Assessment of Selected Models for FRP-Retrofitted URM Walls under In-Plane Loads
Abstract
:1. Introduction
- -
- those that rebuild and/or reinforce the brickwork to improve the present masonry’s resistance (gluing, grouting, torking, prestressing, sheathing, complete replacement of the elements)
- -
- those that restore the resistance of the entire structure (adding new walls in a weak direction, fixers, joints)
- -
- those that enhance the spatial rigidity of the entire structure, i.e., prohibit movement perpendicular to the plane (interconnection of masonry and interconnection of masonry and ceiling tiles, reinforced concrete frames, prestressed steel frames).
2. Failure Modes of Masonry Walls
- (a)
- crushing the pressure area of the wall along the edge due to the action of bending moment and longitudinal force (flexural failure);
- (b)
- sliding on the mortar joint due to the action of transverse force (sliding shear failure);
- (c)
- creating a diagonal crack that connects the upper corner and the opposite lower corner in the direction of the imaginary pressure diagonal (diagonal cracking mode).
3. Modern Techniques for Strengthening Masonry Buildings
3.1. Reinforcement of Masonry Buildings Using Steel Strips
3.2. Reinforcements of Masonry Buildings Using Composite Materials
3.3. Advantages and Disadvantages of Modern Reinforcement Techniques
4. Models for Reinforcing URM Walls with FRP under the Influence of Shear in the Plane
- —shear strength of URM walls.
- —the effect of FRP on increasing the shear strength of masonry.
4.1. Triantafillou (1998)
- —partial safety factor for FRP in uniaxial tension 1.15, 1.2, and 1.25 for carbon, aramid, and glass FRPs (hereinafter abbreviated as CFRP, AFRP, and GFRP, respectively); however, this safety factor was not used to validate the model with experimental results;
- —wall length;
- —wall thickness.
- —effective FRP strain;
- —FRP area fraction in the horizontal direction;
- —modulus of elasticity of FRP;
- —FRP axial rigidity.
4.2. Chinese Standards (2006)
- —FRP participation coefficient;
- —Young’s modulus of elasticity of FRP;
- —design value for effective stress of FRP;
- —cross-sectional area of the i-th FRP shear reinforcement;
- —the angle of the i-th strip of the FRP;
- n—total number of transverse reinforcements.
4.3. AC 125 Model (2007)
- —thickness of the FRP;
- —wall height;
- —fiber orientation;
- —tensile strength of the composite material (MPa):
4.4. Garbin et al.’s Model (Garbin et al., 2007)
- —effective stress in the FRP is 0.5 of the ultimate strength;
- —cross-sectional area;
- —effective design strength;
- —actual depth of masonry in direction of shear considered;
- —spacing of reinforcement.
- —strengthening systems factors (0.65 for most cases);
- —environment reduction factor;
- —tensile strength of the FRP.
4.5. ACI 440.7R-10 (2010)
- —height of the panel;
- —length of the panel;
- —center- to mid-interval FRP reinforcement measured perpendicular to the shear force direction;
- —cross-sectional area of the FRP reinforcement;
- —effective stress in the FRP.
5. Experimental Database
5.1. Description of the Reinforced Wall Database
Author(s) | Reference | Year | Type | Configuration | Number of Specimens |
---|---|---|---|---|---|
Chuang et al. | [61] | 2003 | FRP | diagonal/mixed strips | 2 |
Stratford et al. | [62] | 2004 | GFRP | sheet | 1 |
El Gawadi et al. | [16] | 2005 | GFRP/AFRP | Diagonal stris/sheet | 4 |
El Gawadi et al. | [56] | 2006 | GFRP/AFRP | sheet | 4 |
Santa-Maria et al. | [63] | 2006 | CFRP | diagonal/horizontal strips | 4 |
Wang et al. | [48] | 2006 | GFRP | horizontal/diagonal/mixed strips | 8 |
El Gawady et al. | [57] | 2007 | GFRP/AFRP | sheet | 4 |
Santa-Maria and Alcaino | [30] | 2011 | CFRP | Horizontal/diagonal strips | 8 |
Farooq et al. | [64] | 2012 | CFRP | diagonal strips | 1 |
Zhou et al. | [31] | 2013 | BFRP | mixed strips | 7 |
Konthesingha et al. | [58] | 2013 | CFRP | vertical/horizontal strips | 14 |
Bishcof et al. | [65] | 2014 | CFRP | vertical/mixed strips | 4 |
Jarc Simonič et al. | [59] | 2014 | CFRP/GFRP | diagonal/horizontal/mixed/grid strips | 8 |
Konthesingha et al. | [66] | 2015 | CFRP | Horizontal/vertical/grid strips | 18 |
Martinelli et al. | [67] | 2016 | CFRP | diagonal/horizontal/vertical/grid strips | 8 |
Pavan et al. | [68] | 2016 | GFRP/CFRP | horizontal strips/sheet | 7 |
Rahman et al. | [69] | 2016 | PET FRP/CFRP | Diagonal/grid strips/sheet | 10 |
Zhang et al. | [60] | 2017 | BFRP | mixed strips | 2 |
Vega and Torres | [70] | 2018 | CFRP | mixed/diagonal strips | 6 |
Parameter | Min | Max | Average | |
---|---|---|---|---|
Geometrical properties of the walls | Height (mm) | 225 | 2400 | 1227.07 |
Length (mm) | 245 | 2470 | 1448.54 | |
Thickness (mm) | 75 | 520 | 155.35 | |
Compressive strength (MPa) | 1.45 | 30 | 13.06 | |
Mechanical properties of the walls | Reinforcement ratio (%) | 0 * | 1.20 | 0.11 |
Tensile strength (MPa) | 110 | 4830 | 2429.20 | |
Elastic modulus (GPa) | 10 | 250 | 158.35 | |
Shear strength—experimental (kN) | 16.5 | 456 | 161.04 | |
Calculated shear strength as per selected models | Shear strength—Triantafillou model (kN) | 0 * | 537.02 | 106.00 |
Shear strength—AC 125 model (kN) | 0 * | 1660.55 | 281.75 | |
Shear strength—Garbin et al.’s model (kN) | 0 * | 4662.23 | 298.93 | |
Shear strength—ACI 440.7R-10 (kN) | 0 * | 1687.68 | 168.63 | |
Shear strength—Chinese standards (kN) | 0 * | 261.86 | 27.53 |
5.2. Experimental Results vs. Values Estimated Theoretically
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matthys, H.; Noland, L. Strengthening and retrofitting masonry buildings. In Proceedings of the An International Seminar on Evaluation, Strengthening and Retrofitting Masonry Buildings, TMS, Boulder, CO, USA, 11–18 October 1989. [Google Scholar]
- dos Santos, F.A.; Carvalho, M.C.R.; Roman, H.R. Architectural conception and design in structural masonry: Some practices to improve constructability. Int. J. Hous. Sci. 2009, 33, 57–67. [Google Scholar]
- Işik, M.F.; Işik, E.; Harirchian, E. Application of IOS/Android rapid evaluation of post-earthquake damages in masonry buildings. Gazi Mühendislik Bilimleri Derg. 2021, 7, 36–50. [Google Scholar]
- Bilgin, H.; Huta, E. Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania. Earthq. Struct. 2018, 14, 599–614. [Google Scholar]
- Hysenlliu, M.; Bidaj, A.; Bilgin, H. Influence of material properties on the seismic response of masonry buildings. Res. Eng. Struct. Mater. 2020, 6, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Pavić, G.; Hadzima-Nyarko, M.; Bulajić, B.; Jurković, Ž. Development of seismic vulnerability and exposure models—A case study of Croatia. Sustainability 2020, 12, 973. [Google Scholar] [CrossRef] [Green Version]
- Pavić, G.; Hadzima-Nyarko, M.; Bulajić, B. A contribution to a UHS-based seismic risk assessment in Croatia—A case study for the city of Osijek. Sustainability 2020, 12, 1796. [Google Scholar] [CrossRef] [Green Version]
- Shkodrani, N.; Bilgin, H.; Hysenlliu, M. Influence of interventions on the seismic performance of URM buildings designed according to pre-modern codes. Res. Eng. Struct. Mat. 2021, 7, 315–330. [Google Scholar] [CrossRef]
- Tabrizikahou, A.; Hadzima-Nyarko, M.; Kuczma, M.; Lozančić, S. Application of shape memory alloys in retrofitting of masonry and heritage structures based on their vulnerability revealed in the Bam 2003 earthquake. Materials 2021, 14, 4480. [Google Scholar] [CrossRef] [PubMed]
- Hoła, A.; Sadowski, L.; Szymanowski, J. Non-destructive testing and analysis of a XIX-century brick masonry building. Arch. Civ. Eng. 2020, 66, 201–219. [Google Scholar]
- Hadzima-Nyarko, M.; Pavić, G.; Bulajić, B.; Plaščak, I. Seismic vulnerability assessment of small rural areas in Eastern Croatia. In Proceedings of the 17th World Conference on Earthquake Engineering, Sendai, Japan, 27 September–2 October 2021; Meguro, K., Ed.; Japan Association on Earthquake Engineering JAEE: Tokyo, Japan, 2021; pp. 1–12. [Google Scholar]
- Miranda, E.; Brzev, S.; Bijelić, N.; Arbanas, Ž.; Bartolac, M.; Jagodnik, V.; Lazarević, D.; Arbanas, S.M.; Zlatović, S.; Acosta, A.; et al. PRJ-2959/StEER-EERI: Petrinja, Croatia December 29, 2020, Mw 6.4 Earthquake—Field Research, Joint Reconnaissance Report; Kijewski-Correa, T., Ed.; DesignSafe: Oakland, CA, USA, 2021; p. 206. Available online: https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-2959/#details-541797621822058005-242ac118-0001-012 (accessed on 9 August 2021).
- Churilov, S.; Dumova-Jovanoska, E. In-plane shear behavior of unreinforced masonry walls. In Proceedings of the 14th ECEE 2010 Ohrid Conference, Ohrid, Macedonia, 30 August–3 September 2010. [Google Scholar]
- Brencich, A.; Gambarotta, L. Mechanical response of solid clay brickwork under eccentric loading. Part II: CFRP reinforced masonry. Mater. Struct. 2005, 38, 267–273. [Google Scholar] [CrossRef]
- Lignola, G.P.; Angiuli, R.; Prota, A.; Aiello, M.A. FRP confinement of masonry: Analytical modeling. Mater. Struct. 2014, 47, 2101–2115. [Google Scholar] [CrossRef]
- ElGawady, M.; Lestuzzi, P.; Badoux, M. Aseismic retrofitting of unreinforced masonry walls using FRP. Compos. Part B 2005, 37, 148–162. [Google Scholar] [CrossRef]
- Marcari, G.; Manfredi, G.; Prota, A.; Pecce, M. In-plane shear performance of masonry panels strengthened with FRP. Compos. Part B 2007, 38, 887–901. [Google Scholar] [CrossRef]
- Maljaee, H.; Ghiassi, B.; Lourenço, P.B.; Oliveira, D.V. Moisture-induced degradation of interfacial bond in FRP-strengthened masonry. Compos. Part B Eng. 2016, 87, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Thamboo, J.; Navaratnam, S.; Poologanathan, K.; Corradi, M. Characteristics of CFRP strengthened masonry wallets under concentric and eccentric compression. Case Stud. Constr. Mater. 2021, 14, e00472. [Google Scholar] [CrossRef]
- Tomaževič, M. Protupotresna obnova postojećih zidanih građevina. Građevinar 2000, 52, 683–693. [Google Scholar]
- Zhuge, Y. FRP-retrofitted URM walls under in-plane shear: Review and assessment of available models. J. Compos. Constr. 2010, 14, 743–753. [Google Scholar] [CrossRef]
- Španić, M.; Hadzima-Nyarko, M.; Morić, D. Strengthening of historical buildings with composite Polymers. Elec J. Fac. Civ. Eng. E-GFOS 2012, 5, 74–85. [Google Scholar]
- Hadzima-Nyarko, M.; Ademovic, N.; Pavić, G.; Šipoš, T.K. Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions. Earthq. Struct. 2018, 15, 473–485. [Google Scholar]
- Hadzima-Nyarko, M.; Ademović, N.; Jeleč, M. Strengthening of Masonry Buildings-Methods and Examples; Faculty of Civil Engineering and Architecture Osijek: Osijek, Croatia, 2020. (In Croatian) [Google Scholar]
- Tomaževič, M. Earthquake-Resistant Design of Masonry Buildings; Elnashai, A.S., Dowling, P.J., Eds.; Imperial College Press: London, UK, 2000; p. 268. [Google Scholar]
- Dhakal, R.P. Performance of unreinforced masonry buildings in Canterbury earthquakes. In Proceedings of the 6th International Conference on Seismology and Earthquake Engineering, Tehran, Iran, 15 May 2011. [Google Scholar]
- ElGawady, M.; Lestuzzi, P.; Badoux, M. A review of conventional seismic retrofitting techniques for URM. In Proceedings of the 13th International Brick and Block Masonry Conference, Amsterdam, The Netherlands, 4–7 July 2004. [Google Scholar]
- Taghdi, M. Seismic Retrofit of Low-Rise Masonry and Concrete Walls by Steel Strips. Ph.D. Thesis, Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada, 2000. [Google Scholar]
- Farooq, H.; ElGawady, M.; Ilyas, M. Seismic in-plane performance of retrofitted masonry walls. KSCE J. Civ. Eng. 2014, 18, 226–237. [Google Scholar] [CrossRef]
- Santa-Maria, H.; Alcaino, P. Repair of in-plane shear damaged masonry walls with external FRP. Constr. Build. Mater. 2010, 25, 1172–1180. [Google Scholar] [CrossRef]
- Zhou, D.; Lei, Z.; Wang, J. In-plane behavior of seismically damaged masonry walls repaired with external BFRP. Compos. Struct. 2013, 102, 9–19. [Google Scholar] [CrossRef]
- Chen, Z.F.; Wan, L.L.; Lee, S.; Ng, M.; Tang, J.M.; Liu, M.; Lee, L. Evaluation of CFRP, GFRP and BFRP material systems for the strengthening of RC slabs. J. Reinf. Plast. Compos. 2008, 27, 1233–1243. [Google Scholar] [CrossRef]
- Čaušević, A.; Rustempašić, N. Rekonstrukcije Zidanih Objekata Visokogradnje; University of Sarajevu—Faculty of Architecture: Sarajevo, Bosnia, 2004. (In Bosnian) [Google Scholar]
- Triantafillou, T.C.; Papanicolaou, C.G.; Zisimopoulos, P.; Laourdekis, T. Concrete confinement with textile reinforced mortar (TRM) jackets. ACI Struct. J. 2006, 103, 28–37. [Google Scholar]
- Curbach, M.; Jesse, F. High-performance textile-reinforced concrete. Struct. Eng. Int. 1999, 4, 289–291. [Google Scholar] [CrossRef]
- Brameshuber, W.; Brockmann, J.; Roessler, G. Textile Reinforced Concrete for Formwork Elements‒Investigations of Structural Behaviour. FRPRCS-5 Fiber Reinforced Plastics for Reinforced Concrete Structures; Burgoyne, C.J., Ed.; Thomas Telford: London, UK, 2001; Volume 2, pp. 1019–1026. [Google Scholar]
- Corradi, M.; Osofero, A.I.; Borri, A.; Castori, G. Strengthening of historic masonry structures with composite materials. In Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures; IGI Global: Hershey, PA, USA, 2015; Volume 2, pp. 257–292. [Google Scholar]
- Kogan, F.M.; Nikitina, O.V. Solubility of chrysotile asbestos and basalt fibers in relation to their fibrogenic and carcinogenic action. In Proceedings of the Workshop on Biopersistence of Respirable Synthetic Fibers and Minerals Held, Lyon, France, 7–9 September 1992. [Google Scholar]
- Sim, J.; Park, C.; Young, M.D. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B 2005, 36, 504–512. [Google Scholar] [CrossRef]
- García, D. Experimental and Numerical Analysis of Stone Masonry Walls Strengthened with Advanced Composite Materials. Ph.D. Thesis, Escuela de Ingeniería de Bilbao, Bilbao, Spain, 2009. [Google Scholar]
- Giamundo, V.; Lignola, G.P.; Maddaloni, G.; da Porto, F.; Prota, A.; Manfredi, G. Shaking table tests on a full-scale unreinforced and IMG retrofitted clay brick masonry barrel vault. Bull. Earthq. Eng. 2016, 14, 1663–1693. [Google Scholar] [CrossRef]
- Yilmaz, I.A.; Mezrea, P.E.; Ispir, M.; Binbir, E.; Bal, I.E.; Ilki, A. External confinement of brick masonry columns with open-grid basalt reinforced mortar. In Proceedings of the 4th Asia-Pacific Conference on FRP in Structures (APFIS 2013), International Institute for FRP in Construction, Melbourne, Australia, 11–13 December 2013. [Google Scholar]
- Di Ruocco, G. Basalt fibers: The green material of the XXI-century, for a sustainable restoration of historical buildings, Vitruvio. Int. J. Archit. Technol. Sustain. 2016, 2, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, H.; Pradhan, S.; Guragain, R. Experiences on Retrofitting of Low Strength Masonry Buildings by Different Retrofitting Technique in Nepal. In Proceedings of 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Triantafillou, T.C. Strengthening of masonry structures using epoxy-bonded FRP laminates. J. Compos. Constr. 1998, 2, 96–104. [Google Scholar] [CrossRef]
- Triantafillou, T.C.; Antonopoulos, C. Design of concrete flexural members strengthened in shear with FRP. J. Compos. Constr. 2000, 4, 198–205. [Google Scholar] [CrossRef]
- Nanni, A.; Tumialan, J. Fiber-reinforced composites for the strengthening of masonry structures. Struct. Eng. Int. 2003, 134, 272–278. [Google Scholar] [CrossRef]
- Wang, Q.; Chai, Z.; Huang, Y.; Zhang, Y. Seismic shear capacity of brick masonry wall reinforced by GFRP. Asian J. Civ. Eng. 2006, 76, 563–580. [Google Scholar]
- Garbin, E.; Galati, N.; Nanni, A.; Modena, C.; Valluzzi, M. Provisional design guidelines for the strengthening of masonry structures subject to in-plane loading. In Proceedings of the 10th North American Masonry Conference, St. Louis, MO, USA, 3–5 June 2007; pp. 440–453. [Google Scholar]
- Chinese Standards. Design Guidance for FRP Strengthened Structures (Provisional); Ministry of Construction: Beijing, China, 2006. [Google Scholar]
- National Research Council. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures; CNR-DT 200; National Research Council: Rome, Italy, 2004. [Google Scholar]
- AC125. Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer (FRP) Composite System; ICC Evaluation Service, Inc.: Brea, CA, USA, 2007. [Google Scholar]
- ACI 440.7R-10. Guide for the Design and Construction of Externally Bonded Fiber-Reinforced Polymer Systems for Strengthening Unreinforced Masonry Structures; American Concrete Institute Committee 440: Farmington Hills, MI, USA, 2010. [Google Scholar]
- Smith, S.T.; Teng, J.G. FRP-strengthened RC beams. II: Assessment of debonding strength models. Eng. Struct. 2002, 24, 397–417. [Google Scholar] [CrossRef]
- Pham, H.; Al-Mahaidi, R. Assessment of available prediction models for the strength of FRP retrofitted RC beams. Compos. Struct. 2004, 66, 601–610. [Google Scholar] [CrossRef]
- ElGawady, M.; Lestuzzi, P.; Badoux, M. Shear strength of URM walls retrofitted using FRP. Eng. Struct. 2006, 28, 1658–1670. [Google Scholar] [CrossRef]
- ElGawady, M.; Lestuzzi, P.; Badoux, M. Static cyclic response of masonry walls retrofitted with fiber-reinforced polymers. J. Compos. Constr. 2007, 111, 50–61. [Google Scholar] [CrossRef]
- Konthesingha, K.M.C.; Masia, M.J.; Petersen, R.B.; Mojsilovic, N.; Simundic, G.; Page, A.W. Static cyclic in-plane shear response of damaged masonry walls retrofitted with NSM FRP strips–An experimental evaluation. Eng. Struct. 2013, 50, 126–136. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, D.; Sheng, Y.; Garrity, S.W.; Xu, L. Numerical modelling of FRP-reinforced masonry walls under in-plane seismic loading. Constr. Build. Mater. 2017, 134, 649–663. [Google Scholar] [CrossRef]
- Simonič, M.J.; Gostič, S.; Bosiljkov, V.; Žarnić, R. Testing and analysis of walls strengthened with FRP. Građevinar 2014, 66, 533–548. [Google Scholar]
- Chuang, S.W.; Zhuge, Y.; Wong, T.Y.; Peters, L. Seismic retrofitting of unreinforced masonry walls by FRP strips. In Proceedings of the 2003 Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, 13–15 February 2003; Available online: http://db.nzsee.org.nz/2003/View/Paper012s.pdf (accessed on 10 November 2021).
- Stratford, T.; Pascale, G.; Manfroni, O.; Bonfiglioli, B. Shear strengthening masonry panels with sheet glass-fibre reinforced polymer. J. Compos. Constr. 2005, 8, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Santa-Maria, H.; Alcaino, P.; Luders, C. Experimental response of masonry walls externally reinforced with carbon fiber fabrics. In Proceedings of the 8th U.S. National Conference on Earthquake Engineering, San Francisco, CA, USA, 18–22 April 2006. [Google Scholar]
- Farooq, S.H.; Ilyas, M.; Amir, S. Response of masonry walls strengthened with CFRP and steel strips. Arab. J. Sci. Eng. 2012, 37, 545–559. [Google Scholar] [CrossRef]
- Bischof, P.; Suter, R.; Chatzi, E.; Lestuzzi, P. On the use of CFRP sheets for the seismic retrofitting of masonry walls and the influence of mechanical anchorage. Polymers 2014, 6, 1972–1998. [Google Scholar] [CrossRef] [Green Version]
- Konthesingha, K.M.C.; Masia, M.J.; Petersen, R.B.; Page, A.W. Experimental evaluation of static cyclic in-plane shear behavior of unreinforced masonry walls strengthened with NSM FRP strips. J. Compos. Constr. 2015, 19, 04014055. [Google Scholar] [CrossRef]
- Martinelli, E.; Perri, F.; Sguazzo, C.; Faella, C. Cyclic shear-compression tests on masonry walls strengthened with alternative configurations of CFRP strips. Bull. Earthq. Eng. 2016, 14, 1695–1720. [Google Scholar] [CrossRef]
- Pavan, G.S.; Nanjunda Rao, K.S. Behavior of brick–Mortar interfaces in FRP-strengthened masonry assemblages under normal loading and shear loading. J. Mater. Civ. Eng. 2016, 28, 04015120. [Google Scholar] [CrossRef]
- Rahman, A.; Ueda, T. In-plane shear performance of masonry walls after strengthening by two different FRPs. J. Compos. Constr. 2016, 20, 04016019. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.; Torres, N. External strengthening of unreinforced masonry walls with polymers reinforced with carbon fiber (Reforzamiento externo de muros de mampostería no reforzada mediante polímeros reforzados con fibra de carbono). IngenIería E InvestIgacIón 2018, 38, 15–23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadzima-Nyarko, M.; Čolak, S.; Bulajić, B.Đ.; Ademović, N. Assessment of Selected Models for FRP-Retrofitted URM Walls under In-Plane Loads. Buildings 2021, 11, 559. https://doi.org/10.3390/buildings11110559
Hadzima-Nyarko M, Čolak S, Bulajić BĐ, Ademović N. Assessment of Selected Models for FRP-Retrofitted URM Walls under In-Plane Loads. Buildings. 2021; 11(11):559. https://doi.org/10.3390/buildings11110559
Chicago/Turabian StyleHadzima-Nyarko, Marijana, Stanko Čolak, Borko Đ. Bulajić, and Naida Ademović. 2021. "Assessment of Selected Models for FRP-Retrofitted URM Walls under In-Plane Loads" Buildings 11, no. 11: 559. https://doi.org/10.3390/buildings11110559
APA StyleHadzima-Nyarko, M., Čolak, S., Bulajić, B. Đ., & Ademović, N. (2021). Assessment of Selected Models for FRP-Retrofitted URM Walls under In-Plane Loads. Buildings, 11(11), 559. https://doi.org/10.3390/buildings11110559