADT) | CADT03 | 0.725 | 0.77 | 0.53 |
CADT04 | 0.857 | |||
CADT06 | 0.576 | |||
Team cooperation atmosphere (TCA) | TML04 | 0.881 | 0.92 | 0.73 |
TML05 | 0.818 | |||
TML06 | 0.828 | |||
TML07 | 0.891 | |||
BIM-based software function (BSF) | PIS05 | 0.851 | 0.88 | 0.65 |
PIS06 | 0.867 | |||
PIS07 | 0.764 | |||
PIS09 | 0.744 | |||
Comfort of working environment (CWE) | CWE01 | 0.932 | 0.88 | 0.64 |
CWE02 | 0.785 | |||
CWE03 | 0.747 | |||
CWE05 | 0.719 | |||
Human interaction (HI) | HI02 | 0.876 | 0.91 | 0.71 |
HI03 | 0.897 | |||
HI04 | 0.804 | |||
HI05 | 0.787 | |||
Software-person adaptation (SPA) | HISI05 | 0.780 | 0.81 | 0.59 |
HISI06 | 0.850 | |||
HISI07 | 0.670 | |||
Software-task-person matching (STPM) | HISI01 | 0.844 | 0.88 | 0.66 |
HISI02 | 0.823 | |||
HISI03 | 0.850 | |||
HISI04 | 0.716 | |||
Team work efficiency (TWE) | TWE1 | 0.633 | 0.75 | 0.51 |
TWE3 | 0.834 | |||
TWE5 | 0.773 |
CADT | BSF | CWE | TCA | CLA | SPA | STPM | HI | TWE | |
---|---|---|---|---|---|---|---|---|---|
CADT | 0.178 | ||||||||
BSF | 0.021 | 0.324 | |||||||
CWE | 0.088 | 0.149 | 0.344 | ||||||
TCA | 0.141 | 0.083 | 0.167 | 0.418 | |||||
CLA | 0.089 | 0.050 | 0.093 | 0.136 | 0.267 | ||||
SPA | 0.032 | 0.101 | 0.081 | 0.098 | 0.035 | 0.220 | |||
STPM | 0.091 | 0.104 | 0.118 | 0.176 | 0.116 | 0.187 | 0.317 | ||
HI | 0.027 | 0.090 | 0.144 | 0.142 | 0.123 | 0.090 | 0.151 | 0.289 | |
TWE | 0.050 | 0.072 | 0.093 | 0.120 | 0.087 | 0.111 | 0.118 | 0.146 | 0.273 |
Path | Estimate | S.E. | C.R. | p | Estimate (std) |
---|---|---|---|---|---|
BSF → SPA | 0.272 | 0.068 | 4.022 | *** | 0.326 |
TCA → SPA | 0.183 | 0.070 | 2.614 | ** | 0.229 |
CWE → SPA | 0.153 | 0.077 | 1.986 | * | 0.174 |
CLA → SPA | −0.023 | 0.083 | −0.281 | 0.779 | −0.022 |
TCA → STPM | 0.190 | 0.069 | 2.761 | ** | 0.226 |
SPA → STPM | 0.643 | 0.093 | 6.935 | *** | 0.611 |
CLA → STPM | 0.141 | 0.077 | 1.823 | 0.068 | 0.128 |
CADT → STPM | 0.047 | 0.099 | 0.475 | 0.635 | 0.041 |
BSF → STPM | −0.077 | 0.059 | −1.294 | 0.196 | −0.087 |
CADT → HI | −0.297 | 0.111 | −2.669 | ** | −0.265 |
TCA → HI | 0.204 | 0.076 | 2.683 | ** | 0.250 |
CWE → HI | 0.255 | 0.071 | 3.590 | *** | 0.284 |
CLA → HI | 0.215 | 0.082 | 2.601 | ** | 0.201 |
STPM → HI | 0.298 | 0.077 | 3.889 | *** | 0.307 |
HI → TWE | 0.266 | 0.077 | 3.435 | *** | 0.298 |
STPM → TWE | 0.397 | 0.081 | 4.895 | *** | 0.460 |
Goodness-of-Fit Measure | Level of Acceptance Fit | Fit Statistics | |
---|---|---|---|
Absolute fit | X2/df | <3.00 | 1.486 |
GFI | >0.80 | 0.843 | |
AGFI | >0.80 | 0.814 | |
RMSEA | <0.08 | 0.043 | |
Incremental fit | TLI | >0.90 | 0.935 |
IFI | >0.90 | 0.943 | |
CFI | >0.90 | 0.942 | |
Parsimonious fit | PNFI | >0.50 | 0.752 |
PCFI | >0.50 | 0.841 | |
PGFI | >0.50 | 0.711 |
Path | Estimate | S.E. | C.R. | P | Estimate (std) |
---|---|---|---|---|---|
CLA → HI | 0.258 | 0.067 | 3.865 | *** | 0.309 |
CADT → HI | 0.151 | 0.073 | 2.072 | * | 0.179 |
TCA → HI | 0.178 | 0.064 | 2.783 | ** | 0.218 |
CWE → HI | 0.210 | 0.060 | 3.494 | *** | 0.248 |
STPM → HI | 0.610 | 0.085 | 7.199 | *** | 0.586 |
CLA → STPM | 0.168 | 0.073 | 2.284 | * | 0.152 |
TCA → SPA | −0.334 | 0.114 | −2.932 | ** | −0.292 |
TCA → STPM | 0.215 | 0.078 | 2.762 | ** | 0.251 |
BSF → SPA | 0.233 | 0.069 | 3.387 | *** | 0.263 |
CWE → SPA | 0.211 | 0.087 | 2.436 | * | 0.189 |
HI → TWE | 0.372 | 0.086 | 4.317 | *** | 0.368 |
SPA → STPM | 0.455 | 0.092 | 4.927 | *** | 0.517 |
STPM → TWE | 0.197 | 0.079 | 2.486 | * | 0.227 |
CLA → HI | 0.258 | 0.067 | 3.865 | *** | 0.309 |
CADT → HI | 0.151 | 0.073 | 2.072 | * | 0.179 |
TCA → HI | 0.178 | 0.064 | 2.783 | ** | 0.218 |
Path | Estimate | S.E. | C.R. |
---|---|---|---|
Collaborators’ learning ability (CLA) | CLA → TWE | 0.134 | |
CLA → HI → TWE | 0.043 | ||
CLA → STPM → TWE | 0.078 | ||
CLA → STPM → HI → TWE | 0.013 | ||
Characteristic and arrangement of design task (CADT) | CADT → TWE | −0.066 | |
CADT → HI → TWE | −0.066 | ||
Team cooperation atmosphere (TCA) | TCA → TWE | 0.283 | |
TCA → HI → TWE | 0.057 | ||
TCA → STPM → HI → TWE | 0.021 | ||
TCA → STPM → TWE | 0.128 | ||
TCA → SPA → STPM → TWE | 0.066 | ||
TCA → SPA → STPM → HI → TWE | 0.011 | ||
BIM-based software function (BSF) | BSF → TWE | 0.109 | |
BSF → SPA → STPM → TWE | 0.094 | ||
BSF → SPA → STPM → HI → TWE | 0.015 | ||
Comfort of working environment (CWE) | CWE → TWE | 0.123 | |
CWE → HI → TWE | 0.060 | ||
CWE → SPA → STPM → TWE | 0.054 | ||
CWE → SPA → STPM → HI → TWE | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yuan, Z.; He, Z.; Zhou, F.; Wu, Z. Critical Factors Affecting Team Work Efficiency in BIM-Based Collaborative Design: An Empirical Study in China. Buildings 2021, 11, 486. https://doi.org/10.3390/buildings11100486
Wang J, Yuan Z, He Z, Zhou F, Wu Z. Critical Factors Affecting Team Work Efficiency in BIM-Based Collaborative Design: An Empirical Study in China. Buildings. 2021; 11(10):486. https://doi.org/10.3390/buildings11100486
Chicago/Turabian StyleWang, Jiayuan, Zikui Yuan, Zhilin He, Fuping Zhou, and Zezhou Wu. 2021. "Critical Factors Affecting Team Work Efficiency in BIM-Based Collaborative Design: An Empirical Study in China" Buildings 11, no. 10: 486. https://doi.org/10.3390/buildings11100486
APA StyleWang, J., Yuan, Z., He, Z., Zhou, F., & Wu, Z. (2021). Critical Factors Affecting Team Work Efficiency in BIM-Based Collaborative Design: An Empirical Study in China. Buildings, 11(10), 486. https://doi.org/10.3390/buildings11100486